12. AZ EULER-FÉLE SZABADNUTÁCIÓ, KÉNYSZERNUTÁCIÓ, PÓLUSVÁNDORLÁS

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "12. AZ EULER-FÉLE SZABADNUTÁCIÓ, KÉNYSZERNUTÁCIÓ, PÓLUSVÁNDORLÁS"

Átírás

1 1. Z EULER-FÉLE SZBDUTÁCÓ, KÉYSZERUTÁCÓ, PÓLUSVÁDORLÁS Euler-egenletek inen merev test forgása során a forgási tehetetlensége miatt igeksik megtartani forgási állapotát, más sóval a impulusnomaték megmaraási törvéne értelmében bármel árt renser impulusnomatéka állanó, tehát iőbeli váltoása:. (1) Ha a forgó merev testre külső erők is hatnak, akkor. a impulusnomaték megváltoása a külső erők forgatónomatékával egenlő, íg a r sögsebességgel forgó merev test kinetikai egensúlának feltétele valamel K (,, ) inerciarenserből (tehát a testtel nem egüttforgó külső koorinátarenserből) semlélve. () 1. ábra. erev testek forgásának leírásáho hasnált koorinátarenserek Térjünk eek után át a K (,, ) inerciarenserről a merev testtel egütt forgó (a 1. ábrán látható) K (,, ) koorinátarenserre. Ha a forgó K koorinátarenseren belül a vektor nem váltona, akkor a K inerciarenserből semlélve a vektor váltoása csak a forgásból állna: r. 1

2 Ha a K renserből semlélve is váltoik, akkor: r. (3) Ennek a egébként bármel tetsőleges vektorra érvénes általános vektor transformációnak a felhasnálásával a (3) átírható a r (4) alakra; ami a merev testtel egütt forgó megfigelő sámára a forgási egensúl feltétele (a Euler-féle vektoregenlet). Euler-féle vektoregenlet össetevőkre bontásáho elősör sámítsuk ki a (4) össefüggésben sereplő r vektoriális soratot a ),, ( K koorinátarenserben: ( ) ( ) ( ) k j i k j i r és bontsuk fel ennek segítségével a (4) vektoregenletet a,, koorináta iránok serinti skalár-egenletekre:. (5) követkeő lépésben sámítsuk ki a impulusnomaték-vektor, és össetevőit. impulusnomaték-vektort a tehetetlenségi-nomaték tenor és a forgási sögsebesség-vektor sorata aja: r (6) ahol a merev test tehetetlenségi-nomaték tenora, melnek főátlójában a aott testnek a, és a tengelre vonatkoó

3 3 ( ) ( ) ( )m m m tehetetlenségi nomatékai serepelnek, a főátlón kívüli elemek peig a ún. centrifugális nomatékok : m m m. Ha a K koorinátarensert úg vessük fel, hog a, és a tengele egbeessen a test tehetetlenségi főiránaival, akkor eek a centrifugális nomatékok érusok lesnek. Ekkor a általában sokásos jelölés serint: C B és íg: C B. Behelettesítve eeket a (5) egenletekbe, a merev testek forgását leíró Euler-féle mogásegenleteket (a ún. pörgettű-egenleteket) kapjuk, a merev testtel egütt forgó K koorinátarenserre vonatkoóan: ) ( ) ( ) ( B C C B B C. (7) E három elsőrenű nem lineáris ifferenciálegenlet a testhe rögített ),, ( K koorinátarenserre vonatkoó,, sögsebesség össetevőkre, és abban a esetben érvénes, ha a merev test tehetetlenségi főiránai egbeesnek a, és a koori-

4 náta iránokkal, továbbá a koorinátarenser keőpontja a test tömegköéppontjában van. Föl, mint erőmentes simmetrikus pörgettű menniben a (7) Euler-féle egenleteket erőmentes simmetrikus pörgettűnek feltételeett Fölre alkalmauk, a alábbi egserűsítő feltevéseket tehetjük: 1. a Föl alakváltoásra képtelen merev test, aa eltekintünk a rugalmasságától,., aa a Fölre semmiféle külső forgatónomaték nem hat (erőmentes pörgettű esete), 3. B vagis a egenlítő síkjába eső tehetetlenségi nomatékok megegenek (simmetrikus pörgettű esete), 4. heleük el a Fölhö rögített és vele egütt forgó K (,, ) koorinátarenser O keőpontját a Föl tömegköéppontjába (O tkp.), 5. a forgástengel menjen át a tömegköépponton, 6. a Fölhö rögített koorinátarenser tengelének irána essen egbe a legnagobb tehetetlenségi nomaték C iránával (C >). Ekkor a (7) Euler-féle mogásegenletek a ( C ) ( C ) (9) C alakra egserűsönek. ivel C, a harmaik egenlet megolása: áll. (1) tehát a tengel körüli forgás sögsebessége (a r sögsebesség-vektornak a simmetriatengelre vonatkoó vetülete) állanó. Et követően ossuk el a (9) első két egenletét -val és veessük be a C k jelöléssel a inamikai lapultság fogalmát. Ekkor a (9) első két egenlete: k k. (11) Differenciáljuk a (11) első egenletét t serint és helettesítsük be a íg keletkeő / ifferenciálhánaos kifejeését a (11) másoik egenletébe. reneés után: 4

5 ( k ) amel másorenű ifferenciálegenletnek a triviális megolása mellett a [( k ) τ ] m cos t (1) is megolása; melben m és τ integrálási állanók (a harmonikus regőmogás ifferenciálegenletének megolásáho hasonlóan m a legnagobb kitérést, τ peig a keőfáist jelöli). Ha a (1) megolást t serint ifferenciáljuk és behelettesítjük a (11) első egenletébe, akkor a is kisámítható: [( k ) τ ] m sin t. (13) Legenek a t iőpontban m és keeti feltételek (vagis a keő iőpontnak at válastjuk, amikor a r vektor éppen a síkban feksik). Ekkor a (1) és a (13) serint τ. Beveetve a α ( )t (14) k jelölést, a (1), (1) és a (13) alapján a r forgási sögsebesség-vektor össetevői: r m cosα msinα. (15). ábra. utációs mogás a forgó testhe rögített koorinátarenserből semlélve. eig kapott ereméneket a. ábrán foglaltuk össe. Eserint a r vektor össetevőiben sereplő α nem más, mint a koorinátatengel és a r vektor által meghatároott 5

6 síknak a síkkal beárt söge. ivel a α a (14) serint a t iőnek lineáris függvéne, eért α C k áll. (16) tehát a r vektor állanó sögsebességgel járja körül a test tömegéhe rögített koorinátarenser tengelét. r (15) össetevőit megvisgálva látható, hog a r vektor végpontja a tengel körül a (16) serint állanó sögsebességgel m sugarú kört ír le, íg maga a forgási sögsebesség-vektor aa a Föl forgástengele eg β nílássögű körkúp palástja mentén moog a tehetetlenségi főtengellel aonos koorinátatengel körül, ahol m β arctg. (17) Föl forgása tehát nem a C simmetriatengel körül (aa nem a Föl tömegéhe kötött állanó heletű tengel-) hanem minig a pillanatni forgástengel körül történik. Föl felsínén a r vektor végpontja által leírt kör (a pillanatni forgástengelnek a fölfelsíni nomvonala) a merev Föl póluspálája, vag pollóiuma. E a erőmentes simmetrikus pörgettű nutációs mogásának lénege a testtel egütt forgó koorinátarenserből semlélve. Határouk meg eek után a Föl esetében a pillanatni forgástengel eg teljes körülvánorlásának iejét. Jelölje T E at a iőt, amel alatt a forgástengel egser körüljárja a tengelt; ekkor a (14) alapján: tehát : T k T π E E π C ivel a forgás jó köelítéssel a tengel körül történik, eért tehát: π π 1csillagnap.9973 soláris nap, T E Csillagásati megfigelések serint:. C r aa 6

7 .395 C íg tehát TE 33 nap. ivel a mogásegenletek fenti leveetése EULERTŐL sármaik, a forgástengel állanó sögsebességű körbevánorlásának 33 napos perióusát Euler-féle perióusnak (gakran Euler-féle sabanutációs perióusnak) neveük. elneveésben a "saba" jelő arra utal, hog a jelenség külső erőhatásoktól teljesen független és a kialakult mogás perióusiejét kiárólag a merev test (esetünkben a Föl) tömegeloslása határoa meg. ineekből a követkeik, hog ha valamel merev test tengelkörüli forgása nem a C főtehetetlenségi nomaték tengele körül inult meg, akkor e a mogási állapot megmara, tehát a forgástengel nem billen vissa olan állapotba, hog a főtehetetlenségi tengellel egbeessék. Ekkor visont a pillanatni forgástengel állanó söggel hajlik a főtehetetlenségi tengelhe, miköben állanó sebességgel járja körül. mikor a forgástengel pontosan egbeesik a simmetriatengellel ( β ), vag a B C esetén a mogás ugan olan mint eg rögített tengel körüli állanó sögsebességű forgás, aa nutáció nem lép fel. 3. ábra. Euler-féle sabanutáció külső inerciarenserből semlélve. ine, amit eig tárgaltunk, a Fölel egütt forgó K koorinátarenserből semlélve látható. Külső inerciarenserből semlélve (a K inerciarenserben) min a Föl forgástengelének, min a Föl C simmetriatengelének a irána folamatosan váltoik, csupán a impulustengel irána váltoatlan, a impulusnomaték (1) serinti megmaraási törvéne értelmében. mogást legegserűbben a 3. ábra alapján érthetjük meg. Föl pillanatni forgástengele (a C > esetén) a kisebb nílássögű ún. herpolhoia kúp palástja mentén, a C simmetriatengel (a Föl tehetetlenségi főirána) 7

8 peig a nagobb nílássögű ún. nutációs kúp palástja mentén kerüli meg a impulusnomaték vektort. Eköben a r vektor a ún. polhoia kúp palástja mentén a C tengel körül is vánorol. mogás során a r, a és a C minig eg síkban van, miköben a Föl tömegéhe rögített heletű polhoia kúp és a inerciarenserben rögített heletű herpolhoia kúp palástja állanóan a r vektor irána mentén érintkeve csúsásmentesen görül egmáson. pólusingaoás valói perióusa valói Föl pillanatni forgástengelének a főtehetetlenségi iránát jól köelítő (megállapoással efiniált) tengeléhe visonított mérésekkel meghatároható mogását pólusingaoásnak neveük. eigi feltevések (pl. merev és forgássimmetrikus Föl esete) a valóságban nem érvénesek, eért a megfigelt pólusingaogás jelentősen eltér a elméleti megfontolások fenti ereméneitől Y. CO.4. X Y. CO. X ábra. póluspála köött. Ha mérésekkel bármikor meghatárouk a valói póluspálát, a polloiumot (a forgástengel mogásának fölfelsíni nomvonalát) akkor a 4. ábra balolalán láthatóho hasonló képet kapunk. 4. ábrán a 1967 és 1979 köötti póluspála látható olan koorinátarenserben, amelnek tengele a greenwichi keőmeriián iránába, tengele peig erre merőlegesen, nugat felé mutat; a keőpontja peig a 19 és 195 köötti iőtartamra meghatároott köepes pólushel: a CO (Conventional nternational Origin). Látható, hog a pólus valóban perioikus mogást vége, a pólus elmoulása kb..5" 1 m sugarú körön belül mara, e a amplitúó nem állanó és a perióus sem egenlő a Euler-féle 33 napos perióussal, hanem ennél lénegesen hossabb: 45 és 457 nap köött ingaoik átlagosan minteg 435 nap. pólusmogás felfeeése utáni években CHDLER amerikai csillagás kimutatta, hog a pólusingaoás két omináns perióusból, eg 1 és eg 14 hónapos perióusból 8

9 tevőik össe. utóbbit tisteletére Chanler-perióusnak neveték el. éhán hónappal CHDLER felfeeése után EWCOB már elméleti magaráattal is solgált: a 14 hónapos össetevő a Föl sabanutációja, míg a 1 hónapos össetevő a ún. kénsernutáció, mel a aonos perióusú globális meteorológiai jelenségek (pl. légtömegmogások, hótömegek olvaása és újraképőése stb.) követkeméne. 5. ábra. pólusmogás össetevője 189- köött. 6. ábra. pólusmogás össetevője 189- köött. 4. ábrán látható, hog a pólus a óramutató járásával ellentétes iránban többékevésbé sabálos spirális pálán moog. Eek a spirális pálák kb. hat évenként hasonló 9

10 jellegűek, a két frekvencia össeaóásából kialakuló lebegés követketében. Jól látható e a lebegés a 4. ábra jobb olalán, a pólusingaoás 1967 és 1979 köötti iősakra vonatkoó 3 imeniós képén. Ugancsak et semlélteti a 5. és a 6. ábra is, ahol a felső görbe a pólusmogás illetve iránú össetevője, alatta peig a sétválastott 14 hónapos, 1 hónapos és a maraék össetevők láthatók. egállapítható, hog a sabanutáció és a kénsernutáció külön-külön is meglehetősen bonolult folamat. Chanler-össetevőn pl. felismerhető eg fél évsáa körüli perióus, amel több más fölfiikai folamatban is jelentkeik, okát aonban egelőre nem ismerjük. átlagosan 47 napos Chanler-perióus és a 33 napos Euler-perióus köötti különbség oka a Föl rugalmas viselkeése. Ha uganis a Föl nem merev mint ahogan Euler feltételete akkor a forgástengel elmoulásának megfelelően a megváltoó centrifugális erő hatására úg eformálóik a tömege, hog a tehetetlenségi főtengele köeleik a forgástengelhe. (Sélső esetben, ha a Föl folaékserűen viselkene, akkor a tehetetlenségi főtengele teljes mértékben követné a forgástengel elmoulását tehát a perióus végtelen nag lenne, és íg pólusingaoásról nem is lehetne besélni.) Ennek megfelelően a T E Euler-féle, és a T C Chanler-perióus hánaosa kapcsolatba hoható a Föl rugalmasságával. pólusvánorlás Ha meghatárouk eg-eg teljes perióusho a 4. ábrán látható póluspálák köepes pólusheleteit, akkor at tapastaljuk, hog eek a köepes pólushelek a iő függvénében folamatosan eltolónak. jelenséget sekuláris pólusmogásnak, vag pólusvánorlásnak neveük. 7. ábrán látható, hog pl. a 189 és köötti póluspála már teljes egésében a 19 és 195 köött meghatároott CO köéppóluson kívül hala. ábrán látható, hog a köepes pólus 11 év alatt több mint 1m-t moult el Kanaa iránában. 7. ábra. pólus vánorlása 189 és köött. 1

11 megfigelések serint a pólusvánorlás mértéke visonlag csekél, évente legfeljebb néhán m (néhán ere sögmásoperc) nagságrenű a fölörténeti iőskálán aonban e a elmoulás jelentős (több 1 o ) mértékű is lehet. Eért a pólusvánorlás problémája a geológia és a geofiika sokat tárgalt kérése; különösen a paleoklimatológiai és újabban néhán globális tektonikai kérés megválasolása sempontjából igen fontos. pólusmogás geoéiai és csillagásati hatása Kiárólag a pólusmogás hatását figelembe véve a r forgási sögsebesség-vektornak a állócsillagokho visonított heletét gakorlatilag állanónak tekinthetjük. Ekkor visont állanó a égi egenlítő síkjának helete is, tehát a csillagok saját mogásától eltekintve, eek égi egenlítői (ekvatoriális) koorinátái a iőben váltoatlanok. Uganakkor a Föl felsínén fekvő pontoknak a forgástengelhe visonított helete a Föl tömegének a forgástengelhe visonított elmoulásával folamatosan váltoik, íg a pontok sintfelületi fölraji koorinátái is folamatosan váltonak. pólusmogás oka pörgettűmogás elmélete serint a saba tengel körül forgó merev testek helete akkor stabil, ha a forgás meginulásakor a test forgástengele megegeik a tehetetlenségi főtengelével. Ellenkeő esetben, vagis ha a forgás nem a tehetetlenségi főtengel körül inul meg, akkor a forgó test helete erőmentes térben is állanóan váltoik, aa a test sabanutációs mogást vége. Íg ha valamel merev bolgó esetében valamikor kialakult a sabanutációs mogás, akkor ennek fenntartásáho semmiféle mechanimusra nincs sükség. ivel a Föl nem merev test, rá e a megállapítás nem érvénes. Föl esetében a minimális mogási energiájú állapot a tehetetlenségi főtengel körüli forgás. Ettől eltérő heletű forgástengel esetén olan belső tömegátreneőések lépnek fel, amelek a két tengel köeleését illetve egbeesését igekenek előiéni. Chanler-össetevő visgálata alapján a a csillapítási iő, amel alatt a mogás amplitúója e-e résére csökken kb. 1-3 év köötti értékre becsülhető. ennél jóval hossabb iejű megfigelések at bionítják, hog létenie kell valamilen gerjestő folamatnak, amel a pólusmogás ismeretlen móon elnelőő energiáját valamilen formában pótolja. lehetséges issipációs és gerjestési folamatok napjainkban még tistáatlanok, mivel a eig felmerült lehetőségek általában más móon neheen ellenőrihetők és a sámítások igen bonolultak. fentiek serint a visont nilvánvaló, hog a Föl nutációs mogásának oka a Föl bonolult belső tömegeloslása és a tömegek állanó mogása, átheleőése. Fölön kívüli tömegek eloslásának, a különböő égitesteknek a pólusmogásra semmilen hatása nincs! 11

6.2 A pólusmozgás A pólusingadozás. 6.8 ábra A pólusingadozás leírására használt koordináta-rendszer

6.2 A pólusmozgás A pólusingadozás. 6.8 ábra A pólusingadozás leírására használt koordináta-rendszer 6.2 pólusmogás Föl forgástengelének eig leírt térbeli mogása mellett a Föl tömegének a forgástengeléhe visonított helete is állanóan váltoik. Ennek megfelelõen a állócsillagokho rögített koorináta-renserbõl

Részletesebben

A FÖLD NUTÁCIÓS MOZGÁSA

A FÖLD NUTÁCIÓS MOZGÁSA FÖLD UTÁCIÓS MOZGÁS Völgesi Lajos BME Általános- és Felsőgeodéia Tansék Földünk tengel körüli forgása neheen átlátható, meglehetősen bonolult folamat. előő [1] cikkben áttekintettük a legfontosabb fiikai

Részletesebben

A PÓLUSMOZGÁS FIZIKAI ALAPJAI. Völgyesi Lajos *

A PÓLUSMOZGÁS FIZIKAI ALAPJAI. Völgyesi Lajos * Geomatikai Kölemének V., PÓLUSMOZGÁS FZK LPJ Völgesi Lajos * Phsical backgrounds of polar motion. Rotation of the Earth is quite involved process. Deep knowledge of certain area of phsics is indispensable

Részletesebben

15. Többváltozós függvények differenciálszámítása

15. Többváltozós függvények differenciálszámítása 5. Többváltoós függvének differenciálsámítása 5.. Határoa meg a alábbi kétváltoós függvének elsőrendű parciális derivált függvéneit és a gradiens függvénét, valamint eek értékét a megadott pontban:, =

Részletesebben

STATIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2003/2004 tavaszi félév)

STATIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2003/2004 tavaszi félév) STATIKA A minimum test kérdései a gépésmérnöki sak hallgatói résére (2003/2004 tavasi félév) Statika Pontsám 1. A modell definíciója (2) 2. A silárd test értelmeése (1) 3. A merev test fogalma (1) 4. A

Részletesebben

A ferde hajlítás alapképleteiről

A ferde hajlítás alapképleteiről ferde hajlítás alapképleteiről Beveetés régebbi silárdságtani sakirodalomban [ 1 ], [ ] más típusú leveetések, más alakú képletek voltak forgalomban a egenes tengelű rudak ferde hajlításával kapcsolatban,

Részletesebben

Kozák Imre Szeidl György FEJEZETEK A SZILÁRDSÁGTANBÓL

Kozák Imre Szeidl György FEJEZETEK A SZILÁRDSÁGTANBÓL Koák Imre Seidl Görg FEJEZETEK SZILÁRDSÁGTNBÓL KÉZIRT 008 0 Tartalomjegék. fejeet. tenorsámítás elemei.. Beveető megjegések.. Függvének.3. másodrendű tenor fogalmának geometriai beveetése 5.4. Speciális

Részletesebben

A lecke célja: A tananyag felhasználója megismerje a rugalmasságtan 2D feladatainak elméleti alapjait.

A lecke célja: A tananyag felhasználója megismerje a rugalmasságtan 2D feladatainak elméleti alapjait. 9 modul: A rugalmasságtan D feladatai 9 lecke: A D feladatok definíciója és egenletei A lecke célja: A tananag felhasnálója megismerje a rugalmasságtan D feladatainak elméleti alapjait Követelmének: Ön

Részletesebben

3. MÉRETEZÉS, ELLENŐRZÉS STATIKUS TERHELÉS ESETÉN

3. MÉRETEZÉS, ELLENŐRZÉS STATIKUS TERHELÉS ESETÉN ÉRETEZÉS ELLENŐRZÉS STATIUS TERHELÉS ESETÉN A méreteés ellenőrés célkitűése: Annak elérése hog a serkeet rendeltetésserű hasnálat esetén előírt ideig és előírt bitonsággal elviselje a adott terhelést anélkül

Részletesebben

GÉPÉSZMÉRNÖKI, INFORMATIKAI ÉS VILLAMOSMÉRNÖKI KAR

GÉPÉSZMÉRNÖKI, INFORMATIKAI ÉS VILLAMOSMÉRNÖKI KAR ZÉCHENYI ITVÁN EGYETE GÉPÉZÉRNÖKI, INFRTIKI É VILLÉRNÖKI KR E C H N I K LKLZTT ECHNIK TNZÉK Elméleti kérdések és válasok mesterképésben (c) réstvevő mérnökhallgatók sámára 1 dja meg vektorok skaláris sorásának

Részletesebben

Szilárdságtan. Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR

Szilárdságtan. Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Miskolci Egetem GÉÉMÉRNÖKI É INORMTIKI KR ilárságtan (Oktatási segélet a Gépésmérnöki és Informatikai Kar sc leveleős hallgatói résére) Késítette: Nánori riges, irbik ánor Miskolc, 2008. Een kéirat a Gépésmérnöki

Részletesebben

Fizika A2E, 1. feladatsor

Fizika A2E, 1. feladatsor Fiika AE, 1. feladatsor Vida Görg Jósef vidagorg@gmail.com 1. feladat: Legen a = i + j + 3k, b = i 3j + k és c = i + j k. a Mekkora a a, b és c vektorok hossa? b Milen söget ár be egmással a és b? c Mekkora

Részletesebben

Műszaki Mechanika I. A legfontosabb statikai fogalmak a gépészmérnöki kar mérnök menedzser hallgatói részére (2008/2009 őszi félév)

Műszaki Mechanika I. A legfontosabb statikai fogalmak a gépészmérnöki kar mérnök menedzser hallgatói részére (2008/2009 őszi félév) Műsaki Mechanika I. A legfontosabb statikai fogalmak a gépésmérnöki kar mérnök menedser hallgatói résére (2008/2009 ősi félév) Műsaki Mechanika I. Pontsám 1. A modell definíciója (2) 2. A silárd test értelmeése

Részletesebben

HÁZI FELADAT megoldási segédlet PONTSZERŐ TEST MOZGÁSA FORGÓ TÁRCSA HORNYÁBAN 2. Anyagi pont dinamikája neminerciarendszerben

HÁZI FELADAT megoldási segédlet PONTSZERŐ TEST MOZGÁSA FORGÓ TÁRCSA HORNYÁBAN 2. Anyagi pont dinamikája neminerciarendszerben HÁZI FELADAT megolási segélet PONTSZEŐ TEST MOZGÁSA FOGÓ TÁCSA HONYÁBAN. Anyagi pont inamikája neminerciarenserben. A pont a tárcsán egyenes pályán moog, mert a horony kénysert jelent a mogása sámára.

Részletesebben

2. Koordináta-transzformációk

2. Koordináta-transzformációk Koordnáta-transformácók. Koordnáta-transformácók Geometra, sámítógép graka feladatok során gakran van arra sükség, hog eg alakatot eg ú koordnáta-rendserben, vag a elenleg koordnáta rendserben, de elmogatva,

Részletesebben

A rögzített tengely körül forgó test csapágyreakcióinak meghatározása a forgástengely ferde helyzete esetében. Bevezetés

A rögzített tengely körül forgó test csapágyreakcióinak meghatározása a forgástengely ferde helyzete esetében. Bevezetés A rögített tengel körül forgó test csapágreakcióinak meghatároása a forgástengel ferde helete esetében Beveetés A előő dolgoatokban nem esett só a forgástengel ferde heletének esetéről. Aokban a ábrák

Részletesebben

A szilárdságtan alapkísérletei III. Tiszta hajlítás

A szilárdságtan alapkísérletei III. Tiszta hajlítás 5. FEJEET silárdságtan alapkísérletei III. Tista hajlítás 5.1. Egenes primatikus rúd tista egenes hajlítása 5.1.1. Beveető megjegések.tista hajlításról besélünk, ha a rúd eg adott sakasa csak hajlításra

Részletesebben

MEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KIALAKÍTÁSA 3 REPÜLŐKÉPESSÉG

MEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KIALAKÍTÁSA 3 REPÜLŐKÉPESSÉG Dr. Óvári Gula 1 - Dr. Urbán István 2 MEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KILKÍTÁS 3 cikk(soroatban)ben a merev sárnú repülőgépek veérsík rendserinek terveését és építését követheti nomon lépésről

Részletesebben

Y 10. S x. 1. ábra. A rúd keresztmetszete.

Y 10. S x. 1. ábra. A rúd keresztmetszete. zilárdságtan mintafeladatok: tehetetlenségi tenzor meghatározása, a tehetetlenségi tenzor főtengelproblémájának megoldása két mintafeladaton keresztül Először is oldjuk meg a gakorlatokon is elhangzott

Részletesebben

FÜGGELÉK - MATEMATIKAI ÖSSZEFOGLALÓ

FÜGGELÉK - MATEMATIKAI ÖSSZEFOGLALÓ FÜGGEÉK - MAEMAIKAI ÖSSZEFOGAÓ E a fejeet rövien össefoglalja aokat a matematikai ismereteket, ameleket a Végeselem analíis tantárg fel fog hasnálni A össefoglalás nem teljes résletességgel mutatja be

Részletesebben

Projektív ábrázoló geometria, centrálaxonometria

Projektív ábrázoló geometria, centrálaxonometria Projektív ábráoló geometria, centrálaonometria Ennél a leképeésnél a projektív teret seretnénk úg megjeleníteni eg képsíkon, hog a aonometrikus leképeést (paralel aonometriát) speciális esetként megkaphassuk.

Részletesebben

A VÉGESELEM-MÓDSZER ALAPJAI

A VÉGESELEM-MÓDSZER ALAPJAI A VÉGESEEM-MÓDSZER AAPJAI A projekt címe: Egségesített Jármű- és mobilgépek képés- és tananagfejlestés A megvalósítás érdekében létrehoott konorcium réstvevői: KECSKEMÉI FŐISKOA BUDAPESI MŰSZAKI ÉS GAZDASÁGUDOMÁNYI

Részletesebben

Az F er A pontra számított nyomatéka: M A = r AP F, ahol

Az F er A pontra számított nyomatéka: M A = r AP F, ahol Sécheni István Egetem M saki Tudománi Kar lkalmaott Mechanika Tansék LKLMZTT MECHNIK () Mi a mechanika tárga? Elméleti kérdések és válasok MSc képésben réstvev mérnök hallgatók sámára nagi rendserek (testek)

Részletesebben

Az összetett hajlítás képleteiről

Az összetett hajlítás képleteiről A össetett hajlítás képleteiről Beveetés A elemi silárdságtan ismereteit a tankönvek serői általában igekenek úg kifejteni, hog a kedő sámára se okoanak komolabb matematikai nehéségeket. A húásra / nomásra

Részletesebben

Egzakt következtetés (poli-)fa Bayes-hálókban

Egzakt következtetés (poli-)fa Bayes-hálókban gakt követketetés pol-fa Baes-hálókban Outlne Tpes of nference B method: exact, stochastc B purpose: dagnostc sngle-step, sequental DSS, explanaton generaton Hardness of exact nference xact nference n

Részletesebben

Fizika 1 Mechanika órai feladatok megoldása 9. hét. , ahol ρ a sűrűség (ami lehet helyfüggő is), és M = ρ dv az össztömeg. ϕ=104,45 d=95,84 pm !,!

Fizika 1 Mechanika órai feladatok megoldása 9. hét. , ahol ρ a sűrűség (ami lehet helyfüggő is), és M = ρ dv az össztömeg. ϕ=104,45 d=95,84 pm !,! Fiika 1 Mechanika órai feladatok megoldása 9. hét Tömegköéppont (súlpont) Pontrendser esetén a m i tömegű, r i helvektorú tömegpontok tömegköéppontja a tömegekkel súloott átlagos helvektor: = =, ahol M

Részletesebben

Mechanika. III. előadás március 11. Mechanika III. előadás március / 30

Mechanika. III. előadás március 11. Mechanika III. előadás március / 30 Mechanika III. előadás 2019. március 11. Mechanika III. előadás 2019. március 11. 1 / 30 7. Serkeetek statikája 7.2. Rácsos serkeet hidak, daruk, távveeték tartó oslopok, stb. 3 kn C 4 m 2 4 8 5 3 7 1

Részletesebben

Kozák Imre Szeidl György FEJEZETEK A SZILÁRDSÁGTANBÓL

Kozák Imre Szeidl György FEJEZETEK A SZILÁRDSÁGTANBÓL Koák Imre Seidl Görg FEJEZETEK SZILÁRDSÁGTNBÓL KÉZIRT 004 008 . FEJEZET tenorsámítás elemei.. Beveető megjegések... Könapi tapastalat, hog a terméset jelenségei függetlenek a megfigelőtől. Várható tehát,

Részletesebben

σ = = (y', z' ) = EI (z') y'

σ = = (y', z' ) = EI (z') y' 178 5.4.. Váltoó kerestmetsetű rudak tsta hajlítása Enhén váltoó kerestmetsetű, tsta hajlításra génbevett rúdnál a eges pontok fesültség állapota - a váltoó kerestmetsetű rudak tsta nomásáho vag húásáho

Részletesebben

Héj / lemez hajlítási elméletek, felületi feszültségek / élerők és élnyomatékok

Héj / lemez hajlítási elméletek, felületi feszültségek / élerők és élnyomatékok Héj / leme hajlítási elméletek felületi fesültségek / élerők és élnomatékok Tevékenség: Olvassa el a bekedést! Jegee meg a héj és a leme definícióját! Tanulja meg a superpoíció elvét és a membrán állapot

Részletesebben

Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola

Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola O k t a t á s i H i v a t a l A 017/018. tanévi Országos Középiskolai Tanulmáni Versen második forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Adja meg

Részletesebben

A FÖLD NUTÁCIÓS MOZGÁSA

A FÖLD NUTÁCIÓS MOZGÁSA Végezetül szeretnénk hangsúlozni hog unkánk fô célja az volt hog beutassunk eg olan új rovarcsapda-koncepciót ainek alapját a visszaverôdéskor bekövetkezô fénpolarizáció eges rovarok polarotaktikus viselkedése

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok KÁLMÁN P.-TÓT.: ullámok/4 5 5..5. (kibőíe óraála) lekromágneses hullámok elekromágneses elenségek árgalásánál láuk, hog áloó mágneses erőér elekromos erőere (elekromágneses inukció), áloó elekromos erőér

Részletesebben

Dr. Égert János Dr. Nagy Zoltán ALKALMAZOTT RUGALMASSÁGTAN

Dr. Égert János Dr. Nagy Zoltán ALKALMAZOTT RUGALMASSÁGTAN Dr Égert János Dr Nag Zoltán ALALMAZOTT UGALMASSÁGTAN Dr Égert János Dr Nag Zoltán ALALMAZOTT UGALMASSÁGTAN UNIVESITAS-GYŐ Nonprofit ft Gőr 9 SZÉCHENYI ISTVÁN EGYETEM GYŐ Írta: Dr Égert János Dr Nag Zoltán

Részletesebben

l = 1 m c) Mekkora a megnyúlás, ha közben a rúd hőmérséklete ΔT = 30 C-kal megváltozik? (a lineáris hőtágulási együtható: α = 1, C -1 )

l = 1 m c) Mekkora a megnyúlás, ha közben a rúd hőmérséklete ΔT = 30 C-kal megváltozik? (a lineáris hőtágulási együtható: α = 1, C -1 ) 5. TIZTA HÚZÁ-NYOMÁ, PÉLDÁK I. 1. a) Határouk meg a függestőrúd négetkerestmetsetének a oldalhossát cm-re kerekítve úg, hog a függestőrúdban ébredő normálfesültség ne érje el a σ e = 180 MPa-t! 3 m 1 C

Részletesebben

A szilárdságtan 2D feladatainak az feladatok értelmezése

A szilárdságtan 2D feladatainak az feladatok értelmezése A silárdságtan D feladatainak a feladatok értelmeése Olvassa el a ekedést! Jegee meg a silárdságtan D feladatainak csoportosítását! A silárdságtan (rugalmasságtan) kétdimeniós vag kétméretű (D) feladatai

Részletesebben

1. El szó. Kecskemét, 2005. február 23. K házi-kis Ambrus

1. El szó. Kecskemét, 2005. február 23. K házi-kis Ambrus . Elsó olgoat témájául solgáló utatásoat egrést még a buaesti Silártestfiiai Kutatóintéet munatársaént etem maj eg utatással fejlestéssel foglaloó magáncég (& Ultrafast asers Kft.) olgoójaént jelenleg

Részletesebben

FÜGGELÉK - MATEMATIKAI ÖSSZEFOGLALÓ

FÜGGELÉK - MATEMATIKAI ÖSSZEFOGLALÓ FÜGGEÉK - MAEMAIKAI ÖSSZEFOGAÓ E a fejeet rövien össefoglalja aokat a matematikai ismereteket ameleket a Végeselem analíis tantárg fel fog hasnálni A össefoglalás nem teljes résletességgel mutatja be a

Részletesebben

Máté: Számítógépes grafika alapjai

Máté: Számítógépes grafika alapjai VETÍTÉSEK Vetítések fajtái / Trasformációk amelek -imeiós objektumokat kisebb imeiós terekbe visek át. Pl. 3D 2D Vetítés köéotja ersektívikus A A B Vetítési B Vetítés köéotja a végtelebe árhuamos A A B

Részletesebben

Acélszerkezetek méretezése Eurocode 3 szerint

Acélszerkezetek méretezése Eurocode 3 szerint Acélserkeetek méreteése Eurocode 3 serint Gakorlati útmutató Dunai Lásló, Horváth Lásló, Kovács auika, Varga Géa, Verőci Béla, Vigh L. Gergel (a Útmutató jelen késültségi sintjén a Tartalomjegékben dőlt

Részletesebben

3. Szerkezeti elemek méretezése

3. Szerkezeti elemek méretezése . Serkeeti elemek méreteése.. Serkeeti elemek méreteési elvei A EC serint a teherbírási határállapotok ellenőrése során a alábbi visgálatokat kell elvégeni: - Kerestmetseti ellenállások visgálata, ami

Részletesebben

6. RUDAK ÖSSZETETT IGÉNYBEVÉTELEI

6. RUDAK ÖSSZETETT IGÉNYBEVÉTELEI RUK ÖZETETT GÉNYBEVÉTELE Tönkremeneteli elméletek a) peiális eset: a fesültségi tenornak sak eg eleme nem nulla (pl rudak egserű igénbevételeinél), ϕ tt nins probléma, mert a anagjellemők eekre a egserű

Részletesebben

3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra

3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra SZÉCHENYI ISÁN EGYEEM AAMAZO MECHANIA ANSZÉ 6. MECHANIA-ÉGESEEM MÓDSZER EŐADÁS (kidolgozta: Szüle eronika, eg. ts.) I. előadás. okális aroimáció elve, végeselem diszkretizáció egdimenziós feladatra.. Csomóonti

Részletesebben

TARTÓSZERKETETEK III.

TARTÓSZERKETETEK III. TARTÓSZERKETETEK III. KERESZTETSZETEK ELLENÁLLÁSA + STABILITÁSI ELLENÁLLÁS 1 KERESZTETSZETEK ELLENÁLLÁSA 1.1 Csavarlukkal gengített köpontosan húott rúd 1. Egik sárán kapsolt köpontosan húott sögaél 1.

Részletesebben

A fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként

A fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként A fő - másodrendű nomatékok meghatározása feltételes szélsőérték - feladatként A Keresztmetszeti jellemzők című mappa első lakója eg ritkábban látható levezetést mutat be amel talán segít helesen elrendezni

Részletesebben

A lecke célja: A tananyag felhasználója megismerje az erő, a nyomaték és erőrendszerek jellemzőit.

A lecke célja: A tananyag felhasználója megismerje az erő, a nyomaték és erőrendszerek jellemzőit. 2 modul: Erőrendserek 21 lecke: Erő és nomték lecke célj: tnng felhsnálój megismerje erő, nomték és erőrendserek jellemőit Követelmének: Ön kkor sjátított el megfelelően tnngot, h sját svivl meg tudj htároni

Részletesebben

(5) Mit értünk a szilárdságtanban a dinamikán? A szilárdságtanban a dinamika leírja a terhelés hatására a testben fellépő belső erőrendszert.

(5) Mit értünk a szilárdságtanban a dinamikán? A szilárdságtanban a dinamika leírja a terhelés hatására a testben fellépő belső erőrendszert. SZÉCHENY STVÁN EGYETE ECHANKA - SZLÁRDSÁGTAN ALKALAZOTT ECHANKA TANSZÉK Elméleti kérdések és válasok egetemi alapképésben (BS képésben) réstvevő mérnökhallgatók sámára () i a silárdságtan tárga? A silárdságtan

Részletesebben

Szabadsugár. A fenti feltételekkel a folyadék áramlását leíró mozgásegyenlet és a kontinuitási egyenlet az alábbi egyszerű alakú: (1) .

Szabadsugár. A fenti feltételekkel a folyadék áramlását leíró mozgásegyenlet és a kontinuitási egyenlet az alábbi egyszerű alakú: (1) . Szabadsugár Tekintsük az alábbi ábrán látható b magasságú résből kiáramló U sebességű sugarat. A résből kiáramló és a függőleges fal melletti térben lévő foladék azonos. A rajz síkjára merőleges iránban

Részletesebben

9. A RUGALMASSÁGTAN 2D FELADATAI

9. A RUGALMASSÁGTAN 2D FELADATAI 9 A UGALMASSÁGTAN D FELADATAI A D ( két dimeniós ) feladatok köös jellemői: - két skalár elmodulásmeő különöik nullától - minden mechanikai menniség két helkoordinátától függ 9 Sík alakváltoás (SA) a)

Részletesebben

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010.

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010. MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 00.. Tetszőleges, nem negatív szám esetén, Göktelenítsük a nevezőt: (B). Menni a 0 kifejezés értéke? (D) 0 0 0 0 0000 400 0. 5 Felhasznált

Részletesebben

- Anyagi pontrendszer: anyagi pontok halmaza / összessége.

- Anyagi pontrendszer: anyagi pontok halmaza / összessége. 2 LPFGLK mechnk fk egk (klsskus) résterülete mechnk tárg: testek (ng pontok ng pontrendserek) heletváltottó mogásnk és eeket létrehoó htásoknk (erőknek) vsgált vsgált testek hlmállpot sernt besélhetünk:

Részletesebben

SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat)

SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) SILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) Szilárdságtan Pontszám 1. A másodrendű tenzor értelmezése (2) 2. A

Részletesebben

A lecke célja: A tananyag felhasználója megismerje az erőrendszerek egyenértékűségének és egyensúlyának feltételeit.

A lecke célja: A tananyag felhasználója megismerje az erőrendszerek egyenértékűségének és egyensúlyának feltételeit. modul: Erőrendserek lecke: Erőrendserek egenértékűsége és egensúl lecke célj: tnng felhsnálój megsmerje erőrendserek egenértékűségének és egensúlánk feltételet Követelmének: Ön kkor sjátított el megfelelően

Részletesebben

Példatár megoldások. æ + ö ç è. ö ç è. ö ç è. æ ø. = ø

Példatár megoldások. æ + ö ç è. ö ç è. ö ç è. æ ø. = ø Műsaki matematika I. Lineáris algebra pldatár s feladattár Ksítette a Centroset SakkpsServesi Nonprofit Kft. Pldatár megoldások. feladat megoldása Mivel s B típusa megegeik, a sseadás elvgehető s Z is

Részletesebben

Mechanika. II. előadás március 4. Mechanika II. előadás március 4. 1 / 31

Mechanika. II. előadás március 4. Mechanika II. előadás március 4. 1 / 31 Mechanika II. előadás 219. március 4. Mechanika II. előadás 219. március 4. 1 / 31 4. Merev test megtámasztásai, statikai feladatok megtámasztás: testek érintkezése útján jön létre, az érintkezés során

Részletesebben

Polarizált fény, polarizáció. Polarizáció fogalma. A polarizált fény. Síkban polarizált fény. A polarizátor

Polarizált fény, polarizáció. Polarizáció fogalma. A polarizált fény. Síkban polarizált fény. A polarizátor Polariált fén, polariáció PÉCSI TUDOMÁNYGYTM ÁLTALÁNOS ORVOSTUDOMÁNYI KAR Fluorescencia aniotrópia, FRT Megjelenés fotóáskor! Nitrai Miklós, 2015 február 10. Miért van ilen hatása? Polariáció fogalma A

Részletesebben

A szilárdságtan alapkísérletei I. Egyenes rúd húzása, zömök rúd nyomása

A szilárdságtan alapkísérletei I. Egyenes rúd húzása, zömök rúd nyomása 3. FEJEZET silárdságtan alapkísérletei I. Egenes rúd húása, ömök rúd nomása 3.. alapkísérletek célja Hétkönapi megfigelés, hog uganaon silárd test alakváltoásainak mértéke függ a testet terhelő erőrendsertől.

Részletesebben

2. Koordináta-transzformációk

2. Koordináta-transzformációk Koordnáta-transformácók. Koordnáta-transformácók Geometra, sámítógép graka feladatok során gakran van arra sükség, hog eg alakatot eg ú koordnáta-rendserben, vag a elenleg koordnáta rendserben, de elmogatva,

Részletesebben

ANYAGJELLEMZŐK MEGHATÁROZÁSA ERŐ- ÉS NYÚLÁSMÉRÉSSEL. Oktatási segédlet

ANYAGJELLEMZŐK MEGHATÁROZÁSA ERŐ- ÉS NYÚLÁSMÉRÉSSEL. Oktatási segédlet ANYAGJELLEMZŐK MEGHATÁROZÁSA ERŐ- ÉS NYÚLÁSMÉRÉSSEL Oktatási segédlet a Rugalmasságtan és Alkalmaott mechanika laboratóriumi mérési gakorlatokho a egetemi mesterképésben (MSc) réstvevő mérnökhallgatók

Részletesebben

5. ROBOTOK IRÁNYÍTÓ RENDSZERE. 5.1. Robotok belső adatfeldolgozásának struktúrája

5. ROBOTOK IRÁNYÍTÓ RENDSZERE. 5.1. Robotok belső adatfeldolgozásának struktúrája TARTALOM 5. ROBOTOK IRÁNYÍTÓ RENDSZERE... 7 5.. Robotok belső adatfeldolgozásának struktúrája... 7 5.. Koordináta transzformációk... 5... Forgatás... 5... R-P-Y szögek... 5... Homogén transzformációk...

Részletesebben

Statika. Miskolci Egyetem. (Oktatási segédlet a Gépészmérnöki és Informatikai Kar Bsc levelez½os hallgatói részére)

Statika. Miskolci Egyetem. (Oktatási segédlet a Gépészmérnöki és Informatikai Kar Bsc levelez½os hallgatói részére) iskolci Egetem GÉPÉSZÉRNÖKI ÉS INORTIKI KR Statika (Oktatási segédlet a Gépésmérnöki és Informatikai Kar sc levele½os hallgatói résére) Késítette: Sirbik Sándor, Nándori riges ½usaki echanikai Intéet iskolc,

Részletesebben

ÍVHÍDMODELL TEHERBÍRÁSA: KÍSÉRLETI, NUMERIKUS ÉS SZABVÁNYOS EREDMÉNYEK

ÍVHÍDMODELL TEHERBÍRÁSA: KÍSÉRLETI, NUMERIKUS ÉS SZABVÁNYOS EREDMÉNYEK ÍVHÍDODELL TEHERBÍRÁSA: KÍSÉRLETI, UERIKUS ÉS SZABVÁYOS EREDÉYEK Dunai Lásló * - Joó Attila Lásló ** RÖVID KIVOAT A Dunaújvárosi Duna-híd terveése kapcsán a BE Hidak és Serkeetek Tansékén végrehajtottunk

Részletesebben

Fizikai kémia 2. A newtoni fizika alapfeltevései. A newtoni fizika alapfeltevései E teljes. (=T) + E helyzeti.

Fizikai kémia 2. A newtoni fizika alapfeltevései. A newtoni fizika alapfeltevései E teljes. (=T) + E helyzeti. 06.07.0. Fiikai kémia.. A kvantummechanika alajai Dr. Berkesi Ottó SZTE Fiikai Kémiai és Anagtudománi Tanséke 05 A newtoni fiika alafeltevései I. Minden test megtartja mogásállaotát amíg valamilen erő

Részletesebben

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők

Részletesebben

- Anyagi pontrendszer: anyagi pontok halmaza / összessége.

- Anyagi pontrendszer: anyagi pontok halmaza / összessége. LFGLK mechnk fk egk (klsskus) résterülete mechnk tárg: testek (ng pontok ng pontrendserek) heletváltottó mogásnk és eeket létrehoó htásoknk (erőknek) vsgált vsgált testek hlmállpot sernt besélhetünk: -

Részletesebben

Feladatok Oktatási segédanyag

Feladatok Oktatási segédanyag VIK, Műsaki Informatika ANAÍZIS () Komplex függvénytan Feladatok Oktatási segédanyag A Villamosmérnöki és Informatikai Kar műsaki informatikus hallgatóinak tartott előadásai alapján össeállította: Frit

Részletesebben

2.2. A z-transzformált

2.2. A z-transzformált 22 MAM2M előadásjegyet, 2008/2009 2. A -transformált 2.. Egy információátviteli probléma Legyen adott egy üenetátviteli rendserünk, amelyben a üeneteket két alapjel mondjuk a és b segítségével kódoljuk

Részletesebben

x = 1 egyenletnek megoldása. Komplex számok Komplex számok bevezetése

x = 1 egyenletnek megoldása. Komplex számok Komplex számok bevezetése Komplex sámok Komplex sámok beveetése A valós sámok körét a követkeőképpen építettük fel. Elősör a termésetes sámokat veettük be. Itt két művelet volt, a össeadás és a sorás (ismételt össeadás A össeadás

Részletesebben

18. előadás ÁLLANDÓ KÖLTSÉGEK ÉS A KÖLTSÉGGÖRBÉK

18. előadás ÁLLANDÓ KÖLTSÉGEK ÉS A KÖLTSÉGGÖRBÉK 18. előadás ÁLLANDÓ KÖLTSÉGEK ÉS A KÖLTSÉGGÖRBÉK Kertesi Gábor Világi Balázs Varian 21. fejezete átdolgozva 18.1 Bevezető A vállalati technológiák sajátosságainak vizsgálatát eg igen fontos elemzési eszköz,

Részletesebben

1.1. Halmazelméleti alapfogalmak

1.1. Halmazelméleti alapfogalmak . Halmazok, relációk, függvének.. Halmazelméleti alapfogalmak... A halmaz fogalma A halmazt a halmazelmélet alapfogalmának tekintjük és ezért nem definiáljuk. Szokás azt mondani, hog a halmaz különböző

Részletesebben

Tevékenység: Olvassa el a jegyzet oldalain található tananyagát! Tanulmányozza át a segédlet 11. fejezetében lévı kidolgozott feladatot!

Tevékenység: Olvassa el a jegyzet oldalain található tananyagát! Tanulmányozza át a segédlet 11. fejezetében lévı kidolgozott feladatot! 3.2. Lánchajtások Tevékenység: Olvassa el a jegyet 163-173 oldalain található tananyagát! Tanulmányoa át a segédlet 11. fejeetében lévı kidolgoott feladatot! A tananyag tanulmányoása köben a alábbiakra

Részletesebben

Robottechnika II. 1. Bevezetés, ismétlés. Ballagi Áron Automatizálási Tanszék

Robottechnika II. 1. Bevezetés, ismétlés. Ballagi Áron Automatizálási Tanszék Robottechnika II. 1. Beveetés, ismétlés Ballagi Áron Automatiálási Tansék Bemutatkoás Dr. Ballagi Áron tansékveető-helettes, egetemi docens Automatiálási Ts. C71, 3461 Autonóm és Intelligens Robotok Laboratórium

Részletesebben

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x.

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x. Mat. A3 9. feladatsor 06/7, első félév. Határozzuk meg az alábbi differenciálegenletek típusát (eplicit-e vag implicit, milen rendű, illetve fokú, homogén vag inhomogén)! a) 3 (tg) +ch = 0 b) = e ln c)

Részletesebben

Stokes-féle eltolódási törvény

Stokes-féle eltolódási törvény mléketető: fluorescencia spektrumok Fluorescencia polariáció, aniotrópia FRT Definíció! a. missiós spektrum b. Gerjestési spektrum (ld. absorpciós sp.) Stokes-féle eltolódási törvén A emissiós spektrum

Részletesebben

Maradó feszültség meghatározása

Maradó feszültség meghatározása MISKOLCI GYTM ANYAG- ÉS KOHÓMÉRNÖKI KAR FÉMTANI TANSZÉK GYAKORLATI ÚTMUTATÓ PHAR HU 975-21-6 ÖSSZÁLLÍTOTTA: NAGY RZSÉBT LKTORÁLTA: DR. MRTINGR VALÉRIA Maraó fesültség meghatároása 1. A gyakorlat célja

Részletesebben

A kardáncsukló tengelyei szögelfordulása közötti összefüggés ábrázolása. Az 1. ábrán mutatjuk be a végeredményt, egy körülfordulásra.

A kardáncsukló tengelyei szögelfordulása közötti összefüggés ábrázolása. Az 1. ábrán mutatjuk be a végeredményt, egy körülfordulásra. A kardáncsukló tengelei szögelfordulása közötti összefüggés ábrázolása Az 1. ábrán mutatjuk be a végeredmént, eg körülfordulásra. 3 330 270 2 210 1 150 A kardáncsukló hajtott tengelének szögelfordulása

Részletesebben

Időszükséglet: A tananyag elsajátításához körülbelül 65 percre lesz szüksége.

Időszükséglet: A tananyag elsajátításához körülbelül 65 percre lesz szüksége. 4. modul: Rudak igénbevételei, igénbevételi ábrái 4.2. lecke: Igénbevételi ábrák, igénbevételi függvének lecke célja: tananag felhanálója megimerje: a rudak igénbevételi ábráit, megrajoláuk gondolatmenetét;

Részletesebben

ÁRAMLÁSTAN ALAPJAI. minimum tételek szóbeli vizsgához. Powered by Beecy

ÁRAMLÁSTAN ALAPJAI. minimum tételek szóbeli vizsgához. Powered by Beecy ÁRAMLÁSTAN ALAPJAI minimum tételek sóbeli isgáho Powered b Beec Minimum tételek sóbeli isgáho 1. tétel. Írja fel a foltonossági tétel integrál alakját, és magaráa el, milen fiikai alapelet feje ki. Hogan

Részletesebben

F.I.1. Vektorok és vektorműveletek

F.I.1. Vektorok és vektorműveletek FI FÜGGELÉK: FI Vektorok és vektorműveletek MATEMATIKAI ÖSSZEFOGLALÓ Skláris menniség: oln geometrii vg fiiki menniség melet ngság (előjel) és mértékegség jelleme Vektor menniség: iránított geometrii vg

Részletesebben

Mágneses momentum mérése vibrációs magnetométerrel

Mágneses momentum mérése vibrációs magnetométerrel Beveetés Mágneses momentum mérése vibrációs magnetométerrel A mérés célja megismerkedni egy makroskopikus minta mágneses dipólmomentumának mérésével, valamint megvisgálni egy lágymágneses anyag momentumának

Részletesebben

Acélszerkezetek méretezése Eurocode 3 szerint

Acélszerkezetek méretezése Eurocode 3 szerint Aélserkeetek méreteése Euroode serint Gakorlati útmutató rásos tartó síkja h t t r h t Serők: Dunai Lásló, Horváth Lásló, Kovás auika, Verői Béla, Vigh L. Gergel Verió: 9.9.. Tartalomjegék. Beveetés....

Részletesebben

XI. FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA

XI. FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA XI. FIATAL ŰSZAKIAK TUDOÁNYOS ÜLÉSSZAKA Kolosvár, 6. márcus 4-5. A PÉTRVÁR-I CSAVAR TAGJAI POZICIÓJÁNAK GHATÁROZÁSA KÉNYSZRGYNLTK SGÍTSÉGÉVL Gergel Attla-Levente Astract Ths paper refl presents a mathod

Részletesebben

Kétváltozós függvények ábrázolása síkmetszetek képzése által

Kétváltozós függvények ábrázolása síkmetszetek képzése által Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az

Részletesebben

Mesterséges Intelligencia 1

Mesterséges Intelligencia 1 Mesterséges Intelligencia Egy ember kecskét, farkast és kápostát seretne átvinni egy folyón, de csak egy kis csónakot talál, amelybe rajta kívül csak egy tárgy fér. Hogyan tud a folyón úgy átkelni, hogy.

Részletesebben

EGY KERESZTPOLARIZÁCIÓS JELENSÉG BEMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN

EGY KERESZTPOLARIZÁCIÓS JELENSÉG BEMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN Fiia Modern fiia GY KRSZTPOLARIZÁCIÓS JLNSÉG BMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN DMONSTRATION OF AN OPTICAL CROSS- POLARIZATION FFCT IN A STUDNT LABORATORY Kőhái-Kis Ambrus, Nag Péter 1 Kecseméti

Részletesebben

1. Lineáris transzformáció

1. Lineáris transzformáció Lineáris transzformáció Lineáris transzformáció mátrixának felírása eg adott bázisban: Emlékeztető: Legen B = {u,, u n } eg tetszőleges bázisa az R n -nek, Eg tetszőleges v R n vektor egértelműen felírható

Részletesebben

Mechanika című MSc tantárgy: TENGELYMÉRETEZÉS

Mechanika című MSc tantárgy: TENGELYMÉRETEZÉS ZÉHENY TVÁN EGYETE GÉPÉZÉRNÖ NORT É VLLOÉRNÖ R LLZOTT EHN TNZÉ ehanika ímű tantárg: TENGELYÉRETEZÉ felaat: őtengel méreteée feültégúra iolgoá: ott: eg körgűrű keretmetetű tartó (őtengel) veéle keretmetetének

Részletesebben

A feladatsorok összeállításánál felhasználtuk a Nemzeti Tankönyvkiadó RT. Gyakorló és érettségire felkészítő feladatgyűjtemény I III. példatárát.

A feladatsorok összeállításánál felhasználtuk a Nemzeti Tankönyvkiadó RT. Gyakorló és érettségire felkészítő feladatgyűjtemény I III. példatárát. Oros Gyula, 00. november Emelt sintű érettségi feladatsor Össeállította: Oros Gyula; dátum: 00. október A feladatsorok össeállításánál felhasnáltuk a Nemeti Tankönyvkiadó RT. Gyakorló és érettségire felkésítő

Részletesebben

Statika gyakorló teszt I.

Statika gyakorló teszt I. Statika gakorló teszt I. Készítette: Gönczi Dávid Témakörök: (I) közös ponton támadó erőrendszerek síkbeli és térbeli feladatai (1.1-1.6) (II) merev testre ható síkbeli és térbeli erőrendszerek (1.7-1.13)

Részletesebben

Adatok: fénysebesség, Föld sugara, Nap Föld távolság, Föld Hold távolság, a Föld és a Hold keringési és forgási ideje.

Adatok: fénysebesség, Föld sugara, Nap Föld távolság, Föld Hold távolság, a Föld és a Hold keringési és forgási ideje. FOGALMAK, DEFINÍCIÓK Az SI rendszer alapmenniségei. Síkszög, térszög. Prefixumok. Adatok: fénsebesség, Föld sugara, Nap Föld távolság, Föld Hold távolság, a Föld és a Hold keringési és forgási ideje. Fogalmak,

Részletesebben

Műszaki mechanika gyakorlati példák 1. hét: Közös ponton támadó erőrendszer síkban, kötélerők számítása

Műszaki mechanika gyakorlati példák 1. hét: Közös ponton támadó erőrendszer síkban, kötélerők számítása Műsaki mechanika gakorlati példák. hét: Köös ponton támadó erőrendser síkban, kötélerők sámítása. ábrán látható G = 22 N súlerejű lámpát fújja a sél. Ennek hatására a kötél a függőlegestől β = 2 -ban tér

Részletesebben

2. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Erők eredője, fölbontása

2. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Erők eredője, fölbontása SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK. MECHNIK-STTIK GYKORLT (kidolgozt: Triesz Péter, eg. ts.; Trni Gábor, mérnök tnár) Erők eredője, fölbontás.1. Péld dott eg erő és eg egenes irán-egségvektor:

Részletesebben

A flóderes rajzolatról

A flóderes rajzolatról A flóderes rajolatról Beveetés Ebben a dolgoatban vagy talán több ilyenben is at a célt igyeksünk megvalósítani, hogy matematikailag leírjuk a faanyag úgyneveett flóderes, más néven lángnyelv alakú rajolatát.

Részletesebben

A statika és dinamika alapjai 11,0

A statika és dinamika alapjai 11,0 FA Házi feladatok (A. gakorlat) Adottak az alábbi vektorok: a=[ 2,0 6,0,2] [ 5,2,b= 8,5 3,9] [ 4,2,c= 0,9 4,8] [,0 ],d= 3,0 5,2 Számítsa ki az alábbi vektorokat! e=a+b+d, f =b+c d Számítsa ki az e f vektort

Részletesebben

1. Bevezetés A légkör szerkezete. Oktatási segédanyag 1

1. Bevezetés A légkör szerkezete. Oktatási segédanyag 1 Oktatási segédanag 1 1. Beveetés 1.1. A légkör serkeete A légkör (atmosféra) a Földet körüláró, a gravitációs erőtér által megtartott gáburok. A légkör mostani össetétele a geológiai korok folamán, hossú

Részletesebben

Atomfizika előadás Szeptember 29. 5vös 5km szeptember óra

Atomfizika előadás Szeptember 29. 5vös 5km szeptember óra Aomfiika előadás 4. A elekromágneses hullámok 8. Sepember 9. 5vös 5km sepember 3. 7 óra Alapkísérleek Ampere-féle gerjesési örvén mágneses ér örvénessége elekromos áram elekromos ér váloása Farada indukciós

Részletesebben

Néhány érdekes függvényről és alkalmazásukról

Néhány érdekes függvényről és alkalmazásukról Néhán érdekes függvénről és alkalmazásukról Bevezetés Meglehet, a középiskola óta nem kedveltük az abszolútérték - függvént; most itt az ideje, hog változtassunk ezen. Erre az adhat okot, hog belátjuk:

Részletesebben

A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz.

A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz. Differenciálegenletek Bevezetés Differenciálegenletnek olan egenletet nevezünk, amelben az ismeretlen eg függvén és az egenlet tartalmazza az ismeretlen függvén (valahánad rendű) deriváltját. Például:

Részletesebben

Írja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6

Írja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6 Építész Kar Gakorló feladatok gakorlat Számítsa ki az alábbi komple számok összegét, különbségét, szorzatát, hánadosát: a/ z = i z = i b/ z = i z = - 7i c/ z = i z = i d/ z = i z = i e/ z = i z = i Írja

Részletesebben