x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx
|
|
- Mária Fülöpné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos ( + ) ln Helyettesítéses integrálás. g) j) + + ( ) f) e h) i) 7 e + cos k) sin 3 l) e e + e. 4 6 ( + ) + sin 8 e + e e + e
2 Integrálszámítás III. Racionális függvények integrálása. g) i) f) h) ( + 4)( 6) ( + )( 9) j) ( )( ) ( ) ( + ) ( 4)( + )( + 3) ( 3)( ) ( ) ( + ) ( + 3) ( + ) Irracionális függvények integrálása.. ( ) 4 3 f)
3 Integrálszámítás IV. Trigonometrikus függvények integrálása. sin 4 cos cos 6 sin sin cos 4 f) 8 sin 4 cos 3 8 sin cos sin 8 cos sin cos sin + cos + 7 cos sin 4 3 sin 4 cos cos 6 4 sin 3 cos sin + cos + sin + cos + 3 cos sin sin ( + cos) 5. tg tg 3 tg 4 ctg tg f) 4 ctg 3 Eponenciális függvények integrálása. e e 5 e e 3 6 e 8e e + 5e 3 e + e + 4 e +
4 Az integrálszámítás alkalmazásai I. Területszámítás. Számítsa ki a görbe és az -tengely közé zárt területet a megadott intervallumban: y = [, ] y = + sin [, ] y = e [, ]. Számítsa ki az alábbi paraméteres alakban megadott görbe és az -tengely közötti területet a megadott intervallumban: = cost, y = sin t, [, ] = t sin t, y = cos t, [, ] 3. Számítsa ki az adott görbék által határolt korlátos síkrész területét: y = 6 7, y = 3 y = e, y = 3 e Forgástestek térfogata. Számítsa ki az adott görbeívnek az -tengely körüli megforgatásával kapott forgástest térfogatát: y = 4 [, [, ] y =,, ] cos 6 y = e, [, ]. Forgassuk meg az y = e, y = e és az = egyenletű görbék által határolt véges tartományt az -tengely körül! Mekkora a keletkezett forgástest térfogata? Mekkora annak a forgástestnek a térfogata, amelyet úgy nyerünk, hogy ugyanezen síkidomot az y-tengely körül forgatjuk meg? 3. Számítsa ki a következő paraméteresen megadott görbeívek -tengely körüli megforgatásával kapott forgástestek térfogatát: [ = ch t, y sh t t [, 4] = cost, y = sin t, t, ]
5 Az integrálszámítás alkalmazásai II. Ívhossz számítása. Számítsa ki a görbeív hosszát a megadott intervallumban: y = 3, [, ] y = +, [, 3] [ 6 y = lnsin, 3, ] 3. Számítsa ki az alábbi paraméteresen megadott görbeív hosszát a megadott intervallumban: ( ) [ = t, y = t 3 t, t, ] 3 Egyéb = e t sin t, y = e t cost, t [, ln]. Számolja ki, hogy az I (t) = sin t (A) erősségű áram mennyi hőt fejleszt másodperc alatt az R = 4Ω ellenálláson. Közelítő integrálás. Számítsa ki az részre való felosztást alkamazva. + értékét Trapéz- és Simpson-formulával, először 4, majd 8
6 Improprius integrálok Integrálás végtelen intervallumon. g) j) ln e ( + ) 3 ( + 3) e h) e k) + ln f) e + e i) + 4 l) sh ch + + e + e Adott intervallumon nem korlátos függvény integrálása. ln f) g) cos sin ln h) 4 + tg
7 Differenciálegyenletek I.. Döntse al, hogy az alábbi differenciálegyenletek hányadrendűek, illetve azt is, hogy lineárisak-e: y tg y 4 + y e sin = arccos y = 5y 4 y (4) ln y + sin y =. Döntse el, hogy az y = y + differenciálegyenletnek megoldásai-e az függvények! f() =, illetve g() = e 3. Határozza meg integrálással az y = differenciálegyenlet általános megoldását, majd az y() =, y () =, y () = kezdeti feltételeket kielégítő partikuláris megoldását! 4. Adja meg az alábbi szétválasztható változójú differenciálegyenletek általános megoldását! Ha adott valamilyen feltétel, akkor írja fel az ezt kielégítő partikuláris megoldást is! y = y, y() = 3 dy = y 3, y() = y sin = y ln y 5. Írja fel az alábbi elsőrendű lineáris homogén differenciálegyenletek általános megoldását: y sin y cos = y + y = 6. Oldja meg az állandó variálásának módszerével az alábbi elsőrendű lineáris inhomogén differenciálegyenleteket: y y + = y + y = cos y + y = e ln y + y ln = 7. Határozza meg az állandó variálásának módszerével az alábbi elsőrendű lineáris differenciálegyenletek adott feltételt kielégítő partikuláris megoldását: y + y tg = cos 3, y() = y + y = +, y() =
8 y 3 y =, y() = Oldja meg próbafüggvény módszerrel az alábbi állandó együtthatójú elsőrendű lineáris differenciálegyenleteket: y + y = sin y y = 4 y + y = (e + e ) y 4y = 5 4 cos Oldja meg próbafüggvény módszerrel az alábbi állandó együtthatójú elsőrendű differenciálegyenletek, figyelve a rezonanciára: y y = e + y 4y = sh 4
9 Differenciálegyenletek II.. Adja meg az alábbi állandó együtthatójú másodrendű lineáris, homogén differenciálegyenletek általános megoldását: y y 3y = y + 5y = y 6y + 9y = y + 4y = y y + y =. Oldja meg próbafüggvény-módszerrel az alábbi másodrendű lineáris inhomogén differenciálegyenleteket: y + y = 3 4y + y = 85(e e ) y + y + y = cos 5 sin y + y = ( + )e y 6y = 3e sin f) y y = 5 cos 3. Oldja meg próbafüggvény-módszerrel az alábbi másodrendű lineáris inhomogén differenciálegyenleteket: y y 3y = 6(e ) y + 9y = sin 3 cos 3 y 4y + 4y = e + 4 y 3y = e + (6 + 5)e 3 4. Adja meg a következő differenciálegyenleteknek az adott feltétel(ekt kielégítô partikuláris megoldását: ( y + y = y() = y ) = e y + y = cos y() = 3 y y = e y() = y () = 4
10 Laplace-transzformáció Képezze a következő függvények Laplace-transzformáltját:. e t e 3t+ e 5t sin t cos 3t f) sh 3t g) ch 6t h) t i) 5t 4 j) 8t 6. e 3t 5 t + e t 3 sin 4t cos t+sh t+8 ch 4t sin 3t cos 5t 4t 3 t + 7t 3 3. e 4t 3e t 4e t e t sin t + sin 3 t sin t t 7t + 6 t 4. e t sin 3t e 3t cos 7t e 3t ( sin t 3 cos4t) 3e 6t (4t 3 3t + t 4) 5. t sin t 3t cos t t sh 3t t ( sin 3t cost) t ch 3t Határozza meg a következő függvények inverz Laplace-transzformáltját:.. s 7 s 4 4s + s + 3s 4 f) s s s 9 s + s 6 s 3 s 6s g) 3 s + s 3 s s 3s + 6 (s + 4)(s + 6) s s + 4 4s s + 9 (s )(s 3) Határozza meg a következő differenciálegyenletek, illetve differenciál-egyenletrendszerek megadott kezdeti feltételhez tartozó partikuláris megoldását Laplace-transzformáció alkalmazásával:. y + 3y = 8e 5 y() = 4 y 5y = 5 y() = y + y = sin4 y() = y + 3y = cos y() = y y = 4 e y() = f) y 3y = e 3 y() =. y + 9y = 9 y() = y () = y + 3y + y = e y() = y () = y + 4y = 68 sin y() = y () = y + y = + y() = 4 y () = 3. { ẋ y = e t t ẏ + = e t + { ẋ + ẏ = e t + cost sin t ẋ y = sin t () = y() = () = y() =
11 Numerikus sorok. Vizsgálja meg az alábbi számsorok konvergenciáját. Ha konvergensek, akkor számítsa ki az összegüket: + 3 k + 5 k 3 k+ 3 k+ 5 k k= k k= ( ) k 3 k+ a k ( ) k b f), (b ) k= k k= a + k= b g) ( ) k, h) ( ) k, k+ k=. Határozza meg a következő sorok összegét résztörtekre bontással: k(k + )(k + ) k= k=3 ( k ) ( k 3) 3. A konvergencia szükséges feltételét felhasználva mutassa meg, hogy a következő sorok divergensek: ( ) 5k 5k + k k + 3 k 5k + k k k k 4. Mutassa meg, hogy a következő (harmonikus sorra visszavezethető) sor divergens: k= ( k ) ( k ) 5. A majoráns és a minoráns kritérium alkalmazásával döntsük el, hogy a következő sorok közül melyik konvergens és melyik divergens: (k ) k (k + )(k + 4) k + + k k + f) k= k 4k k (k + )k g) tg h) i) 4k 3k ln(k + ) j) k + k 6. Döntse el hányadoskritérium segítségével, hogy a következő sorok konvergensek-e: k k k! (k + )(k + ) k= k! k k k k= k! ( ) k! (k + )! k k f) g) k h) k k k k! 3 k
12 7. A gyökkritérium alkalmazásával döntse el, hogy a következő sorok konvergense-e: k kp k k, ahol < p < k k k k g) sin k k k k + (arctg k) k (k + ) k ( ) k k f) k + ( k + k + 8. Integrálkritérium alkalmazásával döntse el, hogy a következő sorok konvergensek-e: 3 k + k= k ln k k + k= k ln k k, ahol α > f) α k k + (k + ) g) h) k + (k + )ln i) (k + ) k= k ln k j) k e k 9. Vizsgálja meg a következő váltakozó előjelű sorokat konvergencia szempontjából: ( ) k+ ( ) k k k ( ) k k + ( ) k k+, k + k k= ) k
13 Függvénysorok. Határozza meg a következő függvénysorok konvergenciatartományát és összegfüggvényét: ( ) k e k tg k e k. Határozza meg a következő hatványsorok konvergenciatartományát: k! k k k k k= k k k kk 5 k k! k k + k! k k f) ( )k kk 3. Írja fel az alábbi függvények -körüli harmadrendű Taylor-polinomját: f() = = f() = ln = e f() = sin = f() = 7 = k= 4. Írja fel az alábbi függvények Maclaurin-sorát és határozza meg, hogy az melyik tartományban állítja elő a függvényt: f() = sin 3 f() = e f() = 3 e f() = ln( ) 5. Az = körüli harmadrendű Taylor-polinom alkalmazásával adja meg az alábbi függvények közelítő értékét a megadott helyen és adjon felső becslést a közelítő érték hibájára: f() = e =, f() = 3 + =, f() = cos =, f() = arctg =, 6. Az integrandus = körüli negyedfokú Taylor-polinomjának alkalmazásával adja meg az alábbi integrálok közelítő értékét és adjon felső becslést a közelítő érték hibájára:,,3 sin e, 7. Az integrandus = körüli Taylor-polinomjának alkalmazásával számítsa ki az alábbi integrálok közelítő értékét úgy, hogy a pontos értéktől való eltérés legfeljebb 6 legyen:, e,6,5 sin +,4 k= k=
14 Függvénysorok. Határozza meg a következő függvénysorok konvergenciatartományát és összegfüggvényét: ( ) k e k tg k e k. Határozza meg a következő hatványsorok konvergenciatartományát: k! k k k k k= k k k kk 5 k k! k k + k! k k f) ( )k kk 3. Írja fel az alábbi függvények -körüli harmadrendű Taylor-polinomját: f() = = f() = ln = e f() = sin = f() = 7 = k= 4. Írja fel az alábbi függvények Maclaurin-sorát és határozza meg, hogy az melyik tartományban állítja elő a függvényt: f() = sin 3 f() = e f() = 3 e f() = ln( ) 5. Az = körüli harmadrendű Taylor-polinom alkalmazásával adja meg az alábbi függvények közelítő értékét a megadott helyen és adjon felső becslést a közelítő érték hibájára: f() = e =, f() = 3 + =, f() = cos =, f() = arctg =, 6. Az integrandus = körüli negyedfokú Taylor-polinomjának alkalmazásával adja meg az alábbi integrálok közelítő értékét és adjon felső becslést a közelítő érték hibájára:,,3 sin e, 7. Az integrandus = körüli Taylor-polinomjának alkalmazásával számítsa ki az alábbi integrálok közelítő értékét úgy, hogy a pontos értéktől való eltérés legfeljebb 6 legyen:, e,6,5 sin +,4 k= k=
15 Fourier-sorok Fejtse Fourier-sorba a következő függvényeket: ha. f : R R, f() = < ha < 3 { 6 ha < <. f : R R, f() = ha < < { ha < < 3. f : R R, f() = ha < < és R esetén f( + ) = f() és R esetén f( + ) = f() és R esetén f( + ) = f() { ha < 4. f : R R, f() = + ha < és R esetén f( + ) = f()
16 Többváltozós függvények I.. Határozza meg a következő függvények értelmezési tartományát: f(; y) = y f(; y) = ln( + y) f(; y) = + y f(; y) = 4 y. Határozza meg a következő függvények megadott értékekhez tartozó szintvonalainak egyenletét: z = + 3y + z =, z = z = + y z =, z = 9 z = y z =, z = 8 z = 4 + y z = 3, z = 5 3. Határozza meg a következő többváltozós függvények parciális deriváltfüggvényeit: f(; y) = 6 y + y 3 f(; y) = ln y + e y f(; y) = cosy f(; y; z) = ln yz 4. Határozza meg az alábbi függvények parciális deriváltjait a megadott P pontban: e ( z = ln sin 3 y ; P ; ) z = arctg + y y ; P (; ) 5. Határozza meg a következő függvények teljes differenciálját: f(; y) = y f(; y) = e +y y f(; y) = sin + cos y z = tg( y) ; P (; )
17 Többváltozós függvények II.. Számítsa ki az alábbi kétváltozós függvények iránymenti deriváltját az adott v irányvektorú egyenes mentén az adott P pontban: f(; y) = cos ( y) ; v ( 3; ) ( ; P ; ) 4 f(; y) = sin ( + y ) ; v ( 3; ) ( ) ; P ; 3 f(; y) = ln ln y lny ln ; v ( 3; 4) ; P (e; e ). Határozza meg a következő függvények szélsőértékeit: f(; y) = (5 + y) e f(; y) = e y f(; y) = y f(; y) = e ( + y ) f(; y) = + y + y + y + 3 f) f(; y) = 3 + y 3 3y 3. Határozza meg a z = y felületnek az origóhoz legközelebb eső pontját! 4. Egy derékszögű háromszög rövidebbik befogójának hosszát a = 5 ±, cm-nek mértük, másik befogójának hosszát pedig b = ±, cm-nek. Becsülje meg, hogy mekkora abszolút, illetve relatív hibával számítható ki az átfogó hosza; a háromszög területe; tg β, ahol β a b oldallal szemközti szög! 5. A véges növekmények tétele segítségével adjon közelítést az alábbi kétváltozós valós függvények megadott pontban felvett értékére egy olyan közeli pontból kiindulva, ahol a függvényérték könnyen számolható: f(; y) = ln ( y 3 ), P(3, ;, 96) f(; y) = (y) (y + ) 3, P(, 98; 3, ) 6. Számítsa ki az alábbi kétváltozós függvények kettős integrálját a megadott T tartományon: f(; y) = 3 y T = { (; y) }, y 4 { f(; y) = sin y T = (; y) }, y f(; y) = 54y T = { (; y) } 3, y arctg + f(; y) = sin { T = (; y) } y 3 3, cos y cos
18 7. Számítsa ki az alábbi kétváltozós valós függvények kettős integrálját a csúcsaival megadott sokszögtartományon: f(; y) = e y A(; ), B(; ), C(; ) f(; y) = y A(; ), B(; 3), C(4; 4) 8. Számítsa ki az alábbi kétváltozós valós függvények kettős integrálját azon a korlátos tartományon, amelyet a következő egyenletekkel megadott görbék határolnak: f(; y) = y e = y, = 3 y f(; y) = y ( + ) = y, = y, y =
cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4
Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos
Matematikai analízis II.
Matematikai analízis II. Feladatgyűjtemény GEMAN6-B Gazdaságinformatikus, Programtervező informatikus és Mérnökinformatikus hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . feladatlap Implicit függvények
Matematika II. Feladatgyűjtemény GEMAN012B. Anyagmérnök BSc szakos hallgatók részére
Matematika II. Feladatgyűjtemény GEMANB Anyagmérnök BSc szakos hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . gyakorlat Matematika II.. Az alábbi f függvényeknél adja meg f -t! f() = + 5; (b) f()
Integrálszámítás (Gyakorló feladatok)
Integrálszámítás (Gyakorló feladatok). Határozatlan integrál. Alapintegrálok F. Számítsa ki az alábbi határozatlan integrálokat! a) (x x + ) b) (6x x + 5) c) (x + x + x ) d) ( x + x x e) ( ) + e x ) f)
1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor
. Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis
n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )
Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )
A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)
Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő
IV. INTEGRÁLSZÁMÍTÁS Feladatok november
IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin
Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,
Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!
Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén
Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk
HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok
Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás
5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11
Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4
1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?
. Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,
Részletes tantárgyprogram és követelményrendszer
Részletes tantárgyprogram és követelményrendszer Óbudai Egyetem Mikroelektronikai és Technológia Intézet Kandó Kálmán Villamosmérnöki Kar Tantárgy neve és kódja: Matematika II. KMEMA21TND Kreditérték:
Analízis szigorlat informatikusoknak (BMETE90AX20) tárgykövetelmény és tételsor
Analízis szigorlat informatikusoknak (BMETE90AX20) tárgykövetelmény és tételsor Bodrogné Réffy Júlia, Horváth Róbert 2018/19. II. félévtől Tantárgykód: BMETE90AX20 Félév: 2018/19. tavasz Nyelv: magyar
I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)
I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =
Kalkulus I. gyakorlat Fizika BSc I/1.
. Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat
VIK A3 Matematika, Gyakorlati anyag 2.
VIK A3 Matematika, Gyakorlati anyag 2. 208. november Sorok. Konvergensek-e az alábbi sorok? Ha igen, adjuk meg a határértéküket! n(n+3) n(n+)(n+2) 9n 2 3n 2 ( n + 2 2 n + + n) 2n+ n 2 (n+) 2 (f) ( 3) k+2
Gyakorlo feladatok a szobeli vizsgahoz
Gyakorlo feladatok a szobeli vizsgahoz Függvények. Viszgaljuk meg, hogy az alabbi fuggvenyek kozuk melyik injektv, szurjektv, illetve bijektv? F : N N, n n b) F : Q Q, c) F : R R, d) F : N N, n n e) F
Matematika I. Vektorok, egyenesek, síkok
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk
Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november
Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA, MATEmATIkA II 4 IV HATVÁNYSOROk 1 ELmÉLETI ALAPÖSSZEFÜGGÉSEk Az olyan végtelen sort, amelynek tagjai függvények, függvénysornak nevezzük Ha a tagok hatványfüggvények, akkor a sor neve hatványsor
12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?
Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!
Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány
Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........
2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?
= komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve
1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor
. Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet
Feladatok matematikából 3. rész
Debreceni Egyetem Matematikai Intézet Feladatok matematikából 3. rész fizika és villamosmérök alapszakos hallgatók részére Debrecen, 6 ősz Határozatlan integrál. Számítsuk ki a következő integrálokat!
PTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben
I. feladatsor. (t) z 1 z 3
I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.
10. Differenciálszámítás
0. Differenciálszámítás 0. Vázolja a következő függvények, és határozza meg az értelmezési tartomány azon pontjait, ahol nem differenciálhatóak: a, f() = - b, f()= sin c, f() = sin d, f () = + e, f() =
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
Elérhető maximális pontszám: 70+30=100 pont
Villamosmérnök Szak Távoktatás 2. félév Matematika kollokvium 2008. dec. 20. Név: Neptun Kód: Tanár: Fel.: Elm.: Hf.: Össz.: Oszt.: Vajda István Rendelkezésre álló idő: 105 perc Elérhető maximális pontszám:
Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.
Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)
b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
5. fejezet. Differenciálegyenletek
5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y
Matematika I. NÉV:... FELADATOK:
24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n
2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények
6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai
A Matematika I. előadás részletes tematikája
A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok
Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt
27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,
JPTE PMMFK Levelező-távoktatás, villamosmérnök szak
JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.
I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i
I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex
HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai
HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 19 XIX A HATÁROZOTT INTEGRÁL ALkALmAZÁSAI 1 TERÜLET ÉS ÍVHOSSZ SZÁmÍTÁSA Területszámítás Ha f az [a,b] intervallumon nemnegatív, folytonos függvény, akkor az görbe, az x tengely,
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Matematika szigorlat javítókulcs, Informatika I máj. 30.
Matematika szigorlat javítókulcs, Informatika I. 006. máj. 0.. Legyen f : [0, [ R, f (x)= x x +. a) Vizsgálja meg a függvényt monotonitás szempontjából! f (x)= x (x + ). x=0 0
Határozatlan integrál, primitív függvény
Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,
7. Oldjuk meg az alábbi kezdetiérték-problémát: y x y = 6x, y(0) =
. feladatsor: szeparábilis és els rend lineáris dierenciálegyenletek x. Mutassuk meg, hogy y = e x e t2 dt + 3e x megoldása az alábbi dierenciálegyenletnek: y y = e x+x2. 2. Adjuk meg az y = e 3x + 2x
Tartalomjegyzék. 1. Előszó 1
Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.
. Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján
Többváltozós függvények Feladatok
Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk
Matematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.
2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve
Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
Definíció Függvényegyenletnek nevezzük az olyan egyenletet, amelyben a kiszámítandó ismeretlen egy függvény.
8. Differenciálegyenletek 8.1. Alapfogalmak Korábbi tanulmányaink során sokszor találkoztunk egyenletekkel. A feladatunk általában az volt, hogy határozzuk meg az egyenlet megoldását (megoldásait). Az
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor
Többváltozós analízis gyakorlat, megoldások
Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,
Határozott integrál és alkalmazásai
Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,
YBL - SGYMMAT2012XA Matematika II.
YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,
205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:
8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás,
3... Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg az f() = 4 deriváltját az = helyen.pt. Határozzuk meg a következő határértékeket: pt lim n 8n 5
Területszámítás Ívhossz számítás Térfogat számítás Felszínszámítás. Integrálszámítás 4. Filip Ferdinánd
Integrálszámítás 4. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 2015 november 30. Filip Ferdinánd 2015 november 30. Integrálszámítás 4. 1 / 12 Az el adás vázlata Területszámítás
Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,
25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit
Írja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6
Építész Kar Gakorló feladatok gakorlat Számítsa ki az alábbi komple számok összegét, különbségét, szorzatát, hánadosát: a/ z = i z = i b/ z = i z = - 7i c/ z = i z = i d/ z = i z = i e/ z = i z = i Írja
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános
Differenciálegyenletek megoldása Laplace-transzformációval. Vajda István március 21.
Analízis előadások Vajda István 2009. március 21. A módszer alkalmazásának feltételei: Állandó együtthatós, lineáris differenciálegyenletek megoldására használhatjuk. A módszer alkalmazásának feltételei:
Az integrálszámítás néhány alkalmazása
Az integrálszámítás néhány lklmzás (szerkesztés ltt) Dr Toledo Rodolfo 4 november 4 Trtlomjegyzék Két függvények áltl htárolt terület Forgástestek térfogt és felszíne 5 3 Ívhosszszámítás 7 4 Feldtok 8
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
2014. november Dr. Vincze Szilvia
24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
Hatványsorok, Fourier sorok
a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Hatványsorok, elemi függvények
Hatványsorok, elemi függvények EL 1 Hatványsorok, elemi függvények Hatványsorok, elemi függvények EL Definíció: függvénysorozat Legyen A R, H { f f:a R }. (A H halmaz elemei az A halmazon értelmezett függvények)
0, különben. 9. Függvények
9. Függvények 9.. Ábrázolja a megadott függvényeket, és vizsgálja meg a függvények korlátosságát, monotonitását, konveitását, paritását, előjelét, zérushelyeit, periodicitását és határozza meg a valós
4. Laplace transzformáció és alkalmazása
4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:
Differenciál - és integrálszámítás. (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár. Meghirdető tanszék: Analízis Tanszék
Differenciál - és integrálszámítás (Óraszám: 3+3) (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár Meghirdető tanszék: Analízis Tanszék Debrecen, 2005 A tárgy neve: Differenciál- és
2.7. Fourier-sor Gyakorló feladatok... 84
Tartalomjegyzék. Közönséges differenciálegyenletek 3.. Bevezető.................................... 3.. Szétválasztható változójú differenciálegyenletek.............. 4... Gyakorló feladatok..........................
Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!
MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:
2. hét (Ea: ): Az egyváltozós valós függvény definíciója, képe. Nevezetes tulajdonságok: monotonitás, korlátosság, határérték, folytonosság.
Ütemterv az Analízis I. c. tárgyhoz (GEMAN510B, 510-B) Járműmérnöki, logisztikai mérnöki, műszaki menedzser, villamosmérnöki, ipari termék- és formatervező mérnöki alapképzési szak 2019/20. tanév I. félév
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet
Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =
Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n
Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának
Matematika szigorlat június 17. Neptun kód:
Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat
Feladatgyûjtemény. Analízis III. Sáfár Zoltán
Feladatgyûjtemény Analízis III. Sáfár Zoltán NyME-SEK 20 Tartalomjegyzék. Számsorozatok számsorok 2. Differenciálszámítás 5 2.. L Hospital-szabály............................... 7 3. Függvénysorok Taylor-polinom
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA MATEmATIkA II 10 X PARCIÁLIS DIFFERENCIÁLEGYENLETEk 1 Elsőrendű kvázilineáris parciális DIFFERENCIÁLEGYENLETEk Elméleti alapok Elsőrendű kvázilineáris parciális differenciálegyenlet általános
Differenciálegyenletek. Vajda István március 4.
Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
x a x, ha a > 1 x a x, ha 0 < a < 1
EL 18 Valós exponenciális függvények Definíció: Ha a R, a>0, akkor legyen a x = e x lna, x R A valós változós exponenciális függvények grafikonja: x a x, ha a > 1 x a x, ha 0 < a < 1 A szinusz függvény
MATEMATIKA 2. TANTÁRGYLEÍRÁS. 1.2 Azonosító (tantárgykód) GKNB_MSTM Kurzustípusok és óraszámok (heti/féléves)
TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve MATEMATIKA 2. 1.2 Azonosító (tantárgykód) GKNB_MSTM008 1.3 Kurzustípusok és óraszámok (heti/féléves) kurzustípus óraszám (heti) előadás (elmélet) 2 gyakorlat
KOVÁCS BÉLA, MATEMATIKA II.
KOVÁCS BÉLA MATEmATIkA II 9 IX Magasabbrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk n-ed rendű differenciálegyenletek Az alakú ahol n-edrendű differenciálegyenlet általános megoldása tetszőleges