Lagrange-féle multiplikátor módszer és alkalmazása

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Lagrange-féle multiplikátor módszer és alkalmazása"

Átírás

1 Eötvös Loránd Tudományegyetem Természettudományi Kar Nemesné Jónás Nikolett Lagrange-féle multiplikátor módszer és alkalmazása Matematika BSc, Matematikai elemz szakirány Témavezet : Szekeres Béla János, tudományos segédmunkatárs MTA-ELTE Numerikus Analízis és Nagy Hálózatok Kutatócsoport Budapest, 2017

2 Köszönetnyilvánítás Ezúton szeretnék köszönetet mondani témavezet mnek, Szekeres Béla Jánosnak, aki felkeltette érdekl désem a téma iránt, és segítségével, hasznos tanácsaival hozzájárult a szakdolgozatom elkészüléséhez. Köszönettel tartozom a családomnak az egyetemi éveim alatt nyújtott kitartó támogatásukért. 2

3 Tartalomjegyzék 1. Bevezetés 4 2. Szükséges el ismeretek Parciális deriváltak és széls értékek kapcsolata Feltételes széls érték probléma A Lagrange-multiplikátor módszer alkalmazásai Többváltozós függvény, egy feltétel Háromváltozós függvény, két feltétel Feltételek egyenl tlenségként További gyakorlati példák Maximális terméshozam Henger felületének minimalizálása Maximális entrópia számítása

4 1. fejezet Bevezetés A széls érték feladatok fontos gyakorlati alkalmazása a matematikai analízisnek. Szakdolgozatom témája ezzel kapcsolatos, feltételes széls értékek keresése Lagrange-multiplikátor módszerrel. A dolgozat els fejezetében áttekintem az elmélethez kapcsolódó deníciókat és tételeket a [1] munka alapján. A második fejezetben egyszer példákon keresztül mutatom be a Lagrange-multiplikátor módszer alkalmazását. A harmadik fejezetben pedig néhány gyakorlatban is el forduló alkalmazást vizsgálok: terméshozam optimalizálása adott költség- és hozamfüggvények mellett, adott térfogatú henger felületének minimalizálása, illetve entrópiafüggvény maximalizálása. 4

5 2. fejezet Szükséges el ismeretek 2.1. Parciális deriváltak és széls értékek kapcsolata Deníció. Az f függvénynek lokális minimuma (maximuma) van az a R n pontban, ha van a-nak olyan K környezete, amiben f értelmezve van, és minden x K-ra: f(a) f(x) (illetve(f(a) f(x)). Ebben az esetben az f függvény lokális minimumhelyének (maximumhelyének) nevezzük az a R n pontot Megjegyzés. Ha minden a-n kívüli x K-ra f(x) < f(a) (illetve f(x) > f(a)), akkor szigorúan lokális maximumról, maximumhelyr l (illetve szigorúan lokális minimumról, minimumhelyr l) beszélünk. Ezeket közösen lokális széls értéknek, széls értékhelynek nevezzük Tétel. Ha az f függvénynek az a R n pontban lokális széls értéke van, és létezik mindegyik parciális deriváltja a-ban, akkor ezek a parciális deriváltak elt nnek ebben az a pontban, azaz: i f(a) = 0, i = 1...n-re Tétel. Legyen A R n halmaz korlátos és zárt, f : A R folytonos. Tegyük fel, hogy f-nek A belsejének minden pontjában léteznek a parciális deriváltjai. Ekkor f a maximumát (vagy minimumát) A határán, vagy pedig olyan bels pontban veszi fel, ahol a parciális deriváltak nullák. 5

6 Deníció. Jacobi-mátrixnak nevezzük egy n-változós függvény els rend parciális deriváltjait tartalmazó mátrixot. J = f 1 x f m x Deníció. Legyen f(x), x D( R n ) n-változós függvény, melynek létezik minden másodrend parciális deriváltja az a D pontban. Hesse-mátrixnak nevezzük az f függvény H f (a) = f 1 x n. f m x n. másodrend parciális deriváltjaiból alkotott négyzetes mátrixot. 2 f (a) 2 f x 2 1 x 1 x 2 (a)... 2 f x 2 x 1 (a). 2 f x n x 1 (a) 2 f (a)... x f x n x 2 (a) Feltételes széls érték probléma 2 f x 1 x n (a) 2 f x 2 x n (a). 2 f x 2 n (a). A feltételes széls érték keresésekor úgy keressük az adott f(x) függvény széls értékét, hogy közben egy, vagy több feltételnek is teljesülnie kell Tétel. (Lagrange-féle multiplikátor-módszer) Legyen f(x), x D( R n ) n- változós függvény folytonosan dierenciálható az a D pontban, továbbá g i, i = 1...m folytonosan dierenciálható függvények, melyek értelmezve vannak az a pontban, és teljesül rá, hogy g i (a) = 0, valamint g i(a) Jacobi-mátrix sorvektorai lineárisan függetlenek. Ha f- nek feltételes széls értéke van az a-ban a g 1 (x) = 0, g 2 (x) = 0,..., g m (x) = 0 feltétel mellett, akkor az L(x) = f(x) + λ 1 g 1 (x) + λ 2 g 2 (x) λ m g m (x) = f(x) + m λ i g i (x) Lagrange függvény összes parciális deriváltja elt nik az a pontban: x i (a) = 0, (i = 1, 2... n). Ez a Lagrange-féle multiplikátor módszer szükséges feltétele. i= Megjegyzés. A tételben szerepl λ i skalárok a Lagrange-multiplikátorok, amelyek közül legalább az egyik nem nulla. 6

7 A bizonyítás el tt szükséges az egyváltozós implicitfüggvény-tétel ismerete: Tétel. (Egyváltozós implicitfüggvény-tétel) Tegyük fel, hogy a kétváltozós, valós érték f függvény elt nik az (a, b) R 2 pontban, és folytonos az (a, b) egy környezetében. Tegyük fel, hogy a 2 f parciális derivált létezik, véges és nullától különböz az (a, b) pont egy környezetében. Ekkor léteznek olyan δ és ɛ pozitív számok, hogy: 1. Minden x (a δ, a + δ)-hoz létezik egyetlen ϕ(x) (b ɛ, b + ɛ) szám, melyre f(x, ϕ(x)) = 0, továbbá 2. az így deniált ϕ függvény folytonos az (a δ, a + δ) intervallumban. A Tétel bizonyítása. A bizonyítást n = 2, m = 1 és feltételes minimum esetén végezzük, de a feltételes maximum esete is hasonlóan gondolható meg. A feltételek alapján a g := g 1 : R 2 R függvény folytonosan dierenciálható, és az a := (a 1, a 2 ) pontban g(a 1, a 2 ) = 0. Ebben a pontban a rangfeltétel rang( 1 g(a 1, a 2 ), 2 g(a 1, a 2 )) = 1. Ezért feltehetjük, hogy 2 g(a 1, a 2 ) 0. Ekkor az egyváltozós implicitfüggvény-tétel szerint létezik a 1 -nek K(a 1 ) és a 2 -nek K(a 2 ) környezete, és létezik olyan ϕ : K(a 1 ) K(a 2 ) dierenciálható függvény, amelyre és ϕ(a 1 ) = a 2. Ez azt jelenti, hogy minden x K(a 1 ) esetén g(x, ϕ(x)) = 0, H = { (x, y) R 2 g(x, y) = 0 } { (x, ϕ(x)) R 2 x K(a 1 ) } =: H. (2.1) Azaz g(a 1, ϕ(a 1 )) = 0, melyet deriválva teljesül, hogy 1 g(a 1, a 2 ) + ϕ (a 1 ) 2 g(a 1, a 2 ) = 0. (2.2) Mivel az f függvény H halmazra vett lesz kítésének lokális minimuma van az (a 1, a 2 ) H pontban, ezért létezik r > 0, hogy az (a 1, a 2 ) pont K r (a 1, a 2 ) környezetére minden (x, y) K r (a 1, a 2 ) H esetén f(x, y) f(a 1, a 2 ). (2.3) 7

8 A (2.1) alapján x K(a 1 ) esetén (x, ϕ(x)) H H. Felhasználva, hogy ϕ folytonos K(a 1 )-en, meggondolható, hogy létezik olyan K (a 1 ) K(a 1 ) környezet, hogy minden x K (a 1 ) esetén (x, ϕ(x)) K r (a 1, a 2 ) H. Így (2.3)-ból következik, hogy minden x K (a 1 ) esetén f(x, ϕ(x)) f(a 1, ϕ(a 1 )) = f(a 1, a 2 ). Ez azt jelenti, hogy a h : K (a 1 ) R, h(x) := f(x, ϕ(x)) valós függvénynek lokális minimuma van az a 1 pontban. A h függvény dierenciálható (dierenciálható függvények kompozíciója), ezért h (a 1 ) = 0. A kompozíciófüggvény deriválási szabályai alapján h (x) = f (x, ϕ(x)) (x, ϕ (x)) = = ( 1 f(x, ϕ(x)), 2 f(x, ϕ(x))), (1, ϕ(x)) = = 1 f(x, ϕ(x)) + ϕ (x) 2 f(x, ϕ(x)). Ezért h (a 1 ) = 1 f(a 1, a 2 ) + ϕ (a 1 ) 2 f(a 1, a 2 ) = 0. (2.4) Legyen λ R tetsz leges szám, és szorozzuk meg λ-val a (2.2) egyenl séget, majd adjuk össze a (2.4) egyenl séggel, így nyerjük az alábbi azonosságot 1 f(a 1, a 2 ) + λ 1 g(a 1, a 2 ) + ϕ (a 1 ) [ 2 f(a 1, a 2 ) + λ 2 g(a 1, a 2 )] = 0. (2.5) A λ szám megválasztható úgy, hogy 2 f(a 1, a 2 ) + λ 2 g(a 1, a 2 ) = 0 (2.6) ( a λ := ) 2f(a 1, a 2 ) 2 g(a 1, a 2 ) megfelel. Ha a λ esetén (2.5)-ben a szögletes zárójelben lév tényez 0, akkor 1 f(a 1, a 2 ) + λ 1 g(a 1, a 2 ) = 0 (2.7) 8

9 is teljesül. Összesítve az eredményeket, azt kapjuk, hogy ha az f függvénynek feltételes minimuma van a g = 0 feltétel mellett, az a = (a 1, a 2 ) pontban, akkor az F := f + λ g függvénynek az els változó szerinti parciális deriváltja 0 (ezt mutatja (2.7)), és a második változó szerinti parciális deriváltja is 0 (ezt mutatja (2.6)). Tehát F (a) = F (a 1, a 2 ) = ( 1 F (a 1, a 2 ), 2 F (a 1, a 2 )) = Tétel. (Elégséges feltétel) A Tétel feltételei mellett az L Lagrange-függvény Hesse-mátrixa az a pontban pozitív denit, akkor az f függvénynek lokális minimuma van az a pontban, a g i = 0, i = 1...m feltétel mellett, ha pedig az L Lagrange-függvény Hessemátrixa az a pontban negatív denit, akkor az f függvénynek lokális minimuma van az a pontban a g i = 0, i = 1...m feltétel mellett. 9

10 3. fejezet A Lagrange-multiplikátor módszer alkalmazásai 3.1. Többváltozós függvény, egy feltétel Példa. Határozzuk meg az f(x, y) = x 2 +y 2 függvény széls értékhelyét a g(x, y) = x + y = 10 feltétel mellett. Els ként felírjuk a Lagrange-függvényt, majd meghatározzuk az els rend parciális deriváltakat, amiket egyenl vé teszünk nullával. L(x, y) = x 2 + y 2 + λ(x + y 10). = 2x + λ = 0, x (3.1) = 2y + λ = 0. y (3.2) A (3.1) és (3.2) egyenletekb l lehetséges széls érték helyeket kapunk, de ezek még függnek a bevezetett λ multiplikátortól: x = λ 2, (3.3) y = λ 2. (3.4) 10

11 A (3.3), (3.4) formulákból következik, hogy λ = x = y, továbbá az x+y = 10 feltétel 2 miatt x = y = 5. Az f(x, y) = x 2 + y 2 függvény széls értékei az x + y = 10 feltétel mellett az (x, y) = (5, 5) pont, aminek értéke: f(5, 5) = = = 50. Ez az érték a függvény minimuma, mivel a feltételnek megfelel (x, y) pontpárokat behelyettesítve 50-nél nagyobb értékeket kapunk Példa. Határozzuk meg az f(x, y) = x+2y függvény széls értékhelyét a g(x, y) = x 2 + y 2 = 4 feltétel mellett. Els ként felírjuk a Lagrange-függvényt, majd meghatározzuk az els rend parciális deriváltakat. L(x, y, λ) = x + 2y + λ(x 2 + y 2 4). Els rend parciális deriváltak, amiket egyenl vé teszünk nullával: x = 1 + 2xλ = 0, (3.5) 11

12 y = 2 + 2yλ = 0. (3.6) Az (3.5) és (3.6) egyenletekb l lehetséges széls értékhelyeket kapunk, de ezek még függnek a bevezetett λ multiplikátortól: x = 1 2λ, (3.7) y = 1 λ. (3.8) A (3.7) és (3.8) értékeket a feltételbe visszahelyettesítve kapunk a λ-ra megfelel értékeket, amiket a parciális deriváltakba beírva megkapjuk a keresett (x, y) helyet: λ 1 = 5 4, (3.9) λ 2 = 5 4. (3.10) Mindkét λ esetén vissza kell helyettesítenünk a parciális deriváltakba, hogy az összes lehetséges széls értékhelyet megkapjuk: λ 1 = 5 4 esetén: x = 0, (3.11) y = 0. (3.12) 4 A (3.11) és (3.12) egyenletekb l álló egyenletrendszert megoldva kapjuk az egyik lehetséges széls érték helyet: (x 1, y 1 ) = ( ) 5 λ 2 = esetén hasonlóan járunk el: 4 ( 2 5, 4 5 ). ( ) x = 0, (3.13) 4 12

13 ( ) y = 0. (3.14) 4 A (3.13) és (3.14) egyenletekb l álló egyenletrendszert megoldva kapjuk a másik lehetséges széls értékhelyet: (x 2, y 2 ) = ( 2 4 5, ). 5 Az ( f(x, y) = x + 2y függvénynek a g(x, y) = x 2 + y 2 = 4 feltétel mellett az (x 1, y 1 ) = 2, 4 ) ( ) 2 4 és (x 2, y 2 ) = 5, pontokban van széls értéke, aminek értékei: (x 1, y 1 ) esetében minimuma van: f ( 2, 4 ) ( ( )) 2 4 = + 2 = 10 4, (x 2, y 2 ) esetében maximuma van: f ( ) ( ( )) , = = 10 4,

14 Példa. Határozzuk meg az f(x, y) = xy függvény széls értékét a g(x, y) = 3x 2 + y 2 = 6 feltétel mellett. Ahogyan eddig, el ször a Lagrange-függvényt írjuk fel, majd kiszámoljuk a parciális deriváltakat: L(x, y) = xy + λ(3x 2 + y 2 6). (3.15) = y + λ6x = 0, x (3.16) = x + λ2y = 0. y (3.17) A (3.16) és a (3.17) egyenleteket rendezve kapjuk az alábbi összefüggést: y = λ6x, (3.18) x = λ2y. (3.19) Felhasználva a (3.19) formulát, y-ra a következ egyenl séget kapjuk: y = 12λ 2 y. (3.20) Ha y nulla, akkor a (3.19) miatt x-nek is nullának kell lennie, de ez nem teljesítené a feltételt, így y 0. Tehát a (3.20) egyenl ség csak akkor teljesülhet, ha 12λ 2 = 1. Helyettesítsük be a (3.18) egyenletet a feltételbe, majd hozzuk megfelel alakra: 3x 2 + ( λ6x) 2 = 6 3x λ 2 x 2 = 6, ami ekvivalens azzal, hogy 3x 2 + 3(12λ 2 )x 2 = 6. (3.21) Mivel 12λ 2 = 1, ezért (3.21) a következ t jelenti: 3x 2 + 3x 2 = 6. (3.22) (3.22)-ból következik, hogy x = ±1, y = ± 3. Az f(x, y) = xy függvény széls értékhelye és annak értéke a g(x, y) = 3x 2 +y 2 = 6 feltétel mellett a következ k: 14

15 f(1, 3) = 3, f(1, 3) = 3 f( 1, 3) = 3, f( 1, 3) = 3 Az (x, y) = (1, 3) és a (x, y) = ( 1, 3) pontokban maximuma, míg a (x, y) = (1, 3) és a (x, y) = ( 1, 3) pontokban pedig minimuma van Példa. Keressük meg az f(x, y, z) = x 2 y 2 széls értékét a g(x, y, z) = x 2 + 2y 2 + 3z 2 = 1 feltétel mellett. A Lagrange-függvény felírása után meghatározzuk a parciális deriváltakat: L(x, y, z) = x 2 y 2 + λ(x 2 + 2y 2 + 3z 2 1). = 2x + 2λx = 0, x (3.23) = 2y + 4λy = 0, y (3.24) = 6λz = 0. z (3.25) A (3.25) egyenlet csak akkor teljesülhet, ha λ = 0 vagy z = 0. 15

16 Els ként nézzük meg azt az esetet, amikor λ = 0. Ebben az esetben, a (3.23) és a (3.24) formulákból következik, hogy x = 0 és y = 0. Így a feltételb l azt kapjuk, hogy z = ± 1 3. ( (x 1, y 1, z 1 ) = 0, 0, (x 2, y 2, z 2 ) = 1 3 ), ( 0, 0, 1 3 ). Másodszor nézzük meg azt az esetet, amikor a λ 0. A (3.25) egyenletb l következik, hogy z = 0. Mivel a z változó csak a feltételben szerepel, így további esetszétválasztásra van szükségünk. 1. Ha x = 0. Ekkor a feltételb l következik, hogy y = ± 1 2, azaz ( (x 3, y 3, z 3 ) = 0, (x 4, y 4, z 4 ) = ) 1, 0, 2 ( 0, 1 2, 0 ). 1. Ha x 0. Ebben az esetben a (3.23) egyenl ség csak akkor teljesül, ha λ = 1. Ezzel együtt (3.24) csak akkor igaz, ha y = 0. Ezeket a feltételbe visszahelyettesítve megkapjuk az utolsó két széls értékhelyet: (x 5, y 5, z 5 ) = (1, 0, 0), (x 6, y 6, z 6 ) = ( 1, 0, 0). Végeredményben kapott széls értékhelyek, és ott a függvény értéke: ( ) ( 1 f 0, 0, = 0, f 0, 0, 1 ) = 0, ( ) f 0, 0, = 1 (, f 0, 0, 1 ) = 1, f(1, 0, 0) = 1, f( 1, 0, 0) = Példa. Határozzuk meg az f(x, y, z) = x + y + 2z függvény széls értékhelyét a g(x, y, z) = x 2 + y 2 + z 2 = 3 feltétel mellett. El ször felírjuk a Lagrange függvényt a λ 16

17 multiplikátor bevezetésével, majd meghatározzuk az x, y, és z szerinti parciális deriváltakat: L(x, y, z) = x + y + 2z + λ(x 2 + y 2 + z 2 3). (3.26) = 1 + 2xλ = 0, x (3.27) = 1 + 2yλ = 0, y (3.28) z = 2 + 2zλ = 0. (3.29) A (3.27), (3.28) és a (3.29) által alkotott egyenletrendszert elvégezve kapuk egy lehetséges (x, y, z) széls érték helyet, de ezek függnek λ-tól: x = 1 2λ, (3.30) y = 1 2λ, (3.31) z = 1 λ. (3.32) Ezeket a feltételbe visszahelyettesítve kapunk λ-ra két megfelel értéket: λ 1 = 1 2, (3.33) λ 2 = 1 2. (3.34) A (3.33) és (3.34) segítségével megkapjuk a feltételt kielégít széls értékhelyeket: 1. λ 1 = 1 2 esetén: 2. λ 2 = 1 2 esetén: (x 1, y 1, z 1 ) = (x 2, y 2, z 2 ) = ( ( 2 2 2, 2, ) 2. ) 2 2 2, 2, 2. 17

18 Ebben a két pontban a függvény értéke a következ : ( 2 2 f 2, 2, ) = = 3 2, ami a függvény maximuma, ( ) f 2, 2, 2 = = 3 2, ami pedig a függvény minimuma Háromváltozós függvény, két feltétel Olyan eset is adódhat, amikor két feltételt is gyelembe kell vennünk. Ekkor két λ multiplikátort is be kell vezetnünk. A következ példában egy ilyen esetet vizsgálunk Példa. Határozzuk meg az f(x, y, z) = x 2 + 3xy + 2y 2 + 4y + 0.5z függvény széls értékét a g 1 (x, y, z) = x + y + z = 4 és a g 2 (x, y, z) = x z = 2 feltételek mellett. Els ként írjuk fel a Lagrange-függvényt, majd határozzuk meg az els rend parciális deriváltakat. L(x, y, z) = x 2 + 3xy + 2y 2 + 4x + 0.5z λ 1 (x + y + z 4) + λ 2 (x z 2). Az els rend parciális deriváltak, amiket egyenl vé teszünk nullával: x = 2x + 3y λ 1 + λ 2 = 0, (3.35) y = 3x + 4y + λ 1 = 0, (3.36) z = z + λ 1 λ 2 = 0. (3.37) A (3.35), (3.36) és a (3.37) egyenletekb l lehetséges széls értékhelyeket kapunk, de ezek még függnek a bevezetett λ 1, λ 2 multiplikátoroktól: x = λ 1 + 4λ , y = λ λ 2, z = λ 1 + λ 2. 18

19 A fenti (x, y, z) értéket a g 1 és g 2 feltételekb l álló egyenletrendszerbe visszahelyettesítjük, és így kapunk λ 1 -re, és λ 2 -re megfelel eredményeket: λ 1 = 4, λ 2 = 2. A λ 1, és λ 2 értékeket, a (3.35), (3.36) és a (3.37) parciális deriváltakba behelyettesítve megkapjuk a feltételeknek eleget tev (x, y, z) megoldásokat: x = 4, y = 2, z = 2. Az f(x, y, z) függvény széls értékhelye a g 1 és a g 2 feltétel mellett az (x, y, z) = (4, 2, 2), az értéke pedig : ( 2) + 2 ( 2) , = 30. Ez az érték a függvény minimuma, mert a feltételt kielégít pontokat behelyettesítve nagyobb értéket kapunk, például az (x, y, z) = (2, 2, 0) pont esetén a függvény értéke : , = Feltételek egyenl tlenségként Amikor a feltétel, vagy a feltételek nem egyenl ség, hanem egyenl tlenség formájában vannak megadva, a tartomány peremét, és a belsejét is külön-külön meg kell vizsgálni. Ennek oka, hogy a lehetséges széls értékek vagy a tartomány belsejében, vagy a peremen találhatók a Tétel szerint Példa. Határozzuk meg az f(x, y) = (x 1) 2 +(y 3) 2 függvény széls értékhelyét a g 1 (x, y) = x + y 2 és a g 2 (x, y) = y x feltételek mellett. Ahogyan eddig, els ként felírjuk a Lagrange-függvényt, majd meghatározzuk az els rend parciális deriváltakat, majd ezeket egyenl vé tesszük nullával: L(x, y) = (x 1) 2 + (y 3) 2 + λ 1 (x + y 2) + λ 2 (x y). 19

20 x = 2(x 1) + λ 1 + λ 2 = 0, (3.38) y = 2(y 3) + λ 1 λ 2 = 0. (3.39) Azoknál a feladatoknál, ahol egyenl tlenséggel vannak megadva a feltételek, ott több esetet kell megvizsgálnunk. A lehetséges esetek a λ multiplikátorok és a feltételek alapján kerülnek szétválasztásra: λ 1 (x + y 2) = 0, λ 2 (x y) = 0. I. eset: amikor a tartomány belsejében nézzük meg a lehetséges széls értékeket. λ 1 = 0, λ 2 = 0: Mivel mindkét λ nulla, ezért a 2(x 1) = 0 és a 2(y 3) = 0 egyenleteket megoldva kapunk x-re, és y-ra lehetséges értéket: (x, y) = (1, 3). Ezt a pontot még ellen riznünk kell, hogy teljesítik-e a feltételeket: = 4 2: nem teljesíti a feltételt, így ez a pont nem megfelel széls értékhely. II. eset: λ 1 = 0, λ 2 0: Mivel λ 2 0, ezért a második feltételb l képzett λ 2 (x y) = 0 akkor és csak akkor lehet 0, ha (x y) = 0, ami ekvivalens azzal, hogy x = y. Ezek alapján a 2(x 1) + λ 2 = 0, (y 3) λ 2 = 0. egyenletrendszert megoldva kapjuk, hogy λ 2 = 2, majd ezt felhasználva kapjuk a következ lehetséges széls értékhelyet: (x, y) = (2, 2), amit még ellen riznünk kell. A g 1 (x, y) = x + y 2 feltételbe visszahelyettesítve láthatjuk, hogy ezt a pont nem teljesíti, emiatt ez is hamis megoldás. III. eset: λ 1 0, λ 2 = 0: 20

21 Ennél az esetnél mivel λ 1 0, ezért a g 1 feltételb l indulunk ki. λ 1 (x + y 2) = 0 csak akkor lehet, ha (x + y 2) = 0, amib l következik, hogy x = 2 y. Hasonlóan a II. esethez megoldjuk a 2(x 1) + λ 1 = 0, (y 3) + λ 1 = 0 egyenletrendszert, ami után megkapjuk a λ 1 = 2 + 2y és az (x, y) = (0, 2) eredményt. Ez az (x, y) eredmény megfelel széls értékhely, mert a g 1 és a g 2 feltételt is teljesíti. Az f(x, y) = (x 1) 2 + (y 3) 2 függvénynek ebben a pontban az értéke: f(0, 2) = (0 1) 2 + (2 3) 2 = 2. IV. eset, amikor egyik λ érték sem nulla: λ 1 0, λ 2 0. Ekkor a λ 1 (x + y 2) = 0 és λ 2 (x y) = 0 egyenletekb l kiindulva kapunk x-re és y-ra megfelel értéket. Mivel egyik λ se nulla, ezért az x + y 2 = 0, x y = 0 egyenletrendszert kell megoldanunk, amib l következik, hogy x = 1, y = 1, λ 1 = 2, λ 2 = 2. A kapott (x, y) = (1, 1) értéket ellen riznünk kell. Visszahelyettesítjük a g 1 és a g 2 feltételbe, és láthatjuk, hogy mindkett t teljesíti, így az eredeti függvénynek az (1, 1) pontban is van széls értéke, aminek értéke: f(1, 1) = (1 1) 2 + (1 3) 2 = 4. Végeredményben a négy eset megvizsgálása után azt kaptuk eredményül, hogy az eredeti f(x, y) = (x 1) 2 + (y 3) 2 függvénynek a g 1 és a g 2 feltétel mellett maximuma van az (x, y) = (1, 1) pontban, értéke 4, és minimuma van az (x, y) = (0, 2) pontban, ahol az értéke 2. 21

22 4. fejezet További gyakorlati példák 4.1. Maximális terméshozam Példa. Egy gazdaság A,B,C tábláján a talajtól függ en más-más fajta m trágyát használ. Megállapították, hogy az A táblán a holdankénti terméshozam és a m trágya mennyisége közötti kapcsolatot a 4+3x 2x 2, a B táblán a 4+5y y 2, a C táblán pedig a 2 + 6z 3z 2 formulák tükrözik. Az A, B, C táblák nagysága rendre: 500, 200, és 100 hold nagyságú. A különböz m trágyafajták milyen mennyisége mellett lesz a terméshozam maximális a 3 táblán együtt, azon feltétel mellett, hogy a m trágya beszerzésére Ft áll rendelkezésre, és a m trágyák egységára 40, 30, 20 Ft? Megoldás. A feladatban a maximális terméshozamot kell meghatározni úgy, hogy teljesüljön a feltétel az adott adatok mellett. A feltétel függvénye a következ lesz: g(x, y, z) = x y z = 20000x y z (4.1) ami a következ k alapján áll össze: Az A táblára az x fajta m trágya kell, aminek az egységára 40 Ft, a tábla nagysága 500 hold, ezért: A := x. 22

23 A másik kett, B és C táblákra vonatkozó összefüggésekre hasonlóan adódik, hogy: B := y, C := z. Ezek összege legfeljebb 20000, mert a beszerzésre ekkora keretösszeg áll rendelkezésre, továbbá x, y, z 0. (4.2) Amit pedig maximalizálnunk kell, az F (x, y, z) = 500(4 + 3x 2x 2 ) + 200(4 + 5y y 2 ) + 100(2 + 6z 3z 2 ). Ez a terméshozam és a m trágyák mennyisége közti kapcsolatot adja meg, gyelembe véve a táblák nagyságát. A (4.1) és a (4.2) feltételek egy tetraédert határoznak meg. Ebben az esetben a (2.1.4) Tétel szerint meg kell néznünk, hogy a célfüggvény a tartomány belsejében vagy a peremén veszi fel a széls értékét. Amennyiben a tartomány belsejében, úgy a Tétel szerint teljesül a következ egyenletrendszer: F = x = 0, x (4.3) F = y = 0, y (4.4) F z = z = 0. (4.5) A (4.3), (4.4) és a (4.5) egyenletekb l kapunk x, y, z-re lehetséges értékeket, amit le kell ellen riznünk, hogy teljesíti-e a feltételt. x = = 3 4, y = = 2.5, z = = 1. A feltételbe visszahelyettesítve kapjuk, hogy 23

24 = , 4 ezért maximum csak a peremen lehet, ami azt jelenti, hogy a feltétel az alábbi lesz: g(x, y, z) = x y z = 20000x y z = (4.6) A maximalizálandó F függvény és a (4.6) feltételb l álló Lagrange-függvény a következ : L(x, y, z) = 500(4 + 3x 2x 2 ) + 200(4 + 5y y 2 ) + 100(2 + 6z 3z 2 )+ +λ(20000x y z 20000). Az x, y és z szerinti parciális deriváltak: = 500(3 4x) λ = 0, x (4.7) = 200(5 2y) λ = 0, y (4.8) z = 100(6 6z) λ = 0. (4.9) A (4.7), (4.8) és a (4.9) egyenletek megoldásaként kapjuk, hogy x = λ, (4.10) 4 y = λ, 2 (4.11) z = λ. 3 (4.12) Ezek az (x, y, z) értékek még függnek λ-tól, de a feltételbe visszahelyettesítve kapunk λ-ra helyes értéket, amib l már következik a feladat megoldása: ( ) ( ) ( λ λ ) 3 λ = (4.13) A (4.13) egyenletb l ekvivalens átalakításokkal kapjuk λ-ra a következ értéket: λ =

25 Ezt a λ-t felhasználva megkapjuk a helyes megoldást: x = 3 ( ) = 123 0, 345, y = 5 ( ) = 337 1, 893, z = ( ) 18 = 77 0, A feladatban kért maximális terméshozam az (x, y, z) = (0.345, 1.893, 0.865) mennyiségek mellett teljesül Henger felületének minimalizálása Példa. Határozzuk meg, hogy adott V térfogat esetén milyen sugár és magasság mellett lesz a henger felülete minimális. Kör alapú henger felülete: A = 2πr 2 + 2πrh, ahol r a sugár és h a magasság. A térfogat adott, ami legyen: V = πr 2 h. Ezek az adatok alapján fel tudjuk írni a Lagrange-függvényt, ahol A a minimalizálandó függvény, V pedig a feltétel: L(r, h) = 2πr 2 + 2πrh + λ(πr 2 h V ). Készítsük el a parciális deriváltakat, amiket egyenl vé teszünk nullával: r = 4πr + 2πh + λπrh = 0, (4.14) h = 2πr + λπr2 = 0. (4.15) Vegyük észre, hogy a (4.14) és a (4.15) formulákat átrendezve, fel tudjuk írni a kett egyenlet arányát, amib l kapunk h-ra és r-re egy helyes összefüggést: 4πr + 2πh = λπrh, 2πr = λπr 2. 25

26 Most vegyük ezek arányát, és hozzuk egyszer bb alakra: 4πr + 2πh 2πr = λπrh λπr 2, amib l következik, hogy 2r + h r = h r. (4.16) A (4.16) formulából ekvivalens átalakítással a következ összefüggést kapjuk: h = 2r. (4.17) Azaz a henger felülete minimális lesz (4.17) összefüggés esetén, ami azt jelenti, hogy a magasság kétszerese a sugárnak. Ezek után még vissza kell helyettesítünk a térfogatot meghatározó összefüggésbe, hogy r-re, és h-ra megkapjuk a megfelel értéket: V = πr 2 h = πr 2 2r. r = 3 V 2π, h = 2r = 2 3 V 2π Maximális entrópia számítása Példa. Legyen X a természetes számokon értelmezett valószín ségi változó, melynek eloszlása P {X = i} = p i, i = 0, 1, 2,... Célunk az entrópia maximalizálása, az E{X} = 13.5 várható érték feltétel mellett, ahol az entrópia függvény az alábbi formulával adott: H(X) = p i log(pi). (4.18) Továbbá felhasználjuk az alábbi két feltételt: p i = 1, (4.19) 26

27 azaz, hogy {p i } i N eloszlás, illetve a várható értéke: E {X} = i p i = 13.5, (4.20) ahol p i az i-dik elemi esemény valószín sége. A (4.18), (4.19) és (4.20) formulák segítségével fel tudjuk írni a Lagrange függvényt a feladat megoldásához: (( L = p i log(pi) + λ 1 ) ) (( ) ) i p i λ 2 p i 1. Els ként megnézzük a Lagrange-függvény p i szerinti deriváltját: p i = log(p i ) 1 + λ 1 i + λ 2 = 0, ahol i = 0, 1, 2,... (4.21) A (4.21) egyenletb l ekvivalens átalakításokkal kifejezzük p i -t: log (p i ) = 1 + λ 1 i + λ 2 e log(pi) = e λ i i }{{} e} λ2 1 {{} α i β p i = α i β, i = 0, 1, 2,... (4.22) Ezzel beláttuk, hogy {p i : i = 0, 1, 2,...} egy mértani sor, ami az eloszlásparaméterek (α és β) meghatározásánál segítségünkre lesz, ugyanis fel tudjuk használni az alábbi, mértani sor összegképletére vonatkozó azonosságot: p i = 1 (1 p). Ez alapján tudjuk kiszámolni λ 2 -re vonatkozó összefüggést: p i = α i β = β α i = A (4.19) és (4.23) egyenletek alapján ki tudjuk fejezni β-t: β (1 α). (4.23) β = 1 α. 27

28 A α eloszlásparamétert a (4.20) és (4.22) azonosságok felhasználásával számolhatjuk ki: i p i = i α i β = β = β α ( ) i α i = β α i α (i 1) = β α α i = ( 1 1 α ) ( = β α 1 (1 α) 2 ). Mivel az el z lépésben kaptuk, hogy β = 1 α, ezért végeredményben: i p i = α 1 α, azaz E {X} = α 1 α = 13.5, amib l következik, hogy α = és β = Innen adódnak a Lagrange-multiplikátorok értékei: ( ) 13.5 λ 1 = log 2 (α) = log 2, ( 14.5) 2 λ 2 = log 2 (β) = log A fentiekben azt mutattuk meg, hogy a {p i : i = 0, 1, 2...} a feltételes entrópiafüggvény széls értékhelye, azt azonban nem tudjuk, hogy minimum, vagy maximum. Ezért legyen {p i } i N eloszlás a következ alakú 1, ha i = 13 vagy i = 14, p i = 2 0, egyébként Világos, hogy erre teljesülnek a (4.19) és (4.20) feltételek, azaz {p i } i N valóban valószín ségi eloszlás és a várható értéke 13,5. Az entrópia értéke: Mivel p i logp i = 1 (log(13) + log(14)) < ( ) ( i log ( ) ) i 13.5 > 0, 14.5 hiszen az összeg minden tagja negatív. Ezzel megmutattuk, hogy az entrópia függvénynek maximuma van a {p i : i = 0, 1, 2...} széls értékhelyen. 28

29 Irodalomjegyzék [1] Laczkovich Miklós - T. Sós Vera: Analízis II., Nemzeti Tankönyvkiadó, 2007 [2] Fekete Zoltán - Zalay Miklós: Többváltozós függvények analízise, M szaki Könyvkiadó, 2007 [3] Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Bevezetés az adatbányászatba, Panem Kft, 2011 [4] matente/oktatasi%20tananyagok/ /FELTETELES_OPTIMALIZALAS.pdf [5] 29

30 30

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Szélsőérték-számítás

Szélsőérték-számítás Szélsőérték-számítás Jelölések A következő jelölések mind az f függvény x szerinti parciális deriváltját jelentik: Ugyanígy az f függvény y szerinti parciális deriváltja: f x = xf = f x f y = yf = f y

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

Opkut deníciók és tételek

Opkut deníciók és tételek Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 ) Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál

Részletesebben

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

Függvények szélsőérték vizsgálata

Függvények szélsőérték vizsgálata Eötvös Loránd Tudományegyetem Természettudományi Kar Függvények szélsőérték vizsgálata BSc Szakdolgozat Készítette: Sághy Enikő Kata Matematika BSc, Matematikai elemző szakirány Témavezető: Gémes Margit

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában 9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában Bevezet : A témakörben els - és másodfokú egyenl tlenségek megoldásának

Részletesebben

Többváltozós széls érték számítás és alkalmazásai

Többváltozós széls érték számítás és alkalmazásai Eötvös Loránd Tudományegyetem Természettudományi Kar Többváltozós széls érték számítás és alkalmazásai BSc Szakdolgozat Készítette: Prikkel Anett Matematika BSc Matematikai elemz szakirány Témavezet :

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

Függvényhatárérték és folytonosság

Függvényhatárérték és folytonosság 8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak

Részletesebben

Parciális dierenciálegyenletek

Parciális dierenciálegyenletek Parciális dierenciálegyenletek 2009. május 25. A félév lezárásaként néhány alap-deníciót és alap-példát szeretnék adni a Parciális Dierenciálegynletek (PDE) témaköréb l. Épp csak egy kis izelít t. Az alapfeladatok

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Példatár Lineáris algebra és többváltozós függvények

Példatár Lineáris algebra és többváltozós függvények Példatár Lineáris algebra és többváltozós függvények Simonné Szabó Klára. február 4. Tartalomjegyzék. Integrálszámítás.. Racionális törtek integrálása...................... Alapfeladatok..........................

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák)

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák) Feladatok megoldásokkal az ötödik gyakorlathoz Taylor polinom, szöveges szélsőérték problémák) 1. Feladat. Írjuk fel az fx) = e x függvény a = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

Függvények menetének vizsgálata, szöveges széls érték feladatok

Függvények menetének vizsgálata, szöveges széls érték feladatok Függvények menetének vizsgálata, szöveges széls érték feladatok 2015. március 29. 1. Alapfeladatok 1. Feladat: Hol növekv az f() függvény, ha deriváltja f () = ( + 2)( 5) 2? Megoldás: Egy függvény növekedését,

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 8 VIII Elsőrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk Elsőrendű differenciálegyenlet általános és partikuláris megoldása Az vagy (1) elsőrendű differenciálegyenlet

Részletesebben

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága 7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten MÁSODFOKÚ EGYENLETEK ÉS EGYENLŽTLENSÉGEK Készítette: Gábor Szakmai felel s: Gábor

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

Differenciálegyenletek megoldása próbafüggvény-módszerrel

Differenciálegyenletek megoldása próbafüggvény-módszerrel Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

y + a y + b y = r(x),

y + a y + b y = r(x), Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

Statikailag határozatlan tartó vizsgálata

Statikailag határozatlan tartó vizsgálata Statikailag határozatlan tartó vizsgálata Készítette: Hénap Gábor henapg@mm.bme.hu E E P MT A y F D E E d B MT p C x a b c Adatok: a = m, p = 1 N, b = 3 m, F = 5 N, c = 4 m, d = 5 mm. m A kés bbikekben

Részletesebben

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36 Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás

Részletesebben

Függvénytani alapfogalmak

Függvénytani alapfogalmak Függvénytani alapfogalmak 015. február 15. 1. Alapfeladatok 1. Feladat: Határozzuk meg a valós számok legb vebb részhalmazát, 4x + melyen az f(x) = hozzárendelési utasítású függvény értelmezhet! x Megoldás:

Részletesebben

Maple: Deriváltak és a függvény nevezetes pontjai

Maple: Deriváltak és a függvény nevezetes pontjai Maple: Deriváltak és a függvény nevezetes pontjai Bevezető Tudjuk, hogy a Maple könnyűszerrel képes végrehajtani a szimbólikus matematikai számításokat, ezért a Maple egy ideális program differenciál-

Részletesebben

Gazdasági Matematika I. Megoldások

Gazdasági Matematika I. Megoldások . (4.feladatlap/2) Gazdasági Matematika I. Di erenciálszámítás alkalmazásai Megoldások a) Határozza meg az f(x) x 6x 2 + függvény x 2 helyen vett érint½ojének az egyenletét. El½oször meghatározzuk a pont

Részletesebben

Szélsőérték-számítás

Szélsőérték-számítás Szélsőérték-számítás Csikó Csaba László matematika tanári szakirányos hallgató ELTE TTK Témavezető: Dr. Mezei István adjunktus ELTE TTK Alkalmazott Analízis és Számításmatematikai Tanszék Eötvös Loránd

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

Itô-formula. A sztochasztikus folyamatok egyik legfontosabb formulája. Medvegyev Péter Matematika tanszék

Itô-formula. A sztochasztikus folyamatok egyik legfontosabb formulája. Medvegyev Péter Matematika tanszék Itô-formula A sztochasztikus folyamatok egyik legfontosabb formulája Medvegyev Péter Matematika tanszék 2008 Medvegyev (Corvinus Egyetem) Itô-formula 2008 1 / 39 Az Itô-formula Theorem Ha F kétszer folytonosan

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Permutációk véges halmazon (el adásvázlat, február 12.)

Permutációk véges halmazon (el adásvázlat, február 12.) Permutációk véges halmazon el adásvázlat 2008 február 12 Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: ismétlés nélküli variáció leképezés indulási és érkezési halmaz

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék FELTÉTELES OPTIMALIZÁLÁS DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-4...B-0//KONV-00-000 jel½u projekt részeként az Európai Unió támogatásával,

Részletesebben

1. Görbe illesztés a legkisebb négyzetek módszerével

1. Görbe illesztés a legkisebb négyzetek módszerével 1 GÖRBE ILLESZTÉS A LEGKISEBB NÉGYZETEK MÓDSZERÉVEL 1. Görbe illesztés a legkisebb négyzetek módszerével Az el z gyakorlaton megismerkedtünk a korrelációs együttható fogalmával és számítási módjával. A

Részletesebben

SHk rövidítéssel fogunk hivatkozni.

SHk rövidítéssel fogunk hivatkozni. Nevezetes függvény-határértékek Az alábbiakban a k sorszámú függvény-határértékek)re az FHk rövidítéssel, a kompozíció határértékéről szóló első, illetve második tételre a KL1, illetve a KL rövidítéssel,

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 29.

Matematika szigorlat, Mérnök informatikus szak I máj. 29. Matematika szigorlat, Mérnök informatikus szak I. 2007. máj. 29. Megoldókulcs 1. Adott az S : 3x 6y + 2z = 6 sík a három dimenziós térben. (a) Írja fel egy tetszőleges, az S-re merőleges S síknak az egyenletét!

Részletesebben

25 i, = i, z 1. (x y) + 2i xy 6.1

25 i, = i, z 1. (x y) + 2i xy 6.1 6 Komplex számok megoldások Lásd ábra z = + i, z = + i, z = i, z = i z = 7i, z = + 5i, z = 5i, z = i, z 5 = 9, z 6 = 0 Teljes indukcióval 5 Teljes indukcióval 6 Az el z feladatból következik z = z = =

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC 016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Megoldások november

IV. INTEGRÁLSZÁMÍTÁS Megoldások november IV. INTEGRÁLSZÁMÍTÁS Megoldások 009. november Határozatlan integrálás.05. + C + C.06. + C + C.07. ( ( 5 5 + C.08. ( ( + 5 5 + + C.09. + ( + ln + + C.. ( + ( + ( + 5 5 + + C.. + ( + ( + ( + + ( + ( + +

Részletesebben

Bázistranszformáció és alkalmazásai 2.

Bázistranszformáció és alkalmazásai 2. Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Samu Viktória. A Helmholtz-egyenlet

Samu Viktória. A Helmholtz-egyenlet Eötvös Loránd Tudományegyetem Természettudományi Kar Samu Viktória A Helmholtz-egyenlet BSc Szakdolgozat Témavezet : Dr. Tóth Árpád Analízis Tanszék Budapest, 2014 Köszönetnyilvánítás Szeretném megköszönni

Részletesebben

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda Trigonometrikus egyenletek megoldása Azonosságok és 1 mintapélda Frissítve: 01. novermber 19. :07:41 1. Azonosságok 1.1. Azonosság. A sin és cos szögfüggvények derékszög háromszögben vett, majd kiterjesztett

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

Többváltozós függvények Jegyzet. Pap Margit, Tóth László Pécsi Tudományegyetem

Többváltozós függvények Jegyzet. Pap Margit, Tóth László Pécsi Tudományegyetem Többváltozós függvények Jegyzet Pap Margit, Tóth László Pécsi Tudományegyetem 11 Tartalomjegyzék El szó 5 1. Többváltozós függvények 7 1.1. Metrika és topológia R n -ben..............................

Részletesebben

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa Hódmezővásárhelyi Városi Matematikaverseny 2003. április 14. A 11-12. osztályosok feladatainak javítókulcsa 1. feladat Egy számtani sorozatot az első eleme és különbsége egyértelműen meghatározza, azt

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága 7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június

MIKROÖKONÓMIA I. Készítette: K hegyi Gergely és Horn Dániel. Szakmai felel s: K hegyi Gergely. 2010. június MIKROÖKONÓMIA I Készült a TÁMOP-412-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Számítógépes programok alkalmazása az analízisben

Számítógépes programok alkalmazása az analízisben Eötvös Loránd Tudományegyetem Természettudományi Kar Számítógépes programok alkalmazása az analízisben Szakdolgozat Csillagvári Dániel Matematika BSc, elemző szakirány Témavezető: Gémes Margit Analízis

Részletesebben

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál

Részletesebben

Pénzügyi matematika. Vizsgadolgozat I. RÉSZ. 1. Deniálja pontosan, mit értünk amerikai vételi opció alatt!

Pénzügyi matematika. Vizsgadolgozat I. RÉSZ. 1. Deniálja pontosan, mit értünk amerikai vételi opció alatt! NÉV: NEPTUN KÓD: Pénzügyi matematika Vizsgadolgozat I. RÉSZ Az ebben a részben feltett 4 kérdés közül legalább 3-ra kell hibátlan választ adni ahhoz, hogy a vizsga sikeres lehessen. Kett vagy kevesebb

Részletesebben

Matematika. Emelt szintű feladatsor pontozási útmutatója

Matematika. Emelt szintű feladatsor pontozási útmutatója Matematika Emelt szintű feladatsor pontozási útmutatója Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján végezze, a következők figyelembevételével. Formai kérések: Kérjük, hogy piros tollal

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n.

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n. 1. Többváltozós függvények 1. Bevezetés Ennek a fejezetnek a célja a kétváltozós függvények vizsgálata, ami során a 3-dimenziós felületeket szeretnénénk megérteni. 1. definíció. Legyen D R n. Ekkor az

Részletesebben

Alkalmazott matematika és módszerei I Tantárgy kódja

Alkalmazott matematika és módszerei I Tantárgy kódja Tantárgy neve Alkalmazott matematika és módszerei I Tantárgy kódja MTB1901 Meghirdetés féléve Kreditpont 4 Összóraszám (elm+gyak) + Számonkérés módja G Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve

Részletesebben

Többváltozós, valós értékű függvények

Többváltozós, valós értékű függvények Többváltozós függvények Többváltozós, valós értékű függvények Többváltozós függvények Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza,

Részletesebben

Komplex számok trigonometrikus alakja

Komplex számok trigonometrikus alakja Komplex számok trigonometrikus alakja 015. február 15. 1. Alapfeladatok 1. Feladat: Határozzuk meg az alábbi algebrai alakban adott komplex számok trigonometrikus alakját! z 1 = 4 + 4i, z = 4 + i, z =

Részletesebben

Többváltozós függvények Feladatok

Többváltozós függvények Feladatok Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk

Részletesebben

DIFFERENCIÁLÁS, GRADIENS VEKTOR, HESSE MÁTRIX, LÁNCSZABÁLY,

DIFFERENCIÁLÁS, GRADIENS VEKTOR, HESSE MÁTRIX, LÁNCSZABÁLY, DIFFERENCIÁLÁS, GRADIENS VEKTOR, HESSE MÁTRIX, LÁNCSZABÁLY, IMPLICIT FÜGGVÉNY TÉTEL DR NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-B-0//KONV-00-000

Részletesebben

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és 2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben