Boros Zoltán február

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Boros Zoltán február"

Átírás

1 Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n nyílt... Differenciálhatóság fogalma.. Definíció. Azt mondjuk, hogy f : D R m differenciálható az x 0 D pontban, R {}} m n { ha létezik A L(R n, R m ) úgy, hogy f(x) f(x 0 ) A(x x 0 ) R m lim x x 0 x x 0 R n 0. () Ekkor az f (x 0 ) A lineáris leképezést (avagy mátrixot) az f függvény x 0 pontbeli differenciálhányadosának (deriváltjának) nevezzük..2. TÉTEL. [Lineáris approximálhatóság]: Ha f : D R m és x 0 D, akkor az alábbi feltételek ekvivalensek: (a) f differenciálható x 0 -ban; (b) A L(R n, R m ) és r : D R m úgy, hogy lim x x 0 r(x) x x 0 0 és f(x) f(x 0) A(x x 0 ) + r(x) (x D); (c) A L(R n, R m ) és ω : D R m úgy, hogy lim ω(x) ω(x 0 ) 0 és f(x) f(x 0 ) A(x x 0 )+ x x 0 ω(x) (x D). x x 0 Továbbá (a) (b)-ben és (c)-ben A f (x 0 ).

2 Bizonyítás. A definíció (és a következő megjegyzés) alapján nyilvánvaló..3. Megjegyzés. Ha f (f, f 2,..., f m ) : D R m, x 0 D és az A R m n mátrix j-edik sorvektora A j (j, 2,..., m), akkor f(x) f(x 0 ) A(x x 0 ) R m lim x x 0 x x 0 R n 0 R [ ] lim f(x) f(x0 ) A(x x ) x x 0 x x 0 0 R m j {, 2,..., m} : lim x x0 x x 0 [f j(x) f j (x 0 ) A j (x x 0 )] 0 R Tehát f differenciálható x 0 -ban j {, 2,..., m} : f j differenciálható x 0 -ban és f (x 0 ) f f 2(x 0 ) (x 0 ).. f m(x 0 ).4. TÉTEL. Ha f : D R m differenciálható az x 0 D pontban, akkor f folytonos x 0 -ban. Bizonyítás. Mivel f lineárisan approximálható, a (c)-beli A és ω választásával f(x) f(x 0 ) A(x x 0 ) + x x 0 ω(x) A(x x 0 ) + x x 0 ω(x) A x x 0 + x x 0 ω(x) ezért lim x x0 f(x) f(x 0 ) Irány menti és parciális derivált.5. Definíció. Legyen f : D R m, x 0 D és e R m ( e ). A D e f(x 0 ) lim t 0 t (f(x 0 + te) f(x 0 )) határértéket, ha létezik, az f függvény x 0 -beli e irány menti deriváltjának nevezzük..6. Megjegyzés. Ha I R intervallum úgy, hogy 0 I és t I : x 0 + te D, valamint ϕ(t) x 0 + te (t I), akkor D e f(x 0 ) ϕ (0). 2

3 .7. TÉTEL. Ha f : D R m differenciálható az x 0 D pontban, akkor minden e R n esetén létezik D e f(x 0 ) és D e f(x 0 ) f (x 0 ) e. Bizonyítás. A lineáris approximálhatóság (c) alakja szerint t (f(x 0 + te) f(x 0 )) t [A(te) + te ω(x 0 + te)] A(e) + tehát D e f(x 0 ) A e f (x 0 ) e. t e ω(x 0 + te), }{{} t }{{} ω(x 0 )0 sgn(t) {,}.8. Definíció. Ha f (f, f 2,..., f m ) : D R m, x 0 D és e i (0,..., 0,, 0,..., 0) R n, ahol az, az i-edik pozícióban van, akkor a D i f j (x 0 ) D ei f j (x 0 ) valós számot, ha létezik az f függvény j-edik koordináta-függvénye x 0 pontbeli i-edik (változó szerinti) parciális deriváltjának nevezzük (i, 2,..., n; j, 2,..., m)..9. Megjegyzés. Ha I R nyílt intervallum úgy, hogy x 0,i I és t I : (x 0,,..., x 0,i, t, x 0,i+,..., x 0,n ) D, valamint akkor D i f j (x 0 ) ϕ (x 0,i ). ϕ(t) f j (x 0,,..., x 0,i, t, x 0,i+,..., x 0,n ) (t I), A(z).9. megjegyzés szerint a parciális deriváltak egyváltozós, valós értékű függvények deriváltjaként számolhatók. A(z).8. definíció és a(z).7. tétel alábbi következménye azt mutatja, hogy az előbbiek szerint az egyváltozós kalkulus eszközeivel számítható parciális deriváltak megadják a vektorváltozós, vektorértékű függvény adott pontbeli deriváltjának mátrix reprezentációját a természetes bázisokra nézve. Ez egyébként igazolja a derivált egyértelműségét is..0. TÉTEL. Ha f (f, f 2,..., f m ) : D R m differenciálható az x 0 D pontban, akkor j {, 2,..., m} : i {, 2,..., n} : létezik D i f j (x 0 ) R és f (x 0 ) D f (x 0 ) D 2 f (x 0 )... D n f (x 0 ) D f 2 (x 0 ) D 2 f 2 (x 0 )... D n f 2 (x 0 )... D f m (x 0 ) D 2 f m (x 0 )... D n f m (x 0 ) Rm n. 3

4 .3. A differenciálhatóság elegendő feltétele.. TÉTEL. Legyen x 0 R n, δ > 0. Ha f : K(x 0, δ) R úgy, hogy x K(x 0, δ) : i {, 2,..., n} : D i f(x), akkor h R n, h < δ esetén c, c 2,..., c n K(x 0, δ) : f(x 0 + h) f(x 0 ) D i f(c i )h i (2) i (ahol h (h, h 2,..., h n )). Bizonyítás. Legyen i {, 2,..., n} és K i { (x 0, + h,..., x 0,i + h i, t, x 0,i+,..., x 0,n ) : t I i }, ahol I i [x 0,i, x 0,i + h i ], ha h i > 0, illetve I i [x 0,i + h i, x 0,i ], ha h i < 0, valamint ϕ i (t) f(x 0, + h,..., x 0,i + h i, t, x 0,i+,..., x 0,n ) (t I i ). A Lagrange-féle középérték-tétel szerint t i Ii és : ϕ i (x 0,i + h i ) ϕ i (x 0,i ) ϕ i(t i )h i ϕ i(t i ) D i f (x 0, + h,..., x 0,i + h i, t i, x 0,i+,..., x 0,n ) D }{{} i f(c i ) c i (i, 2,..., n), tehát f(x 0 + h) f(x 0 ) ( f(x 0, + h,..., x 0,i + h i, x 0,i + h i, x 0,i+,..., x 0,n ) i ) f(x 0, + h,..., x 0,i + h i, x 0,i, x 0,i+,..., x 0,n ) (ϕ i (x 0,i + h i ) ϕ i (x 0,i )) i D i f(c i )h i. i.2. TÉTEL. Legyen D R n nyílt. Tegyük fel, hogy az f : D R m függvény minden koordináta függvényének minden parciális deriváltja létezik az x 0 D pont egy környezetében. (a) Ha a parciális deriváltak korlátosak x 0 x 0 -ban. egy környezetében, akkor f folytonos (b) Ha a parciális deriváltak folytonosak x 0 -ban, akkor f differenciálható x 0 -ban. 4

5 Bizonyítás. Mindkét állítást elengedő m esetre igazolni, mert f f 2 ( ) ( folytonos f x. differenciálható 0 ban j {,..., m} : f j f n folytonos differenciálható x 0 ban. Legyen r > 0 úgy, hogy K(x 0, r) D és f : D R minden parciális deriváltja létezik K(x 0, r) pontjaiban. (a) Tegyük fel, hogy i {,..., n} : x K(x 0, r) : D i f(x) M R. Ekkor h R n, h < r esetén az előző tétel szerint c i K(x 0, r) (i,..., n) úgy, hogy ) f(x 0 + h) f(x 0 ) D i f(c i )h i i D i f(c i ) h i M h i (b) Ugyancsak az előző tétel és bizonyítást felhasználva h R n, h < r esetén c i K(x 0, r) : c i x 0 h (i,..., n) és f(x 0 +h) f(x 0 ) D i f(c i )h i i D i f(x 0 )h i + (D i f(c i ) D i f(x 0 )) h i i i A h + ω(x 0 + h) h, ahol A (D f(x 0 ) D 2 f(x 0 )... D n f(x 0 )) R n (L(R n, R)) és ω(x 0 + h) { n h i (D if(c i ) D i f(x 0 )) h i, ha h 0 [ R n ], 0, ha h 0. Mivel D i f folytonos x 0 -ban, ε > 0 : δ ]0, r] : x R n, x x 0 < δ esetén D i f(x) léteik és D i f(x) D i f(x 0 ) < ε, ezért h < δ esetén ω(x 0 + h) < ε h h < nε, tehát lim h 0 ω(x 0 + h) Megjegyzés. f a D minden pontjában létezik és f : D R m n folytonos j {,..., m} : i {,..., n} : D i f j (x) és D i f j : D R n folytonos. A továbbiakban ezen ekvivalens tulajdonságokra úgy fogunk hivatkozni, hogy f : D R m folytonosan differenciálható. 5

6 2. Differenciálási szabályok 2.. TÉTEL. [Összetett függvény differenciálhatósága]: Legyen k, n, m N, D R k nyílt, E R n nyílt, g : D E differenciálható az x 0 D pontban, f : E R m differenciálható az y 0 g(x 0 ) pontban és F (x) (f g)(x) f(g(x)) (x D). Ekkor F differenciálható az x 0 pontban és F (x 0 ) f (g(x 0 )) g (x 0 ). (3) Bizonyítás. A feltevés szerint A f (y 0 ) R m n, B g (x 0 ) R n k [tehát A B létezik és A B R m k ], továbbá léteznek ω f : E R m, ω g : D R n úgy, hogy Ezért lim ω f (y) ω f (y 0 ) 0, y y 0 lim ω g (x) ω g (x 0 ) 0, továbbá x x0 y E : f(y) f(y 0 ) A(y y 0 ) + y y 0 ω f (y) és x D : g(x) g(x 0 ) B(x x 0 ) + x x 0 ω g (x). y 0 {}}{ F (x) F (x 0 ) f(g(x)) f( g(x 0 )) A(g(x) g(x 0 )) + g(x) g(x 0 ) ω f (g(x)) A [B(x x 0 ) + x x 0 ω g (x)] + B(x x 0 ) + x x 0 ω g (x) ω f (g(x)) A B(x x 0 ) + x x 0 ω(x) (x D), ahol ω : D R m úgy, hogy ω(x 0 ) 0 és x D \ {x 0 } : ω(x) A ω g (x) + x x 0 B(x x 0) + ω g (x) ω f(g(x)), valamint lim A ω g (x) A ω g (x 0 ) A 0 0, x x0 x x 0 B(x x 0) x x 0 B x x 0 B és lim x x0 ω g (x) 0, ezért δ > 0 : x x 0 δ esetén x x 0 B(x x 0) + ω g (x) B + ω g(x) B +, illetve g folytonos x 0 -ban, mert differenciálható x 0 -ban és ω f folytonos y 0 g(x 0 )-ban, így ω f g folytonos x 0 -ban, ezért lim ω f (g(x)) ω f (g(x 0 )) 0, tehát lim ω(x) 0 ( R m ). x x 0 x x0 6

7 2.2. Következmény. (lánc-szabály) Az előző tétel feltétele és jelölései mellett D i F j (x 0, x 02,... x 0,k ) D l f j (g (x 0,..., x 0,k ), g 2 (x 0,..., x 0,k ),... g n (x 0,..., x 0,k )) D i g l (x 0,..., x 0,k ) l (i,..., k ; j,..., m). Speciális eset: k m esetén F (x 0 ) D l f(g (x 0 ), g 2 (x 0 ),..., g n (x 0 )) g l(x 0 ). l 2.3. TÉTEL. Ha D R n nyílt és az f, g : D R m, λ : D R függvények differenciálhatóak az x 0 D pontban, akkor f+g, f, g, λf, illetve λ(x) 0 (x D) esetén λ f is differenciálható x 0-ban, továbbá (f + g) (x 0 ) f (x 0 ) + g (x 0 ) ; (λf) (x 0 ) f(x 0 ) λ (x 0 ) + λ(x 0 ) f (x 0 ) ; ) (x 0 ) ( λ f [λ(x 0 )] 2 [λ(x 0)f (x 0 ) f(x 0 ) λ (x 0 )] ; f, g (x 0 ) [g(x 0 )] T f (x 0 ) + [f(x 0 )] T g (x 0 ), azaz ( m ) m [ f j g j (x 0 ) gj (x 0 )f j(x 0 ) + f j (x 0 )g j(x 0 ) ]. j j Bizonyítás. A szabályok igazolhatók közvetlenül a definíció (illetve a lineáris approximálhatóság) alapján, vagy visszavezethetők az előző tételre. Ez, utóbbi módszer céljából legyen Φ : R 2m R m R m R m úgy, hogy ϕ : R m+ R m úgy, hogy Φ(x, y) x + y ((x, y) R m R m ), ϕ(x, λ) λx ((x, λ) R m R), ψ : R m (R \ {0}) R m úgy, hogy ψ(x, λ) λ x ((x, λ) Rm (R \ {0})), illetve Ω : R 2m R m R m R úgy, hogy Ω(x, y) x, y ((x, y) R m R m ). 7

8 Ekkor Φ (x, y) ( ) (f + g) (x 0 ) [Φ (f, g)] f (x 0 ) Φ (f(x 0 ), g(x 0 )) (x 0 ) g f (x (x 0 ) 0 ) + g (x 0 ) ; λ x ϕ 0 λ... 0 x 2 (x, λ) λ x m ( λ f (λf) (x 0 ) (ϕ (f, λ)) (x 0 ) ϕ (f(x 0 ), λ(x 0 )) λ(x 0 ) E m m f (x 0 ) + f(x 0 ) λ (x 0 ) ; λ x ψ (x, λ) 0 λ... 0 x 2 λ λ x m ) (x 0 ) (ψ (f, λ)) (x 0 ) ψ (f(x 0 ), λ(x 0 )) ( f (x 0 ) λ (x 0 ) ( f (x 0 ) λ (x 0 ) (λ(x 0 )) 2 [λ(x 0) E m m f (x 0 ) f(x 0 ) λ (x 0 )] ; ) ) Ω (x, y) (y T, x T ) ( ) f f, g (x 0 ) Ω (f(x 0 ), g(x 0 )) (x 0 ) g [g(x (x 0 ) 0 )] T f (x 0 ) + [f(x 0 )] T g (x 0 ). 3. Középérték-tétel és következménye 3.. TÉTEL. (Lagrange): Ha D R n nyílt halmaz és x, y D úgy, hogy x y, valamint D tartalmazza az x és y pontokat összekötő I(x, y) szakaszt, továbbá az f : D R differenciálható, akkor u I(x, y) \ {x, y} : f(y) f(x) f (u)(y x). I(x,y) Bizonyítás. {}}{ Legyen ϕ(t) f[ ( t)x + ty] (t [0, ]). Ekkor ϕ : [0, ] R differenciálható és ϕ (t) f [( t)x + ty] (y x) (t [0, ]. 8

9 Az egyváltozós Lagrange-féle középérték- tételből következik, hogy ξ ]0, [ úgy, hogy f(y) f(x) ϕ() ϕ(0) ϕ (ξ)( 0) ϕ (ξ) f [( ξ)x+ξy](y x) f (u)(y x), ahol u ( ξ)x + ξy I(x, y) \ {x, y} Következmény. Ha D R n nyílt és f : D R m folytonosan differenciálható, akkor minden K D kompakt, konvex halmazhoz L K R úgy, hogy x, y K : [,,f lokálisan Lipschitz. ] f(y) f(x) L K x y. Bizonyítás. Legyen j {,..., m}. Mivel K kompakt és f j : D R n folytonos, ezért f j korlátos a K halmazon, azaz létezik M j R úgy, hogy u K : f j(u) M j, tehát x, y K : f j (y) f j (x) f j(u j )(y x) f j(u j ) y x M j y x, tehát illetve f(y) f(x) max{m,..., M m } y x, f(y) f(x) m max{m,..., M m } y x L }{{} K y x. L K 9

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése 2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris

A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris Többváltozós függvények differenciálhatósága f(x) f(x Az egyváltozós függvények differenciálhatóságát a lim 0 ) x x0 x x 0 függvényhatárértékkel definiáltuk, s szemléletes jelentése abban mutatkozott meg,

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0 I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév

Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév Klkulus II. Beugró kérdések és válszok 2012/2013 s tnév II. félév 1. Legyen ], b[ R nemüres, nyílt intervllum, f :], b[ R függvény. Hogyn vn értelmezve z f függvény primitív függvénye? Válsz. Legyen ],

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

MATEMATIKA 2. dolgozat megoldása (A csoport)

MATEMATIKA 2. dolgozat megoldása (A csoport) MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f

Részletesebben

Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész

Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész Mintakérdések a 2. ZH elméleti részéhez. Nem csak ezek a kérdések szerepelhetnek az elméleti részben, de azért hasonló típusú kérdések

Részletesebben

Többváltozós, valós értékű függvények

Többváltozós, valós értékű függvények Többváltozós függvények Többváltozós, valós értékű függvények Többváltozós függvények Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza,

Részletesebben

Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar

Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Szélsőértékszámítás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Szélsőértékszámítás 1 / 21 2. SZÉLSOÉRTÉKSZÁMÍTÁS 2.1 A szélsőérték fogalma, létezése Azt

Részletesebben

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér

Részletesebben

Többváltozós, valós értékű függvények

Többváltozós, valós értékű függvények TÖ Többváltozós, valós értékű függvények TÖ Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza, n változós függvényeknek nevezzük. TÖ Példák:.

Részletesebben

Határozatlan integrál

Határozatlan integrál Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. március 17. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Differenciálegyenlet rendszerek

Differenciálegyenlet rendszerek Differenciálegyenlet rendszerek (A kezdeti érték probléma. Lineáris differenciálegyenlet rendszerek, magasabb rendű lineáris egyenletek.) Szili László: Modellek és algoritmusok ea+gyak jegyzet alapján

Részletesebben

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon. 215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk

Részletesebben

2014. november Dr. Vincze Szilvia

2014. november Dr. Vincze Szilvia 24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata

Részletesebben

Kétváltozós függvények differenciálszámítása

Kétváltozós függvények differenciálszámítása Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben

Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2

Részletesebben

Differenciálszámítás normált terekben

Differenciálszámítás normált terekben Eötvös Loránd Tudományegyetem Természettudományi Kar Kapui Dóra Differenciálszámítás normált terekben Szakdolgozat Matematika BSc, elemz szakirány Témavezet : Tarcsay Zsigmond Alkalmazott Analízis és Számításmatematikai

Részletesebben

Kalkulus 2., Matematika BSc 1. Házi feladat

Kalkulus 2., Matematika BSc 1. Házi feladat . Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben

Részletesebben

Diszkrét Matematika MSc hallgatók számára. 4. Előadás

Diszkrét Matematika MSc hallgatók számára. 4. Előadás Diszkrét Matematika MSc hallgatók számára 4. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor 2012. február 28. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét

Részletesebben

GPK M1 (BME) Interpoláció / 16

GPK M1 (BME) Interpoláció / 16 Interpoláció Matematika M1 gépészmérnököknek 2017. március 13. GPK M1 (BME) Interpoláció 2017 1 / 16 Az interpoláció alapfeladata - Példa Tegyük fel, hogy egy ipari termék - pl. autó - előzetes konstrukciójának

Részletesebben

2. sillabusz a Többváltozós függvények kurzushoz

2. sillabusz a Többváltozós függvények kurzushoz Az implicitfüggvény-tétel 2. sillabusz a Többváltozós függvények kurzushoz Mi az hogy sillabusz? Ez egy olyan iromány ami segédanyagnak készült. Vázlatos pontatlan (szándékoltan) hiányos. Segíti a tanulást

Részletesebben

1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek

1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek 7 Elsőrendű lineáris differenciálegyenlet-rendszerek Legyen n N, I R intervallum és A: I M n n (R), B: I R n folytonos függvények, és tekintsük az { y (x) = A(x)y(x) + B(x) y(ξ) = η kezdeti érték problémát,

Részletesebben

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők

Részletesebben

1. Az integrál tégla-additivitása

1. Az integrál tégla-additivitása Többváltozós üggvények dierenciál- integrálszámítása 9. előadás I. rze) Boros Zoltán 019. április 16. Az alábbiakban k N rögzített. 1. Az integrál tégla-additivitása 1.1. TÉTEL. Legyen I, T I k úgy, hogy

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében? Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L

Részletesebben

f(x) a (x x 0 )-t használjuk.

f(x) a (x x 0 )-t használjuk. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy

Részletesebben

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?

Részletesebben

Nemlineáris programozás 2.

Nemlineáris programozás 2. Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,

Részletesebben

Dierenciálhatóság. Wettl Ferenc el adása alapján és

Dierenciálhatóság. Wettl Ferenc el adása alapján és 205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási

Részletesebben

Matematika I. NÉV:... FELADATOK:

Matematika I. NÉV:... FELADATOK: 24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

A lineáris programozás alapjai

A lineáris programozás alapjai A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Közönséges differenciálegyenletek

Közönséges differenciálegyenletek Debreceni Egyetem Természettudományi és Technológiai Kar Közönséges differenciálegyenletek Gselmann Eszter Debrecen, 2011 Tartalomjegyzék 1. Differenciálegyenletek 4 1.1. Differenciálegyenletek osztályozása................................

Részletesebben

4. Előadás: Erős dualitás

4. Előadás: Erős dualitás Optimalizálási eljárások/operációkutatás MSc hallgatók számára 4. Előadás: Erős dualitás Előadó: Hajnal Péter 2018. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét d

Részletesebben

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 3. Fuzzy aritmetika Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Intervallum-aritmetika 2 Fuzzy intervallumok és fuzzy számok Fuzzy intervallumok LR fuzzy intervallumok

Részletesebben

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1 Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados

Részletesebben

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1 Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

2012. október 2 és 4. Dr. Vincze Szilvia

2012. október 2 és 4. Dr. Vincze Szilvia 2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar 2014. február 16. Losonczi László, Pap Gyula (DE, KTK) Gazdasági matematika II. 2014. február

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem Debrecen, 2007/8 tanév, II. félév Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2007/8 tanév, II. félév 1 / 186 Félévközi

Részletesebben

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Lagrange-féle multiplikátor módszer és alkalmazása

Lagrange-féle multiplikátor módszer és alkalmazása Eötvös Loránd Tudományegyetem Természettudományi Kar Nemesné Jónás Nikolett Lagrange-féle multiplikátor módszer és alkalmazása Matematika BSc, Matematikai elemz szakirány Témavezet : Szekeres Béla János,

Részletesebben

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék,   Wettl Ferenc (BME) Utolsó el adás / 20 Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális

Részletesebben

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények 6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Haladó lineáris algebra

Haladó lineáris algebra B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc

Részletesebben

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva? = komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve

Részletesebben

Differenciálegyenletek numerikus megoldása

Differenciálegyenletek numerikus megoldása a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens

Részletesebben

Gazdasági matematika I.

Gazdasági matematika I. Gazdasági matematika I. Losonczi László, Pap Gyula Debreceni Egyetem, Informatikai Kar I. félév Előadó: Hajdu Lajos Losonczi László, Pap Gyula (DE) Gazdasági matematika I. I. félév 1 / 124 Félévközi kötelező

Részletesebben

Differenciálegyenletek

Differenciálegyenletek DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)

Részletesebben

Gazdasági matematika I.

Gazdasági matematika I. Gazdasági matematika I. Losonczi László, Pap Gyula Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László, Pap Gyula (DE) Gazdasági matematika I. 1 / 123 Kötelező irodalom: LOSONCZI LÁSZLÓ,

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

KÉMIAI REAKCIÓRENDSZEREK

KÉMIAI REAKCIÓRENDSZEREK KÉMIAI REAKCIÓRENDSZEREK KINETIKAI TULAJDONSÁGAI Boros Balázs ELTE, Matematikai Intézet Formális reakciókinetikai szeminárium (BME) 2008. október 7. és 14. BOROS BALÁZS (ELTE, MATINT) KÉMIAI REAKCIÓRENDSZEREK

Részletesebben

Szemidenit optimalizálás és az S-lemma

Szemidenit optimalizálás és az S-lemma Szemidenit optimalizálás és az S-lemma Pólik Imre SAS Institute, USA BME Optimalizálás szeminárium 2011. október 6. Outline 1 Egyenl tlenségrendszerek megoldhatósága 2 Az S-lemma 3 Szemidenit kapcsolatok

Részletesebben

Differenciál - és integrálszámítás. (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár. Meghirdető tanszék: Analízis Tanszék

Differenciál - és integrálszámítás. (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár. Meghirdető tanszék: Analízis Tanszék Differenciál - és integrálszámítás (Óraszám: 3+3) (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár Meghirdető tanszék: Analízis Tanszék Debrecen, 2005 A tárgy neve: Differenciál- és

Részletesebben

EGYVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMíTÁSA

EGYVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMíTÁSA EGYVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMíTÁSA BÁTKAI ANDRÁS Ennek a jegyzetnek az elsődleges célja, hogy a matematika tanárszakos analízis előadást kísérje és a vizsgára készülést segítse. A jegyzet gépelési

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem Debrecen, 2009/2010 tanév, II. félév Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 1 / 180 Félévközi

Részletesebben

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának

Részletesebben

T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19.

T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19. Többváltozós függvények integrálja. 3. rész. 2018. április 19. Kettős integrál Kettős integrál téglalap alakú tartományon. Ismétlés Ha = [a, b] [c, d] téglalap-tartomány, f : I integrálható függvény, akkor

Részletesebben

Óravázlatok: Matematika 2.

Óravázlatok: Matematika 2. Óravázlatok: Matematika 2. Bartha Ferenc készültség: March 4, 2003 1. VEKTOR-SKALÁR FÜGGVÉNYEK DIFFERENCIÁLÁSA Legyen a továbbiakban M R n nyílt halmaz és f : M R valós függvény, x (x 1,.., x n ) M Ha

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

KALKULUS INFORMATIKUSOKNAK II.

KALKULUS INFORMATIKUSOKNAK II. Írta: GYŐRI ISTVÁN PITUK MIHÁLY KALKULUS INFORMATIKUSOKNAK II. Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Győri István, Dr. Pituk Mihály, Pannon Egyetem Műszaki Informatikai Kar Matematika Tanszék

Részletesebben

DIFFERENCIÁLÁS, GRADIENS VEKTOR, HESSE MÁTRIX, LÁNCSZABÁLY,

DIFFERENCIÁLÁS, GRADIENS VEKTOR, HESSE MÁTRIX, LÁNCSZABÁLY, DIFFERENCIÁLÁS, GRADIENS VEKTOR, HESSE MÁTRIX, LÁNCSZABÁLY, IMPLICIT FÜGGVÉNY TÉTEL DR NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-B-0//KONV-00-000

Részletesebben

Tartalomjegyzék. 1. Előszó 1

Tartalomjegyzék. 1. Előszó 1 Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

Metrikus terek, többváltozós függvények

Metrikus terek, többváltozós függvények Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

Gazdasági matematika 1 Tantárgyi útmutató

Gazdasági matematika 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Emberi erőforrások, gazdálkodási és menedzsment, pénzügy és számvitel szakok nappali tagozat Gazdasági matematika 1 Tantárgyi útmutató 2016/17 tanév I. félév 1/5 Tantárgy megnevezése

Részletesebben

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál

Részletesebben

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j) Matematika A3 gyakorlat Energetika és Mechatronika BSc szakok, 016/17 ősz 10 feladatsor: Magasabbrendű lineáris differenciálegyenletek (megoldás) 1 Határozzuk meg az e λx, xe λx, x e λx,, x k 1 e λx függvények

Részletesebben