1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor"

Átírás

1 . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis konvergens, ha bármely ε > 0 esetén van olyan N(ε) küszöbindex, hogy minden n > m > N(ε) esetén n k=m+ a k < ε.. n 2. ( ) n n 3. n 2 Határozza meg a következ végtelen sorok összegét. Tétel. (Geometriai sor összege) Ha q <, akkor a q n sor konvergens, és q n = q n(n + ) 3 n 2 + 5n n 2 + 3n + 2 log ( n ) n 2 + 3n ( ) 2 n n+2 5 n 3 n n+4 3 n 5 n n+2 5 n 3 2n n+ + 3 n 5 n n + 2 n+ 4 n+3 5. ( 2) n+ 2 2n 3 Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából valamelyik összehasonlító kritériumot használva.

2 Tétel. (Majoráns, minoráns kritérium) Ha a a n és a b n pozitív tagú sorok tagjaira véges sok indext l eltekintve érvényes az a n b n egyenl tlenség, akkor (i) ha b n konvergens, akkor a n is konvergens, és (ii) ha a n divergens, akkor b n is divergens. Tétel. Ha a n, b n > 0 minden n N esetén és a n lim = L > 0, n b n akkor a a n és b n sorok közül vagy mindkett divergens vagy mindkett konvergens. 6. ( n ) ( ) 2 n n n + 3 n 2 2n n + 5 3n n(n + ) (3n ) n + 3 n 2 n n 2 n n 3 5 n sin π n A Cauchy-ekvikonvergencia tételt használva vizsgáljuk meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle ekvikonvergencia) Ha (a n ) monoton csökken és pozitív tagú sorozat, akkor a a n, 2 n a 2 n sorok közül vagy mindkett konvergens, vagy mindkett divergens. 26. n p 27. n ln 2 n 28. n ln 3 n A hányados-, illetve gyökkritériumot használva vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. 2

3 Tétel. (Gyökkritérium) Legyen (a n ) pozitív tagú sorozat, ekkor ha <, akkor a a n sor konvergens; lim n an >, hakkor a a n sor divergens; n =, akkor a a n lehet konvergens is, és divergens is. Tétel. (Hányadoskritérium) Legyen (a n ) pozitív tagú sorozat, ekkor ha a <, akkor a a n sor konvergens; n+ lim >, hakkor a a n a n sor divergens; n =, akkor a a n lehet konvergens is, és divergens is n ( 2) n n+ n n 2 n 3n + n 3 + n ( ) n + n 3. 2n e n n 3 n! 2 n + ( 2 n + n) n n n! n! n n (2n ) n Tétel. (Integrálkritérium) Legyen j N rögzített és f : [j, ) R folytonos, monoton csökken és pozitív. Ekkor a j n=j f(x) dx improprius integrál konvergens. Ekkor j f(x) dx f(n) végtelen sor akkor és csak akkor konvergens, ha az f(n) n=j j f(x) dx, illetve j f(x) dx f(n) f(j) + n=j j f(x) dx. 39. Az integrálkritériumot használva igazolja, hogy a becslést az összegére ε = 0.0 pontossággal. n 2 sor konvergens, és adjon 3

4 40. Az integrálkritériumot használva igazolja, hogy a becslést az összegére ε = 0.0 pontossággal. n 2 sor konvergens, és adjon + 5 A Leibniz kritériumot használva vizsgálja meg a következ végtelen sorokat konvergencia, illetve abszolút konvergencia szempontjából. Tétel. (Leibniz-kritérium) Ha az (a n ) pozitív tagú szigorúan monoton csökken ( 0 < a n+ < a n ) sorozatra lim n a n = 0, akkor a sor konvergens. ( ) n a n Tétel. Abszolút konvergens sor konvergens ( ) n 2n ( ) n n 3 n n 42. ( ) n 3n + n ( ) n n + 2 n ( ) n 2n 3 n + 2 Határozza meg a következ hatványsorok konvergenciatartományát. Tétel. (Cauchy-Hadamard) A a nx n hatványsor konvergenciasugara ϱ, ahol n = lim sup an = lim sup a n+ ϱ n n a n, amennyiben a fenti határérték létezik és véges. Ha a határérték végtelen, akkor a konvergenciasugár 0, ha a határérték 0, akkor a konvergenciasugár végtelen. 46. x n n2 n 47. (n + ) 5 x 2n 2n n2 x n 49. (x + 3) n n n x n n! 5. (x 3) n n 2 2 n Határozza meg a következ függvények Taylor-sorát a megadott pontok körül. 4

5 Taylor-sor. Legyen az f : I R függvény akárhányszor dierenciálható a 0-t is tartalmazó nyitott I intervallumon. A f (k) (0) x k k! hatványsort az f függvény Taylor-sorának nevezzük. Taylor-formula. Ha az f : I R függvény (n + )-szer folytonosan dierenciálható a 0-t is tartalmazó I intervallumon, akkor minden x I esetén ahol f(x) = valamely 0 és x közötti c számra. k=0 f (k) (0) x k + R n+ (x), k! R n+ (x) = f n+ (c) (n + )! xn+ Tétel. Ha a a nx n hatványsor konvergens a ( c, c) intervallumon, és f(x) = a nx n, x ( c, c), akkor az f függvény Taylor-sora a nx n, azaz f (n) (0) = a n n! (n {0,, 2,...}) 52. f(x) = x 2, x 0 = f(x) = x, x 0 = f(x) = + x 2, x 0 = f(x) = + 2x, x 0 = 56. f(x) = sin x, x 0 = Az ln ( + x) függvény Taylor-sorát felhasználva adjon becslést ln 27 értékére. 58. Határozza meg az f(x) = e x függvény 0 körüli Taylor-sorának els három tagját, majd ennek segítségével becsülje az integrált. 0 e x dx 5

6 59. A sin x függvény Taylor-sorát felhasználva adjon becslést az integrál értékére. /2 0 sin x x dx 60. Határozza meg az f(x) = e x2 /2 függvény x 0 = 0 körüli Taylor sorának els négy tagját, majd ennek segítségével adjon becslést az határozott integrálra. 2π e x2 /2 dx Tétel. Legyen a a nx n hatványsor konvergens a ( c, c) intervallumon. Deniáljuk az f : ( c, c) R függvényt a következ képpen: Ekkor a f(x) := a n x n. (n + )a n+ x n = a + 2a 2 x + 3a 3 x hatványsor is konvergens a ( c, c) intervallumon, az f függvény dierenciálható a ( c, c) intervallumon, és f (x) = (n + )a n+ x n. (x ( c, c)). Tétel. Legyen a a n hatványsor konvergens a ( c, c) intervallumon. Deniáljuk az f : ( c, c) R függvényt a következ képpen: Ekkor a f(x) := a n x n. a n n + xn+ = a 0 x + a 2 x2 + a 2 3 x hatványsor is konvergens a (-c,c) intervallumon, az f függvény folytonos a ( c, c) intervallumon, és f(x) dx = a n n + xn+ (x ( c, c)). 6

7 Tétel. Legyen a a nx n hatványsor konvergens a ( c, c) intervallumon, és legyen f(x) = a n x n, ha x ( c, c). Ha az f függvény kiterjeszthet a ( c, c] intervallumra úgy, hogy c-ben folytonos legyen, akkor a a nx n hatványsor konvergens c-ben is, és f(c) = a n c n. 6. Határozza meg az f(x) = ln ( x) függvény Taylor-sorát az a = 0 pont körül, és ezt felhasználva határozza meg a ( ) n+ n = sor összegét. 62. Határozza meg az f(x) = arctan x függvény Taylor-sorát az a = 0 pont körül, és ezt felhasználva határozza meg a sor összegét. ( ) n+ 2n + = Határozza meg az f(x) = ( + x) ln ( + x) függvény Taylor-sorát az a = 0 pont körül, és ezt felhasználva határozza meg a sor összegét. n=2 ( ) n+ n 2 n = Tétel. (Binomiális sorfejtés) Ha x <, akkor ( + x) α = ( ) α x n, n ahol ( ) α = n α(α )(α 2)... (α n + ), n! ( ) α =. 0 7

8 64. A binomiális sorfejtést használva határozza meg az f(x) = + x függvény a = 0 pont körüli Taylor-sorának els 4 tagját. A megfelel függvények binomiális sorfejtését felhasználva adjon becslést a következ kre A binomiális sor segítségével becsülje meg /2 0 3 x 2 + dx értékét. Fourier-sor Az f ( π, π) intervallumon integrálható függvény Fourier-sora f(x) a a n cos nx + b n sin nx, ahol és a n = π b n = π π π π π f(x) cos nx dx, n = 0,, 2,... f(x) sin nx dx, n =, 2,... Tétel. (Parseval-formula) Ha az f függvény négyzetesen integrálható a ( π, π) intervallumon, akkor π π ( ( a 2 0 f(x) 2 + a n cos nx + b n sin nx)) dx 0, (n ), továbbá érvényes az úgynevezett Parseval-formula: π f 2 (x) dx = a2 0 π π 2 + (a 2 n + b 2 n). 7. Adja meg az f(x) = x függvény Fourier-sorát, majd ennek segítségével számítsa ki a sor összegét. n 2 8

9 72. Határozza meg az f(x) = sgn x függvény Fourier-sorát. 2. Dierenciálegyenletek Oldja meg a következ szétválasztható változójú dierenciálegyenleteket, illetve kezdetiérték problémákat. Szétválasztható változójú dierenciálegyenlet. A h(y)y = g(x) típusú egyenletet szétválasztható változójú dierenciálegyenletnek nevezzük. 73. y = x y 74. xyy = x y = + y y tan x = y 77. y + yx x 78. xy = y 2 y 79. x 2 y + y = 2xy 80. y (x + 3) y + = 0 y( ) = 0 8. y y sin x = 0 y(π) = xy + y = y 2 y() = yy cos x = tan x y(π) = A rádium bomlási sebessége arányos a pillanatnyi rádiummennyiséggel. Ha a bomlás következtében a rádium mennyisége kereken 600 év alatt a felére csökken, a kiindulási anyag mennyiségének hány százaléka bomlik el 00 év alatt? Oldja meg a következ homogén fokszámú dierenciálegyenleteket. 9

10 Homogén fokszámú dierenciálegyenlet. Az y = f ( y x), illetve y = f ( ) x y alakú egyenleteket változóiban homogén fokszámú dierenciálegyenletnek nevezzük. Az els esetben az u = y/x, a másodikban a v = x/y helyettesítést elvégezve az u + xu = f(u), illetve v xv = g(v)v 2 szétválasztható változójú dierenciálegyenlethez jutunk. 85. xy = 2y + x 86. y y x = x2 87. x y + xy = xe y x + y xy = x 2 y = 2xy y y = x + y x y 9. x 2 y 2 + 2xyy = 0 Oldja meg a következ els rend lineáris dierenciálegyenleteket. Lineáris dierenciálegyenlet. Az y + p(x)y = q(x) alakú egyenletet lineáris dierenciálegyenletnek nevezzük. Ha q(x) = 0, akkor a lineáris dierenciálegyenletet homogénnek, különben inhomogénnek nevezzük. Tétel. Az inhomogén lineáris dierenciálegyenlet általános megoldását az y IH = y H + y p összefüggés szolgáltatja, ahol y H = cf(x) a homogén egyenlet megoldása, y p az inhomogén egyenlet egy partikuláris megoldása. Konstansvariáció. Az inhomogén egyenlet y p partikuláris megoldását y p = c(x)f(x) alakban keressük, melyet az eredeti egyenletbe visszahelyettesítve c(x)-re a következ egyenletet kapjuk c (x)f(x) = q(x). 0

11 92. y + yx x = y y x = x2 94. y xy = x y + y = e x 96. xy y x + = x 97. xy + y = x ln x 98. y cos x + y sin x = 99. (x + )y y = 3x 4 + 4x 3 Határozza meg F (F )-et, ha, Laplace-transzformáció. Az f függvény Laplace-transzformáltja: L[f](s) := Deriváltakra vonatkozó szabályok: 0 f(x)e sx dt. L[f ] = sl[f] f(0), L[f ] = s 2 L[f] sf(0) f (0). 00. F (s) = 2 s 3 0. F (s) = 3 s F (s) = s s 2 2s F (s) = 7s s 2 + 3s F (s) = 3 s 6 + 6s s F (s) = 2s + s(s )(s + 2) Oldja meg a következ kezdetiérték problémákat Laplace-transzformáció segítségével. 06. y y 2y = 0 y(0) = y 2y + 5y = 8e x y(0) = 2 y (0) = 5 y (0) = y 4y + 5y = 4e 3x y(0) = y + 2y + 5y = 3e x sin x y(0) = 0 y (0) = 7 y (0) = 3 0. y + 4y = e x cos x y(0) =. y 4y = 3e x y(0) = y (0) = 0 y (0) = 5

12 3. Többváltozós valós függvények Határozza meg a következ függvények értelmezési tartományát. 2. f(x, y) = x 3. f(x, y) = ln ( + y) 4. x y 6. f(x, y) = y 2y + y 2 x 5. f(x, y) = x 2 + y f(x, y) = sin x cos y 8. f(x, y) = y sin x 9. f(x, y) = x 2 + y 2 Határozza meg a következ határértékeket. Derékszög és polárkoordináta-rendszer kapcsolata. x = r cos ϕ r = x 2 + y 2 y = r sin ϕ tan ϕ = y x 20. xy 2 lim (x,y) (2, ) x 2 + y 4 2. sin xy lim (x,y) (0,2) x 22. 2xy y 2 lim (x,y) (0,0) x 2 + y lim (x,y) (0,0) xx2 x 2 + y xy 2 lim (x,y) (0,0) x 2 + y x + lim (x,y) (2,) y 26. xy + 2x 3y + lim (x,y) (2,) yx + x xy + 2x 3y + lim (x,y) (,) yx + x Deníció alapján határozza meg a következ függvények parciális dierenciálhányadosait a megadott helyen. 2

13 Parciális derivált. Legyen adott az f : D R 2 R függvény. értelmezve van x 0 = (x 0, y 0 ) D egy környezetében. Ha a Tegyük fel, hogy f f x (x 0) = f x(x 0 ) = f x(x f(x 0 + h, y 0 ) f(x 0, y 0 ) 0, y 0 ) := lim h 0 h határérték létezik és véges, akkor azt mondjuk, hogy f x-szerint parciálisan dierenciálható az x 0 pontban, az f x(x 0 ) értéket pedig az f x 0 pontban vett x-szerinti parciális deriváltjának nevezzük. 28. f(x, y) = xy 2, P (2, 3) 29. f(x, y) = 2x y +, P (2, ) Totális dierenciálhatóság. Legyen adott az f : D R 2 R függvény. Tegyük fel, hogy f értelmezve van x 0 D egy környezetében. Az f függvény (totálisan) dierenciálható az x 0 pontban, ha létezik A = (A, A 2 ) R 2 és a 0 egy V környezetében értelmezett ω : V R függvény úgy, hogy f(x) = f(x 0 ) + A (x x 0 ) + ω(x x 0 ) az x 0 egy környezetében lév minden x pontra, továbbá ω(x x 0 ) lim x x 0 x x 0 = 0. Ekkor az A = (A, A 2 ) R 2 vektort az f függvény x 0 pontban vett gradiensének nevezzük. Jelölés: f(x 0 ) = A. Totális dierenciálhatóság szükséges feltétele. Ha az f : D R 2 R függvény totálisan dierenciálható az x 0 = (x 0, y 0 ) D pontban, akkor mindkét változója szerint parciálisan is dierenciálható, továbbá ( f f(x 0 ) = x (x 0), f ) y (x 0) = ( f x(x 0 ), f y(x 0 ) ). Totális dierenciálhatóság elegend feltétele. Ha az x 0 = (x 0, y 0 ) D pont valamely környezetében az f : D R 2 R függvény mindkét parciális deriváltja létezik, továbbá az x 0 pontban folytonosak, akkor f(x, y) az x 0 pontban totálisan dierenciálható és ( f f(x 0 ) = x (x 0), f ) y (x 0) = ( f x(x 0 ), f y(x 0 ) ). 3

14 30. Deníció szerint mutassa meg, hogy az f(x, y) = x 2 + xy y 2 függvény totális dierenciálható, majd határozza meg a gradiens vektorát és parciális deriváltjait. 3. Határozza meg az f(x, y) = xy függvény parciális deriváltjait és totális dierenciálját az origóban. Határozza meg a következ függvények érint síkjának egyenletét az adott M pontokban. Érint sík egyenlete. Legyen az f(x) függvény dierenciálható az x 0 = (x 0, y 0 ) pontban. A z = f(x 0 ) + f(x 0 )(x x 0 ) egyenlet sík az f függvény (x 0, f(x 0 )) pontbeli érint síkja. 32. f(x, y) = x 2 + xy + 2y 2, M(, 2) 33. f(x, y) = xy 2 2x +, M(0, 4) 34. f(x, y) = x 2 y + 2x 2 y, M(2, ) Határozza meg a következ függvények u irány szerinti deriváltját a megadott P pontban. Irány menti derivált. Legyen adott az f : D R 2 R függvény. Tegyük fel, hogy f értelmezve van x 0 = (x 0, y 0 ) D egy környezetében. Az f függvény x 0 pontban vett u ( u = ) irány szerinti deriváltja az határérték, ha létezik és véges. f u = lim h 0 f(x 0 + hu) f(x 0 ) h Tétel. Ha az f : D R 2 R függvény dierenciálható az x 0 pontban, akkor f bármely u, ( u = ) irány szerint dierenciálható x 0 -ban, és f u(x 0 ) = f(x 0 ) u 35. f(x, y) = x 2 y, P (, ), u(3, 4) ( 36. f(x, y) = x 2 xy, P (, 2), u 3 5, 4 ) 5 4

15 37. f(x, y) = 3xe y2 sin x, P (0, ), u( 2, 2) 38. f(x, y) = x tan y e xy2, P (, 0), u(, ) Határozza meg a következ függvények széls értékeit. Széls érték létezésének szükséges feltétele. Ha az f(x) : D R 2 R függvény dierenciálható az x 0 pontban, és ott lokális széls értéke van, akkor f(x 0 ) = 0. Széls érték létezésének elegend feltétele. Tegyük fel, hogy az f(x) : D R 2 R függvénynek léteznek és folytonosak a másodrend parciális deriváltjai az x 0 pont egy környezetében, továbbá f(x 0 ) = 0. Legyen Ha D(x 0 ) = f xx(x 0 ) f yy(x 0 ) [f xy(x 0 )] 2 D(x 0 ) < 0, akkor x 0 nem lokális széls értékhely; D(x 0 ) > 0 és f xx(x 0 ) > 0 akkor f-nek x 0 -ban lokális minimuma van; D(x 0 ) > 0 és f xx(x 0 ) < 0 akkor f-nek x 0 -ban lokális maximuma van. 39. f(x, y) = (x ) 2 + 2y f(x, y) = y 2 + 2x 2 y + x 2 4. f(x, y) = yx 2 /2 yx + y f(x, y) = x 2 xy + y 2 2x + y 43. f(x, y) = x 4 + y 4 2x 2 + 4xy 2y f(x, y) = 2x 2 + y 2 2xy + 4x 2y Egy téglatest egy pontba összefutó éleinek a hossza 2. Mekkorák a lehet legnagyobb ilyen térfogatú téglatest élei? Oldja meg a következ egzakt dierenciálegyenleteket. 5

16 Egzakt dierenciálegyenlet. A P (x, y)dx + Q(x, y)dy = 0 egyenletet egzakt dierenciálegyenletnek nevezzük, ha P y = Q x. Ekkor van olyan U(x, y) függvény, melynek totális dierenciálja du = P (x, y)dx + Q(x, y)dy. 46. (2xy 3)dx + x 2 dy = dx 2 x y + 4 x y 2 dy = 0 x y 48. ( 2xy + ) ( ) x 2 dx + + y + x2 dy = (cos x x sin x + y)dx + (x cos y)dy = 0 Határozza meg az integrálási tartományt és írja fel a határokat a fordított sorrendben történ integráláshoz f(x, y) dy dx 5. 2 x 0 0 f(x, y) dy dx 52. x 2 0 x f(x, y) dy dx /x 0 f(x, y) dy dx Számítsa ki az alábbi kett s integrálokat. 54. D (x2 + 2y) dy dx, ahol D az x = 0 és az x + 2y = 2 egyenlet egyenesek által határolt háromszög x 0 2 /x 0 x 2 x + y dy dx 56. xy dy dx 58. x x 0 x 2 x 2 + 2y dy dx x + y 3 dy dx 6

17 D x2 + y 2 dy dx, ahol D az egység sugarú kör. 2xy D dy dx, ahol D az az origó középpontú körgy r, mely küls körének sugara x 2 +y 2 2, bels körének sugara pedig. 6. Határozza meg az R sugarú gömb térfogatát. 62. Határozza meg az e x2 /2 integrál értékét. 4. Komplex függvénytan Mely pontokban dierenciálhatóak a következ komplex érték függvények? Komplex dierenciálhatóság. Legyen a z 0 pont az f(z) függvény értelmezési tartományának tolródási pontja. Az f(z) függvényt z 0 pontban dierenciálhatónak nevezzük, ha a határérték létezik és véges. f(z 0 + z) f(z 0 ) lim z 0 z 63. f(z) = zz 64. f(z) = Rez 65. f(z) = z z 2 Igazolja, hogy a következ függvények harmonikusak, majd határozza meg a harmonikus társat. Harmonikus társ keresés. A kétszer folytonosan dierenciálható u(x, y) függvényt harmonikusnak nevezzük, ha teljesíti a Laplace-egyenletet: u xx + u yy = 0. A v(x, y) függvényt az u(x, y) függvény harmonikus társának nevezzük, ha harmonikus és teljesíti a Cauchy-Riemann egyenleteket: u x = v y, u y = v x 7

18 66. u(x, y) = x 2 5xy + 3y y x 3 3xy u(x, y) = x 3 y xy 3 + 2x + 3y Határozza meg a következ kifejezések értékét. Komplex exponenciális és logaritmus függvény. Az Euler-képlet e iϕ = cos ϕ + i sin ϕ felhasználásával: e z = e z (cos (arg z) + i sin (arg z)), ln z = ln z + i arg z. 69. e iπ 70. e 3+i 7. 2 i 72. ln ( + i) 73. ln ( 3i) 74. ln i 75. i i 76. Határozza meg az (z + 3 2i) dz integrál értékét, ahol L a 2i középpontú, r = L sugarú körnek az A = i, B = 2i pontjait összeköt negyed körív (A B) 77. Határozza meg az (z i) dz integrál értékét, ahol L a i középpontú, r = 2 sugarú L körnek az A = i, B = 3i pontjait összeköt fél körív (A B) 78. Határozza meg az (z i) dz integrál értékét, ahol L a i középpontú, r = 2 sugarú L körnek az A = i, B = 3i pontjait összeköt fél körív (A B) 79. Határozza meg az ( z 2 2i) dz integrál értékét, ahol L az A = 3 i, B = + 2i L pontokat összeköt szakasz 80. Határozza meg az ( z + 3 2i) dz integrál értékét, ahol L az A = i, B = 2i pontokat összeköt szakasz L 8

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

I. feladatsor. (t) z 1 z 3

I. feladatsor. (t) z 1 z 3 I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

II. rész. Valós függvények

II. rész. Valós függvények II. rész Valós függvények Feladatok 3 4 3.. Értelmezési tartomány Határozza meg a következ függvények értelmezési tartományát! 3.. y = + + 3.. 3.4. 3.6. y = y = 3 y = + 3 ln 5 4 3.3. 3.5. 3.7. y = 3 +

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

KALKULUS II. PÉLDATÁR

KALKULUS II. PÉLDATÁR Lajkó Károly KALKULUS II. PÉLDATÁR mobidiák könyvtár Lajkó Károly KALKULUS II. PÉLDATÁR mobidiák könyvtár SOROZATSZERKESZTŽ Fazekas István Lajkó Károly KALKULUS II. PÉLDATÁR Programozó és programtervez

Részletesebben

MATEMATIKA II. FELADATGY JTEMÉNY

MATEMATIKA II. FELADATGY JTEMÉNY MATEMATIKA II. FELADATGY JTEMÉNY KÉZI CSABA Date: today. KÉZI CSABA ELŽSZÓ Ez a feladatgy jtemény a Debreceni Egyetem M szaki Karának Matematika II. tantárgyának tematikájához szorosan illeszkedik. Célja

Részletesebben

1. feladatsor, megoldások. y y = 0. y h = C e x

1. feladatsor, megoldások. y y = 0. y h = C e x 1. feladatsor, megoldások 1. Ez egy elsőrendű diffegyenlet, először a homogén egyenlet megoldását keressük meg, majd partikuláris megoldást keresünk: y y = 0 Ez pl. egy szétválasztható egyenlet, melynek

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Többváltozós széls érték számítás és alkalmazásai

Többváltozós széls érték számítás és alkalmazásai Eötvös Loránd Tudományegyetem Természettudományi Kar Többváltozós széls érték számítás és alkalmazásai BSc Szakdolgozat Készítette: Prikkel Anett Matematika BSc Matematikai elemz szakirány Témavezet :

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat

Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat ANALÍZIS FELADATGYŰJTEMÉNY I Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat Algoritmuselmélet Algoritmusok bonyolultsága Analitikus módszerek a pénzügyben és a közgazdaságtanban Analízis

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Analízis II. gyakorlat

Analízis II. gyakorlat Analízis II. gyakorlat Németh Adrián 4. január 7. Tartalomjegyzék Előszó.................................................... Ismétlés................................................... Integrálás...............................................

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Analízis Gyakorlattámogató jegyzet

Analízis Gyakorlattámogató jegyzet Analízis Gyakorlattámogató jegyzet Király Balázs. március. Tartalomjegyzék Előszó 7 I. Analízis I. 9. Számhalmazok tulajdonságai.. Gyakorlat.......................................... Házi Feladatok.....................................

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

DIFFERENCIÁLSZÁMÍTÁS. 5. Taylor-polinom

DIFFERENCIÁLSZÁMÍTÁS. 5. Taylor-polinom DIFFERENCIÁLSZÁMÍTÁS KÉZI CSABA GÁBOR 5. Taylor-polinom 5.. Feladat. Írjuk fel az f(x) = e x függvény x 0 = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével számoljuk ki e közelítő értékét!

Részletesebben

Mikroökonómia - Bevezetés, a piac

Mikroökonómia - Bevezetés, a piac Mikroökonómia szeminárium Bevezetés, a piac Budapesti Corvinus Egyetem Makroökonómia Tanszék 2011 szeptember 21. A témakör alapfogalmai Keresleti (kínálati) görbe - kereslet (kínálat) fogalma - kereslet

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

16. Sorozatok. I. Elméleti összefoglaló. A sorozat fogalma

16. Sorozatok. I. Elméleti összefoglaló. A sorozat fogalma 16. Sorozatok I. Elméleti összefoglaló A sorozat fogalma Sorozatnak nevezzük az olyan függvényt, amelynek értelmezési tartománya a pozitív egész számok halmaza. Számsorozat olyan sorozat, amelynek értékkészlete

Részletesebben

Közönséges differenciálegyenletek megoldása Mapleben

Közönséges differenciálegyenletek megoldása Mapleben Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

Eötvös Loránd Tudományegyetem Természettudományi Kar

Eötvös Loránd Tudományegyetem Természettudományi Kar Eötvös Loránd Tudományegyetem Természettudományi Kar Közönséges differenciálegyenletek numerikus megoldása Szakdolgozat Soós Ivett Matematika B.Sc., Matematikai elemz szakirány Témavezet : Mincsovics Miklós

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek.

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek. A Valószínűségszámítás II. előadássorozat második témája. A CENTRÁLIS HATÁRELOSZLÁSTÉTEL A valószínűségszámítás legfontosabb eredménye a centrális határeloszlástétel. Ez azt mondja ki, hogy független valószínűségi

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

Nagy Ilona 2013.06.01.

Nagy Ilona 2013.06.01. Bevezető matematika példatár Kádasné Dr. V. Nagy Éva Nagy Ilona 0.06.0. Tartalomjegyzék Bevezető. Gyakorlatok.. Műveletek törtekkel, hatványokkal, gyökökkel................. A logaritmus fogalma; arány-

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

végtelen sok számot?

végtelen sok számot? Hogyan adjunk össze végtelen sok számot? Németh Zoltán, SZTE Bolyai Intézet www.math.u szeged.hu/~nemeth 2006. Akhilleusz, a görög hős és a teknősbéka versenyt futnak. Akhilleusz tízszer olyan gyorsan

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

Newton módszer. az F(x) = 0 egyenlet x* gyökének elég jó közelítése. Húzzuk meg az F(x) függvény (x 0. )) pontbeli érintőjét, és jelölje x 1

Newton módszer. az F(x) = 0 egyenlet x* gyökének elég jó közelítése. Húzzuk meg az F(x) függvény (x 0. )) pontbeli érintőjét, és jelölje x 1 Newton módszer A húrmódszernél és a szelőmódszernél az F(x) függvény gyökének közelítéséhez a függvény húrját használtuk. Hatásosabb a módszer akkor, ha érintőkkel dolgozunk. Def.: Legyen x 0 az F(x) =

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja) Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I. ) Mely valós számokra igaz, hogy 7 7 MATEMATIKA ÉRETTSÉGI 005. május 8. KÖZÉPSZINT I. 7? Összesen: pont ) Egy 40 000 Ft-os télikabátot a tavaszi árleszállításkor 0%-kal olcsóbban lehet megvenni. Mennyi

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M)

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M) Matematika PRÉ megoldókulcs 04. január 8. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi feladat megoldása kötelező volt! ) Adja meg az x+ y = 3 és az y = egyenletű egyenesek metszéspontjának

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

A hiperbolikus síkgeometria Poincaré-féle körmodellje

A hiperbolikus síkgeometria Poincaré-féle körmodellje A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Néhány közelítő megoldás geometriai szemléltetése

Néhány közelítő megoldás geometriai szemléltetése 5. Fejezet Néány közelítő megoldás geometriai szemléltetése 5.. Iránymező Látattuk, ogy az explicit differenciálegyenletek rendelkeznek azzal az érdekes és kivételes tulajdonsággal, ogy bár esetenként

Részletesebben

3 2 x 1 = 5. (9 pont) 2. Mekkora a szabályos kilencszög kerülete és területe, ha a legrövidebb átlója 85? (11 pont)

3 2 x 1 = 5. (9 pont) 2. Mekkora a szabályos kilencszög kerülete és területe, ha a legrövidebb átlója 85? (11 pont) 1997 Írásbeli érettségi-felvételi feladatok 1. Oldja meg a következő egyenletet a valós számok halmazán: 3 2 x 1 2 2 x 1 + 2 2x 1 3 2 x 1 = 5. (9 pont) 2 2. Mekkora a szabályos kilencszög kerülete és területe,

Részletesebben

Beregszászi István Programozási példatár

Beregszászi István Programozási példatár Beregszászi István Programozási példatár 2 1. fejezet 1. laboratóriumi munka 1.1. Matematikai kifejezések Írja fel algoritmikus nyelven a megadott kifejezést megfelelő típusú változók segítségével! Figyeljen

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 01. május 7. KÖZÉPSZINT 1) Az A és B halmazokról tudjuk, hogy B\ A 1; ; 4; 7. Elemeinek felsorolásával adja meg az A halmazt! A ; 5; 6; 8; 9 I. AB 1; ; ; 4; 5; 6; 7; 8; 9 és ) Egy

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

Mikróökonómia feladatok

Mikróökonómia feladatok kidolgozva A feladatok még hiányosak, folyamatosan frissítem őket! Utolsó frissítés: 007-04-04 19:13:47 1. oldal, összesen 44 oldal Konzultáció 006-10-6 1. feladat (Cobb-Douglas függvény) Józsi bácsi 100

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT

PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT 1. FELADATSOR Felhasználható idő: 40 perc I. rész 1.1.) Oldja meg grafikusan az alábbi egyenlőtlenséget! x + 1 + 1 x + x + 11 1..) Mekkora legyen az x valós szám értéke, hogy az alábbi három mennyiség

Részletesebben

Ismétlő feladatsor: 10.A/I.

Ismétlő feladatsor: 10.A/I. Ismétlő feladatsor: 0.A/I. Harasztos Barnabás 205. január. Feladat Mekkora az alábbi ábrán (szürkével) jelölt síkidom összterülete? A terület egységének a négyzetrács egy négyzetének területét tekintjük!

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék FELTÉTELES OPTIMALIZÁLÁS DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-4...B-0//KONV-00-000 jel½u projekt részeként az Európai Unió támogatásával,

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. október 15. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2013. október 15. EMELT SZINT MATEMATIKA ÉRETTSÉGI 0. október 5. EMELT SZINT ) Oldja meg a valós számok halmazán a következő egyenleteket! a) b) ( )( ) I. ( pont) (7 pont) a) A négyzetgyök függvény értelmezési tartománya és értékkészlete

Részletesebben

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április Hány osztója van egy adott számnak? Hány osztója van egy adott számnak? Dr. Tóth László http://www.ttk.pte.hu/matek/ltoth előadásanyag, Pécsi Tudományegyetem, TTK 2008. április. Bevezetés Lehetséges válaszok:

Részletesebben

Pénzügyi matematika. Sz cs Gábor. Szeged, 2011. szi félév. Szegedi Tudományegyetem, Bolyai Intézet

Pénzügyi matematika. Sz cs Gábor. Szeged, 2011. szi félév. Szegedi Tudományegyetem, Bolyai Intézet Pénzügyi matematika Sz cs Gábor Szegedi Tudományegyetem, Bolyai Intézet Szeged, 2011. szi félév Sz cs Gábor (SZTE, Bolyai Intézet) Pénzügyi matematika 2011. szi félév 1 / 79 Értékpapírpiacok Bevezetés

Részletesebben

Programozási Módszertan definíciók, stb.

Programozási Módszertan definíciók, stb. Programozási Módszertan definíciók, stb. 1. Bevezetés Egy adat típusát az adat által felvehető lehetséges értékek halmaza (típusérték halmaz, TÉH), és az ezen értelmezett műveletek (típusműveletek) együttesen

Részletesebben

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma A Riemann-Siegel zeta függvény kiugró értékeinek keresése A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma 2013 A probléma fontossága és hatása a hétköznapi életre A prímszámok

Részletesebben

5. Lineáris rendszerek

5. Lineáris rendszerek 66 MAM43A előadásjegyzet, 2008/2009 5 Lineáris rendszerek 5 Lineáris algebrai előismeretek Tekintsük az a x + a 2 x 2 = b 5 a 2 x + a 22 x 2 = b 2 52 lineáris egyenletrendszert Az egyenletben szereplő

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

5. Differenciálegyenlet rendszerek

5. Differenciálegyenlet rendszerek 5 Differenciálegyenle rendszerek Elsőrendű explici differenciálegyenle rendszer álalános alakja: d = f (, x, x,, x n ) d = f (, x, x,, x n ) (5) n d = f n (, x, x,, x n ) ömörebben: d = f(, x) Definíció:

Részletesebben

Lajk o K aroly Kalkulus II. Debreceni Egyetem Matematikai es Informatikai Int ezet 2003 1

Lajk o K aroly Kalkulus II. Debreceni Egyetem Matematikai es Informatikai Int ezet 2003 1 Ljkó Károly Klkulus II. Debreceni Egyetem Mtemtiki és Informtiki Intézet 2003 1 c Ljkó Károly ljko @ mth.klte.hu Amennyiben hibát tlál jegyzetben, kérjük jelezze szerzőnek! A jegyzet dvi, pdf és ps formátumbn

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben