Kétváltozós függvények ábrázolása síkmetszetek képzése által

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kétváltozós függvények ábrázolása síkmetszetek képzése által"

Átírás

1 Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az [,z] koordinátasíkban, tehát a síkmetszet egenlete z, azaz parabola; Az [,z] koordinátasíkban, tehát a síkmetszet egenlete z, azaz parabola; Tehát a felület z tengelű forgásparaboloid, amel az origóban érinti az [,] síkot: z -nál + sugarú kör). ) Ábrázoljuk az + + z felületet! A felület eg sugarú gömb, mert mindhárom koordinátasíkkal való metszet kör: +, + z, + z. ) Ábrázoljuk a z + felületet! Az [,] síkmetszet: z, tehát +, azaz egenes; Az [,z] síkmetszet:, tehát z, azaz parabola; Az [,z] síkmetszet:, tehát z, azaz parabola. A felület ún. parabolikus henger. 4) Ábrázoljuk a z cos + ) felületet! Koszinusz vezérgörbéjű henger 5) Ábrázoljuk a z ep + felületet! Eponenciális vezérgörbéjű henger, az alkotók az egenessel párhuzamosak. 6) Ábrázoljuk a z ln + felületet! z tengelű forgásfelület, melnek meridiángörbéje: z ln.

2 7) Ábrázoljuk a felületet! Hiperbolikus henger, alkotói a z tengellel párhuzamosak. 8) Ábrázoljuk a z ep + ) felületet! z tengelű forgásfelület, melnek meridiángörbéje: z ep.

3 ábra. Az. feladat megoldása ábra. A. feladat megoldása

4 ábra. A. feladat megoldása ábra. A 4. feladat megoldása 4

5 4e+8 e+8 e+8 e ábra. Az 5. feladat megoldása ábra. A 6. feladat megoldása 5

6 .5 z.5 7. ábra. A 7. feladat megoldása ábra. A 8. feladat megoldása 6

7 Kétváltozós függvének határértéke és foltonossága Definíció. Az f,) kétváltozós függvénnek az, ) pontban a határértéke A, ha minden tetszőleges ε > számhoz létezik olan δε) > szám, hog minden < δ és < δ egenlőtlenségeknek eleget tevő,) pontra f,) A < ε. Jelölés: lim f,) A Ezzel ekvivalens definíció: Az f,) függvénnek az, ) pontban A a határértéke, ha bármel, az, ) ponthoz konvergáló n, n ) értékrendszer sorozat) mellett az f n, n ) sorozat A-hoz konvergál. Ez azt jelenti, hog ha az f,) kétváltozós kifejezésben helébe tetszőleges olan ) függvént helettesítünk, amelre ), az ilen módon kapott f, )) egváltozós függvénnek mindig az A szám a határértéke az helen. Definíció. Az f,) függvén az, ) pontban foltonos, ha Feladatok lim f,) f, ). 9) Határozzuk meg az f,) kétváltozós függvén határértékét, ha + és. Közlekedjünk a szóban forgó helhez az görbén. Erre teljesül, hog esetén. Tehát vizsgálandó az f ) + függvén határértéke esetén: + + lim f ) lim. Vagis, ha van határértéke a kétváltozós függvénnek az, helen, akkor az csak lehet. Az első definíció alapján igazoljuk, hog a valóban határérték: + < ε, ha δ < < + δ és > N. 7

8 Valóban, uganis: + + ) 4 + < + 4 < δ+ 4 N < ε. ) Számítsuk ki a következő határértéket: lim lim + ) + A függvén logaritmusának a határértékét fogjuk kiszámítani: + ln + ) lim + ln +, ) uganis: lim ln + ), mert + ) e, ha ; továbbá: lim, mert < ε, ha δ < < + δ és elég nag. ) Határozzuk meg a következő határértéket: lim + ) e +) Igaz a következő egenlőtlenség: < + ) e +) < + ) e +). Tehát, ha igaz, hog helettesítéssel: lim + ) e +) lim u u e u lim u L Hospital szabállal belátható, hog ez a határérték. u e u. ) Van-e határértéke a z kétváltozós függvénnek az, + 4 helen? 8

9 A,) ponttól különböző heleken a függvénnek van értelme. A határértéket az m egenes mentén keresve: z m + m 4 4 m + m 4, ha. A határértéket az parabola mentén keresve z Ebből következik, hog a tekintett függvénnek a,) helen nincs határértéke. Parciális deriváltak, láncszabál ) Határozzuk meg az alábbi kétváltozós függvének és változók szerinti parciális deriváltjait. a) f,) e sin + ) f,) f,) b) f,) arc tan f,) e 4 sin + ) + cos + ) ) { } e sin + ) cos + ) e 6 sin + ) + cos + ) ) { } e 6 sin + ) cos + ) ) arc tan + ) ) + f,) + + ) ) + ) c) z z 9

10 z kiszámítása a logaritmikus deriválás szerint: lnz ln z z ln z z ln ln d) f,) f,) f,) ) A z,) függvént az cos + cos z + z cos egenlőség implicite határozza meg. Számítsuk ki a z,) függvén parciális deriváltjait! Az szerinti parciális deriválásnál -t állandónak tekintjük, íg z,) csak függvéne: cos + sinz) z + z cos z sin z cos sinz) z sin cos z z sin cos cos sin z Az szerinti parciális deriválásnál -et állandónak tekintjük, íg z, ) csak függvéne: sin + cos z sin z z + z cos z cos sin z) sin cos z z sin cos z cos sin z 5) e +e z +e z z implicite haározza meg a z,) függvént. Számítsuk ki a parciális deriváltjait!

11 e + e z z ) + e z z ) + z z + z z ez + e z ) z e ze z z z e ze z e z + e z e + e z z + z ) + e z z ) z + z z ez + e z ) z e ze z z z e ze z e z + e z 6) Mutassuk meg, hog az z, ) függvén kielégíti a megadott differenciálegenletet! a) z,) + ) ln z + z z z z ln + + ) ln + + z z ln + + ) ) ln + z +z + ) ln + + ) + ) + ) ln z b) z,) + e z + z + z z z + e + e ) + e e z z + e + e z + z + e e + + e + z

12 c) z,) z + z z z z z z ) z + z ) z Iránmenti deriválás Az f,,z) függvénnek az,,z ) pontban az ee,e,e ) iránban vett iránmenti deriváltja e ): [ ] f,,z) e gradf,,z ) e,,z ) e f,,z ) + e f,,z ) + e f,,z ) z Kétváltozós függvén nek, f, )-nak az ecos α, sin α) iránban vett iránmenti deriváltja az, ) helen: f α, ) f, )cos α + f, )sin α 7) Számítsuk ki a z ln + ) függvén iránmenti deriváltját az α 5 iránban! cos 5 cos sin5 sin Parciális deriváltak: f + + ) + + f +

13 Tehát: f α ) Számítsuk ki a z +4 4 függvén differenciálhánadosát az α 45 iránban! Parciális deriváltak: Tehát: z α ) + cos 45 sin45 z z ) ) 9) Számítsuk ki a z ln függvén α 6 iránban vett differenciálhánadosát az, helen! cos 6 Parciális deriváltak: sin6 z z ln Tehát: z α,) + ln z α, ) 4 + ln ) Határozzuk meg az alábbi függvének iránmenti deriváltját a megadott pontban és iránban!

14 a) f,) +, P,), α f, f 6; cos f,) 4, f,) 6. Tehát:, sin ; f α,) b) f,) cosh arc tan, P, ), α f sinh cosh + f sinh cosh cos sin + uganis: sinh e + e f α,) sinh + sinh + + { e 4 + e4 5 e 4 + e 4 ) Tehát: } ) + + e 4 + e4 5 + e 4 e4 5 { e 4 e4 5 } ) c) f,), P,), v i j v 9 + 4, íg cos α, sin α ; f f P ), f f P ). Tehát: f αp ) d) f,,z) e + ), P,,), v,, 5) v , íg cos α, cos α, cos α 5, valamint f e + ) f e + ) f z f P ) e f P ) Tehát f αp ) f P )cosα )+f P )cosα )+f zp )cosα ) 6 e

15 Felületi görbék érintői, érintősík A z f,) felületen haladó görbét az,) síkon megadott t), t) görbe ol módon határoz meg, hog e síkgörbére állított, z-vel párhuzamos alkotójú henger és a z f,) felület metszésvonala képezi a felületi görbét: rt) it) + jt) + kft),t)). Ennek érintővektora a t t -nak megfelelő helen: t ), t ): ṙt ) iẋt ) + jẏt ) + k [ f, )ẋt ) + f, )ẏt ) ]. Ha speciálisan az t), t) görbe a következő alakú egenes: + t cos α + t sin α, akkor a megfelelő térgörbe érintővektora a t pontban: ṙt ) i cos α + j sin α + k [ f, )cos α + f, )sin α ]. A k egütthatója éppen az f, )-nak α iránban vett iránmenti deriváltja. Ebben az esetben az érintő egenlete: cos α sin α z z. Az u,,z) z f,) függvén gradiense: A felületi görbe érintővektora: Skaláris szorzatuk: f α gradu,,z) f i f j + k. ṙt) ẋi + ẏj + [ f ẋ + f ẏ ] k. gradu)ṙt) f ẋf ẏ + f ẋ + f ẏ, tehát gradu ṙt), ahol ṙt) a felület eg pontján áthaladó tetszőleges felületi görbe érintője lehet. Ebből következik, hog eg felületi ponton áthaladó felületi görbék érintői eg síkban vannak; ez a felület adott pontbeli érintősíkja. Az érintősík normálvektora gradu vektor. Tehát az érintősík egenlete: f ) + f ) z z ). 5

16 A Φ,,z) implicit) alakú felületen haladó rt) it) + jt) + kzt) térgörbe esetén Φt), t), zt)). dφ dt Φ ẋt) + Φ ẏt) + Φ zżt), tehát az nφ,φ,φ z) vektor merőleges az ṙt) iẋt) + jẏt) + kżt) görbeérintőre, az érintővektorok az n normálvektorú érintősíkban vannak. Az,,z ) pontbeli érintősík egenlete: Φ ) + Φ ) + Φ zz z ). A Φ,,z) és a Ψ,,z) felületek metszésvonalát a két egenletből adódó egenletrendszer jellemzi. A metszésvonal érintősíkja: i j k t n Φ n Ψ Φ Φ Φ z Ψ Ψ Ψ z Ha a metszésvonal pl. szerint paraméterezhető, azaz leírható mint Φ, ), z)), illetve Ψ, ), z)), akkor dφ d Φ + Φ + Φ zz ; dψ d Ψ + Ψ + Ψ zz. Ekkor a metszésvonal szerint paraméterezett érintője: r ) i + )j + + z )k, ahol ) és z ) a fenti egenletrendszerből kiszámítható. Feladatok ) A z ln + ) felületnek a P,,) pontján áthaladó, z tengellel párhuzamos és az tengellel 6 -os szöget bezáró síkkal elmetszettük a felületet. Határozzuk meg a metszetgörbe érintőjének egenletrendszerét a P pontban. A felület P pontjára:,, z ln + ). Kiszámítjuk az iránmenti deriváltat: f cos 6 ; sin6 + ; f,) + ;,) 6

17 f α +. Az érintő egenletrendszere: z. ) Határozzuk meg a z sin felület érintősíkjának egenletét az π, pontban. z sin π. A parciális deriváltak: f cos,) ; f cos,) π 6 Tehát az érintősík egenlete: π ) z π 6 ) ) ) Melek a z felületnek azok a pontjai, ahol az érintősík párhuzamos a + 5z 5 síkkal? A felület normálisa: n z i z j+k. Az adott sík normálisa: n i j+5k, illetve n 5 i 5 j+k. Úg kell megadnunk az,,z ) pontot, hog ez a két vektor párhuzamos legen egmással. Kiszámítjuk a parciális deriváltakat: z 4 ; z +. Összevetve a sík normálvektorának egenletében szereplő egütthatókkal: 4 5 ; + 5, tehát,65; 9 5,8; z,. Teljes differenciál számítása A z f,) kétváltozós függvén teljes differenciálja: dz df f,)d + f,)d. A dz P, )d + Q, )d kifejezés teljes differenciál, ha P,) Q,). 7

18 4) Számítsuk ki a z ln sin + ) teljes differenciálját! z sin + ) cos + ) cot + ) z sin + ) cos + ) cot + ) Tehát dz cot + ) {d + d}. 5) Állapítsuk meg a sin e sin d + cos e sin d kifejezésről, hog teljes differenciál-e! P,) sine sin ; Q,) cos e sin. P cos e sin + cos sin e sin ; Q cos e sin + cos sin e sin. Mivel tehát P Q, íg az adott kifejezés teljes differenciál. Magasabbrendű deriváltak számítása 6) Deriváljuk le kétszer és szerint a következő függvént: Első deriváltak: A másodrendű parciális deriváltak: z e cos ln z z e cos ln; z z e sin. z z e cos ; A veges parciális deriváltak: z ) z z ) z z z e cos. z e sin ; z e sin. Látható, hog a veges parciális deriváltak megegeznek. 8

19 7) Számítsuk ki a z e cos ln függvén, illetve szerinti harmadik parciális deriváltját! z z ) z e cos ) e cos ; ) z )) z e cos + ) e sin. )) z ) e cos ln) e sin )) 8) Számítsuk ki a z e + kétváltozós függvén másodrendű parciális deriváltjait! z e + ; z e + ; z e + + ) e + ; z e + + ) e + ; z z 4e +. 9) Igazoljuk, hog a z + függvén és szerinti másodrendű parciális deriváltjainak összege zérus, vagis a függvén kielégíti a z + z ún. parciális differenciálegenletet ekkor z-t harmonikus függvénnek nevezzük). z + ; z 6; z 6; z + z 6 6. z 6; Iránmenti második derivált számítása A z f,) kétváltozós függvén α iránmenti első deriváltja: df,) dα f,)cos α + f,)sin α. 9

20 Ennek az α irán menti deriváltja az α irán menti második derivált: d f,) dα D αα f,) f,)cos α+f,)cos α sin α+f,)sin α. ) Számítsuk ki a z ln + ) függvén α irán menti második deriváltját, ha α 5, valamint, 8! z + + ; z + ; z + ) 6,8) 8 ; z + ) 7,8) 8 ; z + ),8) 8 ; d z,) dα D αα f,) + ) cos α + + ) cos α sinα + sin α; + ) Mivel cos 5, illetve sin5, íg cos 5 4, cos 5 sin5, illetve sin 5 4. Tehát: d z, ) dα ,9.

Írja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6

Írja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6 Építész Kar Gakorló feladatok gakorlat Számítsa ki az alábbi komple számok összegét, különbségét, szorzatát, hánadosát: a/ z = i z = i b/ z = i z = - 7i c/ z = i z = i d/ z = i z = i e/ z = i z = i Írja

Részletesebben

7. Kétváltozós függvények

7. Kétváltozós függvények Matematika segédanag 7. Kétváltozós függvének 7.. Alapfogalmak Az A és B halmazok A B-vel jelölt Descartes-szorzatán azt a halmazt értjük, melnek elemei mindazon a, b) rendezett párok, amelekre a A és

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

1) Adja meg a következő függvények legbővebb értelmezési tartományát! 2) Határozzuk meg a következő függvény értelmezési tartományát!

1) Adja meg a következő függvények legbővebb értelmezési tartományát! 2) Határozzuk meg a következő függvény értelmezési tartományát! Függvének Feladatok Értelmezési tartomán ) Adja meg a következő függvének legbővebb értelmezési tartománát! a) 5 b) + + c) d) lg tg e) ln + ln ( ) Megoldás: a) 5 b) + + = R c) és sosem teljesül. d) tg

Részletesebben

Többváltozós analízis gyakorlat, megoldások

Többváltozós analízis gyakorlat, megoldások Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,

Részletesebben

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010.

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010. MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 00.. Tetszőleges, nem negatív szám esetén, Göktelenítsük a nevezőt: (B). Menni a 0 kifejezés értéke? (D) 0 0 0 0 0000 400 0. 5 Felhasznált

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és 2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend

Részletesebben

Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola

Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola O k t a t á s i H i v a t a l A 017/018. tanévi Országos Középiskolai Tanulmáni Versen második forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Adja meg

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x.

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x. Mat. A3 9. feladatsor 06/7, első félév. Határozzuk meg az alábbi differenciálegenletek típusát (eplicit-e vag implicit, milen rendű, illetve fokú, homogén vag inhomogén)! a) 3 (tg) +ch = 0 b) = e ln c)

Részletesebben

15. Többváltozós függvények differenciálszámítása

15. Többváltozós függvények differenciálszámítása 5. Többváltoós függvének differenciálsámítása 5.. Határoa meg a alábbi kétváltoós függvének elsőrendű parciális derivált függvéneit és a gradiens függvénét, valamint eek értékét a megadott pontban:, =

Részletesebben

Teljes függvényvizsgálat példafeladatok

Teljes függvényvizsgálat példafeladatok Teljes függvénvizsgálat példafeladatok Végezz teljes függvénvizsgálatot az alábbi függvéneken! Az esetenként vázlatos megoldásokat a következő oldalakon találod, de javaslom, hog először önállóan láss

Részletesebben

Többváltozós, valós értékű függvények

Többváltozós, valós értékű függvények TÖ Többváltozós, valós értékű függvények TÖ Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza, n változós függvényeknek nevezzük. TÖ Példák:.

Részletesebben

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;

Részletesebben

VI. Deriválható függvények tulajdonságai

VI. Deriválható függvények tulajdonságai 1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

Függvények. 1. Nevezetes függvények A hatványfüggvény

Függvények. 1. Nevezetes függvények A hatványfüggvény Függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek

Részletesebben

Lengyelné Dr. Szilágyi Szilvia április 7.

Lengyelné Dr. Szilágyi Szilvia április 7. ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:

Részletesebben

Felületek differenciálgeometriai vizsgálata

Felületek differenciálgeometriai vizsgálata Felületek differenciálgeometriai vizsgálata Felületek differenciálgeometriai értelemben Felület: Olyan alakzat, amely előállítható az (u,v) sík egy összefüggő tartományán értelmezett r(u,v) kétparaméteres

Részletesebben

Bodó Bea, Somonné Szabó Klára Matematika 2. közgazdászoknak

Bodó Bea, Somonné Szabó Klára Matematika 2. közgazdászoknak ábra: Ábra Bodó Bea, Somonné Szabó Klára Matematika. közgazdászoknak III. modul: Többváltozós üggvének 5. lecke: Többváltozós üggvének, parciális deriválás Tanulási cél: Megismerkedni a többváltozós üggvének

Részletesebben

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =, Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2

Részletesebben

Többváltozós, valós értékű függvények

Többváltozós, valós értékű függvények Többváltozós függvények Többváltozós, valós értékű függvények Többváltozós függvények Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza,

Részletesebben

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2

Részletesebben

Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához

Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Feladatsor A differenciálgeometria alapja c. kurzus gyakorlatához Dr. Nagy Gábor, Geometria Tanszék 2010. szeptember 16. Görbék paraméterezése 1. feladat. (A) Bizonyítsuk be a vektoriális szorzatra vonatkozó

Részletesebben

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA A kétváltozós függvének két vlós számhoz rendelnek hozzá eg hrmdik vlós számot, másként foglmzv számpárokhoz rendelnek hozzá eg hrmdik számot.

Részletesebben

A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz.

A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz. Differenciálegenletek Bevezetés Differenciálegenletnek olan egenletet nevezünk, amelben az ismeretlen eg függvén és az egenlet tartalmazza az ismeretlen függvén (valahánad rendű) deriváltját. Például:

Részletesebben

Inverz függvények Inverz függvények / 26

Inverz függvények Inverz függvények / 26 Inverz függvének 2015.10.14. Inverz függvének 2015.10.14. 1 / 26 Tartalom 1 Az inverz függvén fogalma 2 Szig. monoton függvének inverze 3 Az inverz függvén tulajdonságai 4 Elemi függvének inverzei 5 Összefoglalás

Részletesebben

Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény

Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény Elemi függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek

Részletesebben

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény.

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény. Tartalomjegyzék Kétváltozós függvény integrálszámítása... Primitívfüggvény... Kettősintegrál... A kettősintegrál téglalap tartományon... A kettősintegrál létezésének szükséges feltétele... 3 Illusztráció...

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Határozatlan integrál, primitív függvény

Határozatlan integrál, primitív függvény Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

Koordináta-geometria alapozó feladatok

Koordináta-geometria alapozó feladatok Koordináta-geometria alapozó feladatok 1. Határozd meg az AB szakasz felezőpontját! (1,5 ; 3,5) (0,5 ; ) (6,5 ; 8,5) (4,5 ; ) (0,5 ; 1,5) (0 ; 0) (0 ; 8,5) (1 ; 1) ( 1,5 ; ) (3,5 ; 3) (0 ; 3) ( 1 ; 1,5).

Részletesebben

Kettős és többes integrálok

Kettős és többes integrálok Kettős és többes integrálok ) f,) + + kettős integrálja az, tartománon Megoldás: + + dd 6 + 6 + 8 + 9 + ] + + ] d 8 + 8 + ) f,) sin + ) integrálja a, tartománon Megoldás: ] d + 9 + d + + 68 8 7,5 + sin

Részletesebben

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n.

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n. 1. Többváltozós függvények 1. Bevezetés Ennek a fejezetnek a célja a kétváltozós függvények vizsgálata, ami során a 3-dimenziós felületeket szeretnénénk megérteni. 1. definíció. Legyen D R n. Ekkor az

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Feladatok november

IV. INTEGRÁLSZÁMÍTÁS Feladatok november IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma? . Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,

Részletesebben

Kétváltozós függvények differenciálszámítása

Kétváltozós függvények differenciálszámítása Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt

Részletesebben

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11 Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4

Részletesebben

A fogyasztói döntés. Hasznosságelméletek. 3. előadás. Egyváltozós hasznossági függvény. kardinális hasznosságelmélet. ordinális hasznosságelmélet

A fogyasztói döntés. Hasznosságelméletek. 3. előadás. Egyváltozós hasznossági függvény. kardinális hasznosságelmélet. ordinális hasznosságelmélet 3. előadás fogasztói döntés Hasznosságelméletek: kardinális és ordinális hasznosságelmélet. Hasznossági függvén, határhaszon. Fogasztói preferenciarendezés, közömbösségi görbék, helettesítési határráta.

Részletesebben

Kalkulus 2., Matematika BSc 1. Házi feladat

Kalkulus 2., Matematika BSc 1. Házi feladat . Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Függvények határértéke és folytonossága. pontban van határértéke és ez A, ha bármely 0 küszöbszám, hogy ha. lim

Függvények határértéke és folytonossága. pontban van határértéke és ez A, ha bármely 0 küszöbszám, hogy ha. lim Függvének határértéke és oltonossága Deiníció: Az -hoz megadható olan üggvénnek az A. pontban van határértéke és ez A ha bármel küszöbszám hog ha A akkor. Jele: a) Függvén határértékének ogalma visszavezethető

Részletesebben

Matematika szigorlat június 17. Neptun kód:

Matematika szigorlat június 17. Neptun kód: Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 6 VI TÉRGÖRbÉk 1 Alapvető ÖSSZEFÜGGÉSEk A térgörbe (1) alakú egyenletével írható le Ez a vektoregyenlet egyenértékű az (2) skaláris egyenletrendszerrel A térgörbe három nevezetes

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

Szabadsugár. A fenti feltételekkel a folyadék áramlását leíró mozgásegyenlet és a kontinuitási egyenlet az alábbi egyszerű alakú: (1) .

Szabadsugár. A fenti feltételekkel a folyadék áramlását leíró mozgásegyenlet és a kontinuitási egyenlet az alábbi egyszerű alakú: (1) . Szabadsugár Tekintsük az alábbi ábrán látható b magasságú résből kiáramló U sebességű sugarat. A résből kiáramló és a függőleges fal melletti térben lévő foladék azonos. A rajz síkjára merőleges iránban

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 30 Egy

Részletesebben

Matematikai analízis II.

Matematikai analízis II. Matematikai analízis II. Feladatgyűjtemény GEMAN6-B Gazdaságinformatikus, Programtervező informatikus és Mérnökinformatikus hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . feladatlap Implicit függvények

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2012/2013 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások

Országos Középiskolai Tanulmányi Verseny 2012/2013 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások Országos Középiskolai Tanulmáni Versen / Matematika I kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások Eg papírlapra felírtuk a pozitív egész számokat n -től n -ig Azt vettük észre hog a felírt páros számok

Részletesebben

A kardáncsukló tengelyei szögelfordulása közötti összefüggés ábrázolása. Az 1. ábrán mutatjuk be a végeredményt, egy körülfordulásra.

A kardáncsukló tengelyei szögelfordulása közötti összefüggés ábrázolása. Az 1. ábrán mutatjuk be a végeredményt, egy körülfordulásra. A kardáncsukló tengelei szögelfordulása közötti összefüggés ábrázolása Az 1. ábrán mutatjuk be a végeredmént, eg körülfordulásra. 3 330 270 2 210 1 150 A kardáncsukló hajtott tengelének szögelfordulása

Részletesebben

Másodfokú függvények

Másodfokú függvények Másodfokú függvének Definíció: Azokat a valós számok halmazán értelmezett függvéneket, amelek hozzárendelési szabála f() = a + bc + c (a, b, c R, a ) alakú, másodfokú függvéneknek nevezzük. A másodfokú

Részletesebben

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 1 MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összefoglló 11 Mátrilgeri összefoglló: ) Mátri értelmezése, jelölése: Mátri:

Részletesebben

Kétváltozós függvények

Kétváltozós függvények Kétváltozós függvéek Tartalomjegzék Többváltozós függvéek... Kétváltozós függvéek... Nevezetes felületek... 3 Forgásfelületek... 3 Kétváltozós függvé határértéke... 4 Foltoos kétváltozós függvéek... 6

Részletesebben

Geometriai alapok Felületek

Geometriai alapok Felületek Geometriai alapok Felületek Geometriai alapok Felületek matematikai definíciója A háromdimenziós tér egy altere Függvénnyel rögzítjük a pontok helyét Parabolavezérgörbéjű donga 4 f z x + a C Elliptikus

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban! . Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x

Részletesebben

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1 Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

VIK A3 Matematika, Gyakorlati anyag 2.

VIK A3 Matematika, Gyakorlati anyag 2. VIK A3 Matematika, Gyakorlati anyag 2. 208. november Sorok. Konvergensek-e az alábbi sorok? Ha igen, adjuk meg a határértéküket! n(n+3) n(n+)(n+2) 9n 2 3n 2 ( n + 2 2 n + + n) 2n+ n 2 (n+) 2 (f) ( 3) k+2

Részletesebben

Kalkulus I. gyakorlat Fizika BSc I/1.

Kalkulus I. gyakorlat Fizika BSc I/1. . Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

2014. november Dr. Vincze Szilvia

2014. november Dr. Vincze Szilvia 24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata

Részletesebben

Analízis III. gyakorlat október

Analízis III. gyakorlat október Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer

Részletesebben

Függvényhatárérték és folytonosság

Függvényhatárérték és folytonosság 8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak

Részletesebben

Az f függvénynek van határértéke az x = 2 pontban és ez a határérték 3-mal egyenl½o lim f(x) = 3.

Az f függvénynek van határértéke az x = 2 pontban és ez a határérték 3-mal egyenl½o lim f(x) = 3. 0-06, II. félév. FELADATLAP Eredmének. Van határértéke, illetve foltonos az f függvén az alábbi pontokban? (a) = Az f függvénnek van határértéke az = pontban és ez a határérték -mal egenl½o f() =.! Az

Részletesebben

Matematika II. Feladatgyűjtemény GEMAN012B. Anyagmérnök BSc szakos hallgatók részére

Matematika II. Feladatgyűjtemény GEMAN012B. Anyagmérnök BSc szakos hallgatók részére Matematika II. Feladatgyűjtemény GEMANB Anyagmérnök BSc szakos hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . gyakorlat Matematika II.. Az alábbi f függvényeknél adja meg f -t! f() = + 5; (b) f()

Részletesebben

Kalkulus II., harmadik házi feladat

Kalkulus II., harmadik házi feladat Név: Neptun: Web: http://mawell.sze.hu/~ungert Kalkulus II., harmadik házi feladat.,5 pont) Határozzuk meg a következ határértékeket: ahol a) A =, ), b) A =, ), c) A =, ).,) A Az egszer bb kezelhet ség

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 7 VII VEkTORANALÍZIS 1 ELmÉLETI ALAPOk Az u függvényt skalár-vektor függvénynek nevezzük, ha értelmezési tartománya a háromdimenziós tér vektorainak halmaza, a függvényértékek

Részletesebben

Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport

Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport Analízis I. zártheli dolgozat javítókulcs, Informatika I. 0. okt. 9. Elméleti kérdések A csoport. Hogan számíthatjuk ki két trigonometrikus alakban megadott komple szám szorzatát más alakba való átváltás

Részletesebben

1.1. Halmazelméleti alapfogalmak

1.1. Halmazelméleti alapfogalmak . Halmazok, relációk, függvének.. Halmazelméleti alapfogalmak... A halmaz fogalma A halmazt a halmazelmélet alapfogalmának tekintjük és ezért nem definiáljuk. Szokás azt mondani, hog a halmaz különböző

Részletesebben

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő

Részletesebben

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},

Részletesebben

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC 6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen

Részletesebben

= és a kínálati függvény pedig p = 60

= és a kínálati függvény pedig p = 60 GYAKORLÓ FELADATOK 1: PIACI MECHANIZMUS 1. Adja meg a keresleti és a kínálati függvének pontos definícióját! Mikor beszélhetünk piaci egensúlról?. Eg piacon a keresletet és a kínálatot a p = 140 0, 1q

Részletesebben

A hordófelület síkmetszeteiről

A hordófelület síkmetszeteiről 1 A hordófelület síkmetszeteiről Előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról azon hiányérzetünknek adtunk hangot, hogy a hordószerű test görbe felülete nem kapott nevet. Itt elneveztük

Részletesebben

A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris

A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris Többváltozós függvények differenciálhatósága f(x) f(x Az egyváltozós függvények differenciálhatóságát a lim 0 ) x x0 x x 0 függvényhatárértékkel definiáltuk, s szemléletes jelentése abban mutatkozott meg,

Részletesebben

ANALÍZIS II. Példatár

ANALÍZIS II. Példatár ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3

Részletesebben

10.3. A MÁSODFOKÚ EGYENLET

10.3. A MÁSODFOKÚ EGYENLET .. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.

Részletesebben

Többváltozós függvények Feladatok

Többváltozós függvények Feladatok Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk

Részletesebben

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25) I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =

Részletesebben

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx

Részletesebben

Kétváltozós függvény szélsőértéke

Kétváltozós függvény szélsőértéke Kétváltozós függvény szélsőértéke Sütő Andrea Kétváltozós függvény szélsőértéke Legyen adott f ( xy, ) kétváltozós függvény és ez legyen folytonosan totálisan differenciálható, azaz létezzenek az elsőrendű

Részletesebben

Serret-Frenet képletek

Serret-Frenet képletek Serret-Frenet képletek Vizsgáljuk meg az e n normális- és e b binormális egységvektorok változását. e n = αe t + βe n + γe b, e t e n e n = 1 e n e n = 0 β = 0 e n e t = e n e t illetve a α = 1/R. Ugyanakkor

Részletesebben

Koordinátarendszerek

Koordinátarendszerek Koordinátarendszerek KO 1 Koordinátarendszerek Ponthalmazok előállításai Koordinátarendszerek KO Két gyakran alkalmazott síkbeli koordinátarendszer Derékszögű (Descartes féle) koordinátarendszer Síkbeli

Részletesebben

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........

Részletesebben

1. feladatsor: Vektorfüggvények deriválása (megoldás)

1. feladatsor: Vektorfüggvények deriválása (megoldás) Matematika A gyakorlat Energetika és Mechatronika BSc szakok 016/17 ősz 1. feladatsor: Vektorfüggvények deriválása megoldás) 1. Tekintsük azt az L : R R lineáris leképezést ami az 1 0) vektort az 1 0 )

Részletesebben

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév)

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév) . Házi feladat és megoldása (DE, KTK, 4/5 tanév első félév) () Határozza meg a következő függvények (első) deriváltját: 3 + f() ctg, g() (3 )3 tg, h() cos( 3 + e ), i() lg(ln(e + 4 ln )), j() (3) ln, k()

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

Matematika szintfelmérő szeptember

Matematika szintfelmérő szeptember Matematika szintfelmérő 015. szeptember matematika BSC MO 1. A faglaltok éjszakáján eg közvéleménkutatásban vizsgált csoport %-ának ízlett az eperfaglalt, 94%-ának pedig a citromfaglalt. A két gümölcsfaglalt

Részletesebben

az eredő átmegy a közös ponton.

az eredő átmegy a közös ponton. M Műszaki Mechanikai Tanszék STTIK dr. Uj József c. egetemi tanár g közös ponton támadó koncentrált erők (centrális erőrendszer) Két erő eredője: = +, Több erő eredője: = + ++...+ n, az eredő átmeg a közös

Részletesebben

Boros Zoltán február

Boros Zoltán február Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete

Részletesebben

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................

Részletesebben

Dierenciálgeometria feladatsor

Dierenciálgeometria feladatsor Dierenciálgeometria feladatsor 1. Görbék paraméterezése 1. Határozzuk meg az alábbi ponthalmazok egy paraméteres el állítását: a a, b középpontú, r sugarú kör a síkban; b y = mx + b egyenlettel leírt egyenes

Részletesebben

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L

Részletesebben