Határozott integrál és alkalmazásai

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Határozott integrál és alkalmazásai"

Átírás

1 Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki, hogy ha f folytonos függvény az [a, b] intervallumon, és F ezen f függvény egy tetsz leges primitív függvénye, akkor b f d = [F ] b a = F b F a. a Eszerint els ként szükségünk van egy primitív függvényre, azaz tulajdonképpen határozatlanul kell integrálnunk. Ezután már csak be kell helyettesítenünk az integrálási határokat a kapott primitív függvénybe, és venni azok különbségét. A primitív függvény meghatározásához írjuk a gyököt hatvány alakban. + d = + d Most állítsuk el a primitív függvényt. Mivel hatványt integrálunk, így eggyel növeljük a kitev t, s az új kitev vel osztunk. + d = + = [ ] + Ezután helyettesítsük be az integrálási határokat, s vegyük a két érték különbségét. A fels határ helyettesítési értékéb l vonjuk az alsó határ helyettesítési értékét. [ ] + = + + = 8 =. Feladat: d = Megoldás: Els ként most is egy primitív függvényt kell meghatároznunk. Ehhez a tört helyett célszer negatív kitev s hatványt írnunk.

2 d = d A határozatlan integrálás során most is eggyel növeljük a kitev t, és osztunk az új kitev vel. De most gyeljünk oda, mert lineáris bels függvény is van a hatványon belül. Ezért osztanunk kell még a bels függvényb l együtthatójával. [ d = ] [ = Vegyük ezek után a fels és az alsó határ helyettesítési értékének különbségét. [ 9 6. Feladat: ] = d = ] = = + = Megoldás: Els lépésként írjuk a gyököt hatvány alakban. d = d Bontsuk két törtre az integrálandó törtet. d = d [ ] 9 6 Az els tagot írjuk negatív kitev vel, a második tagban pedig végezzük el az osztást, így mindegyik tagban egyetlen hatványfüggvényt kapunk. d = d = d Végezzük el a határozatlan integrálást. d = [ = ] Utolsó lépésként pedig vegyük a fels és az alsó határ helyettesítési értékének különbségét. [ ] = = = 6 = 8. Feladat: π 6 cos d = Megoldás: Els ként határozzunk meg egy primitív függvényt. Figyeljünk oda, olyan összetett függvényt integrálunk, melyben a bels függvény

3 lineáris. Ezért a küls függvény integrálját osztani kell a bels függvényb l együtthatójával. π [ ] π 6 sin 6 cos d = Helyettesítsük be a határokat, és vegyük a kapott értékek különbségét. [ ] π sin π sin 6 6 sin = = sin π sin = = = 5 5. Feladat: d = Megoldás: Az integrandusból emeljük ki a számlálóban álló 5-öt, s utána olyan összetett függvény marad, melynek bels függvénye els fokú. Ezután hajtsuk végre a határozatlan integrálást. 5 [ ] d = 5 ln d = 5 = 5 [ln ] Helyettesítsük a két határt, s vegyük az értékek különbségét. 5 [ln ] = 5 ln ln = 5 ln 5 ln = = 5 ln 5 = 5 ln Feladat: Határozzuk meg az f = + 5 függvény grakonja és az -tengely közötti síkrész területét a [, ] intervallumon! Megoldás: Vizsgáljuk meg, vált-e el jelet a függvény a, intervallumban. Ha ugyanis igen, akkor több részletben kell számolnunk a területet, de ha nem, akkor egyetlen integrál kiszámolása elég lesz. Oldjuk meg tehát az f = egyenletet, ami az + 5 = másodfokú egyenletet jelenti. Mivel ennek az egyenletnek a diszkriminánsa negatív D = 5 = <, ezért nincs valós gyök, tehát a függvény sehol sem vált el jelet. Mivel együtthatója pozitív, ezért a függvény csak pozitív értékeket vesz fel. Így a kérdéses terület egyszer en megegyezik a függvény adott intervallumon vett integráljával, azaz T = + 5 d. Határozzunk meg egy primitív függvényt. [ ] T = + 5 Helyettesítsük a két határt, és vegyük az értékek különbségét.

4 T =. ábra. Az f = + 5 függvény grakonja Feladat: Határozzuk meg az f = + függvény grakonja és az tengely által közrezárt véges síkrész területét! Megoldás: Els lépésben határozzuk meg, hol metszi a függvény grakonja az tengelyt, azaz oldjuk meg az f = egyenletet. + = Alakítsunk szorzattá a bal oldalon. + = = 6 Így már egyértelm, hogy az egyenlet két megoldása az = és az =. Ha készítünk egy ábrát a függvényr l, akkor nyilvánvaló, hogy a meghatározandó terület a függvény [, ] intervallumon vett integráljának -szerese, mert az alakzat az tengely alatt helyezkedik el. T = + d Határozzunk meg egy primitív függvényt. [ ] T = + Helyettesítsünk a Newton-Leibniz-szabályba. T = + + = A feladat megoldásából látható, hogy ha olyan alakzat területét keressük, amely az adott intervallumon negatív érték függvény grakonja,

5 . ábra. Az f = + függvény grakonja és az tengely között helyezkedik el, akkor a függvény integráljának -szeresét kell vennünk. Természetesen azt is megtehetnénk ilyenkor, hogy a függvény adott intervallumon vett integráljának az abszolút értékét vesszük. Jelen esetben a következ t is írhattuk volna: T = + d. 8. Feladat: Határozzuk meg az f = 8 függvény grakonja és a koordinátarendszer két tengelye által határolt véges síkrész területét! Megoldás: A feladat megoldását ismét az f = egyenlet megoldásával kezdjük. Az egyenlet átrendezett alakja: = 8. Ebb l = következik. Ha ábrát készítünk a függvényr l, akkor jól látható, hogy olyan véges síkrész, melyet a két tengely és a függvény grakonja határol, a [, ] intervallumon található. Itt a függvény negatív értékeket vesz fel, így a területet a függvény ezen intervallumon vett integráljának -szerese adja. T = 8 d Határozzunk meg egy primitív függvényt. [ ] T = 8 Helyettesítsünk a Newton-Leibniz-szabályba. T = 8 8 = 5

6 . ábra. Az f = 8 függvény grakonja. Összetett feladatok. Feladat: π sin cos d = Megoldás: Els ként egy primitív függvényt kellene elállítanunk. Ehhez alakítsuk át az integrandust. Bontsuk szorzattá a nevez t, majd pedig az integrandust két tört szozatára. π sin π cos d = sin π cos cos d = sin cos cos d Mivel sin cos = tg, így sin cos helyett tg írható. π sin π cos cos d = tg cos d Ebb l az alakból már egyértelm en látható, hogy az integrandus most f α f típusú, hiszen tg = cos. Felhasználva az ilyen függvényekre vonatkozó integrálási szabályt, határozzunk meg egy primitív függvényt. [ π tg tg ] π cos d = Helyettesítsük be az integrálási határokat, és vegyük a két érték különbségét. [ tg ] π = tg π tg = = =. Feladat: e d = 6

7 Megoldás: Az integrandusban olyan szorzat áll, melynek egyik tényez je polinom, másik tényez je pedig eponenciális, ezért a primitív függvény meghatározásához parciálisan kell integrálnunk. Ilyenkor a jelölés egyszer bbé tétele végett célszer külön elvégezni a határozatlan integrálást, majd utána visszatérni a határozott integrálhoz. Legyen u = és v = e. Ekkor u = és v = e. Felhívjuk a gyelmet arra, hogy az e olyan összetett függvény, melynek bels függvénye els fokú, így integrálásakor a küls függvény integrálját osztani kell a bels függvényb l együtthatójával. Helyettesítsünk be a szabályba. e d = e e d = e e d Határozzuk meg a még visszamaradt integrált. Itt is gyeljünk a lineáris bels függvényre. e d = e e + c = e + c Most térjünk vissza a határozott integrálhoz a primitív függvénnyel. [ e d = e ] Helyettesítsünk a Newton-Leibniz-szabályba. [ e ] = e e = e Feladat: e ln d = Megoldás: Az integrandus ismét szorzat. Az egyik tényez most is polinom, a másik pedig a természetes alapú logaritmus, így a primitív függvény meghatározásához most is parciális integrálásra van szükség. Célszer el ször csak határozatlan integrált írni. Legyen u = ln és v =. Ekkor u = és v =. Helyettesítsünk a szabályba. ln d = ln d A még meghatározandó integrálban egyszer sítsünk. ln d = ln d 7

8 Ezután határozzuk meg a primitív függvényt. ln d = ln 6 + c = ln 6 + c Most térjünk vissza a határozott integrálhoz. e [ ln ln d = ] e 6 Helyettesítsük az integrálisi határokat a primitív függvénybe és vegyük a kapott értékek különbségét. [ ln ] e ln e = e 6 ln 6 = 6 e 6 = 6 6 e + 6 = e Feladat: Határozzuk meg az f = [ tg függvény grakonja és az -tengely közötti terület nagyságát a π 6, π ] intervallumon! Megoldás: Vizsgáljuk meg, vált-e el jelet a függvény az adott intervallumban, azaz oldjuk meg a tg = egyenletet. Ennek megoldása: = k π, k Z, és ezen megoldások közül az = az adott intervallum belsejében van. A függvény itt az el jelét is megváltoztatja, hiszen a π, intervallumon negatív a függvény, a, π intervallumon pedig pozitív. Az alakzatot tehát két részre kell bontanunk, és a területét két integrállal tudjuk meghatározni. Egyrészt az intervallum alsó végpontjától integrálunk a zérushelyig, és vesszük ezen integrál -szeresét, másrészt pedig a zérushelyt l integrálunk az intervallum fels végpontjáig. Ugyanez jelekkel leírva: π T = tg d + tg d. π 6 Mivel az integrandus nem alapintegrál, ezért végezzük el külön a határozatlan integrálást. A tg helyett írjunk sin cos -et. sin tg d = cos d Szorozzunk és osszunk is -gyel. Az osztást egyb l emeljük ki az integrál elé egy el jel formájában. sin sin cos d = cos d Mindezt azért tettük, mert cos = sin, s így az integrandus f típusú lett, azaz f sin cos cos d = cos d. 8

9 . ábra. Az f = tg függvény grakonja Alkalmazzuk az f típusú függvényekre vonatkozó integrálási szabályt. f cos d = ln cos + c cos Ezután térjünk vissza a területhez. T = [ ln cos ] π + [ ln cos ] π 6 = [ln cos ] π [ln cos ] π 6 Helyettesítsünk a Newton-Leibniz-szabályba. T = ln cos ln cos π ln π 6 cos ln cos = = ln ln ln ln = ln ln = = ln + ln = ln = ln Feladat: Határozzuk meg az f = e és g = + függvények grakonjai közti területet a [, ] intervallumon! Megoldás:El ször azt kell eldöntenünk, hogy metszi-e egymást a két függvény grakonja az adott intervallumban. Tegyük egyenl vé a két függvényt, így az e = + egyenletet kapjuk, melyet algebrai úton nem tudunk megoldani. Ha ábrázoljuk a két függvényt, akkor sejthet, hogy = esetén metszik egymást, és a sejtést a függvényekbe történ behelyettesítéssel gyorsan ellen rizhetjük is. f = e = és g = + = A két függvény grakonja tehát valóban az = helyen metszi egymást. Más metszéspont pedig nincs az adott intervallumban, hiszen az epo- 9

10 5. ábra. Az f = e és g = + függvények grakonjai nenciális függvény szigorúan monoton n, a másodfokú függvény pedig szigorúan monoton csökken itt, így a két függvénynek legfeljebb egy közös pontja lehet az adott intervallumban. A metszéspont miatt a kérdéses területet két integrállal tudjuk meghatározni. Egyrészt integráljuk -t l -ig a g f függvényt, mert itt a g grakonja halad az f grakonja felett. Majd ehhez hozzáadjuk az f g függvénynek -tól -ig vett integrálját. Ezen az intervallumon az f grakonja halad g grakonja felett, ezért vonjuk f-b l a g-et. A terület tehát az alábbi módon írható fel: T = + e d + e + d Határozzunk meg primitív függvényeket. [ ] [ ] T = + e + e + Végül helyettesítsünk a Newton-Leibniz-szabályba. T = + e + e + + e + e + = = + e = e + e e Feladat: Számoljuk ki azon forgástest térfogatát, mely az f = th függvény grakonja [, ] intervallumhoz tartozó ívének -tengely körüli forgatásával keletkezik!

11 Megoldás: Tudjuk, hogy egy folytonos függvény [a, b] intervallumhoz tartzó ívének -tengely körüli forgatásakor keletkez forgástest térfogatára az alábbi összefüggés igaz: V = π b f d. a Lényegében annyi a feladatunk, hogy behelyettesítünk ebbe a képletbe, majd elvégezzük az integrálást. A helyettesítés során egyrészt a függvényt kell helyettesíteni, másrészt pedig az intervallum végpontjait. Jelen esetben így az alábbit kapjuk: V = π th d. Alakítsunk az integranduson azt felhasználva, hogy th = sh ch. sh sh V = π d = π ch ch d Ezután használjuk fel az = ch sh azonosságot, melyet hozzunk sh = ch alakra. Helyettesítsük ezt az integrandus számlálójába. ch V = π ch d Bontsuk fel ezután két törtre a függvényt, és egyszer sítsünk. ch V = π ch ch d = π ch d Így már csak két alapintegrál maradt. Határozzuk meg a primitív függvényt. V = π [ th] Végül helyettesítsük az integrálási határokat, és vegyük az értékek különbségét. V = π th th = π th Feladat: Számoljuk ki azon forgástest térfogatát, mely az f = e e függvény grakonja [, ] intervallumhoz tartozó ívének - + tengely körüli forgatásával keletkezik! Megoldás: Helyettesítsünk be a forgástestek térfogatára vonatkozó b V = π f d képletbe. a e V = π d e + Végezzük el a négyzetre emelést.

12 e V = π e + d A tört helyett írjunk inkább negatív kitev s hatvánnyal történ szorzást. Természetesen a gyökr l is térjünk át törtkitev s hatványra. V = π e + e d Mivel e + = e, ezért szorozzunk is és osszunk is kett vel. Az osztást egyb l az integráljel elé írjuk -del való szorzás formájában. V = π e + e d Az integrandus ezen alakban f α f típusúvá vált, s így könnyen elvégezhet az integrálás. V = π e + [ = π e ] [ ] + = π e + Utolsó lépésként helyettesítsünk a Newton-Leibniz-szabályba. V = π e + e + = π e Feladat: [ Határozzuk meg az f = függvény görbéjének ívhosszát a, ] intervallumon! Megoldás: Tudjuk, hogy az f folytonosan dierenciálható függvény grakonjának ívhosszát az [a, b] intervallumon az alábbi összefüggés adja: b Γ = + f d. a Ebbe a képletbe kell behelyettesítenünk a feladatban megadott függvény deriváltját és az intervallum végpontjait. Els ként deriváljuk a függvényt, azonban ehhez célszer átalakítani, és egyetlen hatványként írni. f = = = Ezután már egyszer a deriválás. f = = Most helyettesítsünk az ívhossz képletébe. Γ = + d

13 Végezzük el a négyzetre emelést. Γ = Γ = + 9 d A gyököt írjuk hatványként. + 9 d Így jól látható, hogy az integrandus olyan összetett függvény, melynek bels függvénye lineáris. Integrálnunk kell tehát a küls függvényt, majd osztanunk kell a bels függvényb l együtthatójával. + 9 Γ = 9 = Végül helyettesítsük az integrálási határokat Γ = 8 7 = = Feladat: Számoljuk ki az f = ln függvény görbéjének ívhosszát 8 a [, e] intervallumon! b Megoldás: Mivel az Γ = + f d képletbe kell helyettseítenünk, így els ként el kell állítanunk a függvény deriváltját. f = 8 Helyettesítsünk a képletbe. e Γ = + d 8 a Végezzük el a négyzetre emelést, majd vonjunk össze. e Γ = + + e 6 d = d A gyök alatt álló kifejezésben egy teljes négyzet ismerhet fel, s így elt nik az integrandusból a négyzetgyök. e Γ = + e d = d Így már csak alapintegrálok szerepelnek az integrandusban, meghatározhatunk tehát egy primitív függvényt. [ Γ = + ln ] e 8

14 Helyettesítsünk a Newton-Leibniz-szabályba. Γ = e + ln e + ln = e + + = e Feladat: Határozzuk meg azon forgástest palástjának felszínét, mely úgy keletkezik, hogy az f = + függvény grakonjának [, ] intervallumhoz tartozó ívét megforgatjuk az -tengely körül! Megoldás: Tudjuk, hogy az [a, b] intervallumon folytonosan dierenciálható f függvény grakonjának tengely körüli megforgatásával kapott forgástest palástjának felszínét az alábbi összefüggés adja: b F = π f + f d. a Ebbe a képletbe kell behelyettesítenünk a feladatban megadott függvényt és deriváltját, valamint az intervallum végpontjait. Állítsuk el a függvény deriváltját. Figyeljünk oda arra, hogy összetett függvényt deriválunk, így a küls függvény deriváltját szorozni kell még a bels függvény deriváltjával. f = + = + Ezután már helyettesíthetünk a képletbe. F = π + + d + Végezzük el a második gyök alatt a négyzetre emelést. 9 F = π d A két gyökös kifejezés szorzatát írjuk fel egyetlen gyökkel, és végezzük el a szorzást. 9 F = π + + d = π d Vonjunk össze a gyök alatt, és a írjunk inkább törtkitev s hatványt a gyök helyett. F = π + d = π + d Átalakításaink eredményeként az integrandus olyan összetett függvény lett, melynek bels függvénye els fokú, így könnyen elvégezhet az integrálás. A küls függvényt integráljuk, és osztunk a bels függvényb l együtthatójával. F = π + = π 9 +

15 A primitív függvénybe helyettesítsük az integrálási határokat. F = π + + = 9 9 = π 5 = π 7 5 = 9 9 = π Feladat: Számoljuk ki azon forgástest palástjának felszínét, mely úgy keletkezik, hogy az f = függvény grakonjának [, ] intervallumhoz tartozó ívét forgatjuk meg az -tengely körül! Megoldás: Amint az el z feladatban, úgy most is az alábbi képletbe kell helyettesítenünk. b F = π f + f d a Ehhez állítsuk el a függvény deriváltját. f = = Ezután végezzük el a helyettesítést. F = π + d Végezzük el a négyzetre emelést, emeljünk ki, és a gyök helyett írjunk inkább hatványt. F = π + d = π + d Mivel + =, ezért szorozzunk is és osszunk is -gyel. Az osztást, amint az korábban is tettük, írjuk -del szorzás formájában az integrál el tt. F = π + d = π + d Ezzel sikerült elérnünk, hogy az integrandus f α f típusú lett. F = π + + d 6 Alkalmazzuk a megfelel integrálási szabályt. F = π + 6 = π 9 [ + ] 5

16 Helyettesítsük ezután az integrálási intervallum végpontjait. F = π = π

Határozatlan integrál

Határozatlan integrál Határozatlan integrál 05. április.. Alapfeladatok. Feladat: Határozzuk meg az alábbi határozatlan integrált! + sin ch Megoldás: Az integrálandó függvényen belül összeadás illetve kivonás m velete szerepel,

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Függvények határértéke, folytonossága

Függvények határértéke, folytonossága Függvények határértéke, folytonossága 25. február 22.. Alapfeladatok. Feladat: Határozzuk meg az f() = 23 4 5 3 + 9 a végtelenben és a mínusz végtelenben! függvény határértékét Megoldás: Vizsgáljuk el

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Megoldások november

IV. INTEGRÁLSZÁMÍTÁS Megoldások november IV. INTEGRÁLSZÁMÍTÁS Megoldások 009. november Határozatlan integrálás.05. + C + C.06. + C + C.07. ( ( 5 5 + C.08. ( ( + 5 5 + + C.09. + ( + ln + + C.. ( + ( + ( + 5 5 + + C.. + ( + ( + ( + + ( + ( + +

Részletesebben

Komplex számok trigonometrikus alakja

Komplex számok trigonometrikus alakja Komplex számok trigonometrikus alakja 015. február 15. 1. Alapfeladatok 1. Feladat: Határozzuk meg az alábbi algebrai alakban adott komplex számok trigonometrikus alakját! z 1 = 4 + 4i, z = 4 + i, z =

Részletesebben

Példatár Lineáris algebra és többváltozós függvények

Példatár Lineáris algebra és többváltozós függvények Példatár Lineáris algebra és többváltozós függvények Simonné Szabó Klára. február 4. Tartalomjegyzék. Integrálszámítás.. Racionális törtek integrálása...................... Alapfeladatok..........................

Részletesebben

Komplex számok algebrai alakja

Komplex számok algebrai alakja Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Integrálszámítás (Gyakorló feladatok). Határozatlan integrál. Alapintegrálok F. Számítsa ki az alábbi határozatlan integrálokat! a) (x x + ) b) (6x x + 5) c) (x + x + x ) d) ( x + x x e) ( ) + e x ) f)

Részletesebben

Területszámítás Ívhossz számítás Térfogat számítás Felszínszámítás. Integrálszámítás 4. Filip Ferdinánd

Területszámítás Ívhossz számítás Térfogat számítás Felszínszámítás. Integrálszámítás 4. Filip Ferdinánd Integrálszámítás 4. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 2015 november 30. Filip Ferdinánd 2015 november 30. Integrálszámítás 4. 1 / 12 Az el adás vázlata Területszámítás

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Feladatok november

IV. INTEGRÁLSZÁMÍTÁS Feladatok november IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin

Részletesebben

Függvények menetének vizsgálata, szöveges széls érték feladatok

Függvények menetének vizsgálata, szöveges széls érték feladatok Függvények menetének vizsgálata, szöveges széls érték feladatok 2015. március 29. 1. Alapfeladatok 1. Feladat: Hol növekv az f() függvény, ha deriváltja f () = ( + 2)( 5) 2? Megoldás: Egy függvény növekedését,

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

Határozatlan integrál

Határozatlan integrál Határozatlan integrál 205..04. Határozatlan integrál 205..04. / 2 Tartalom Primitív függvény 2 Határozatlan integrál 3 Alapintegrálok 4 Integrálási szabályok 5 Helyettesítéses integrálás 6 Parciális integrálás

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Függvénytani alapfogalmak

Függvénytani alapfogalmak Függvénytani alapfogalmak 015. február 15. 1. Alapfeladatok 1. Feladat: Határozzuk meg a valós számok legb vebb részhalmazát, 4x + melyen az f(x) = hozzárendelési utasítású függvény értelmezhet! x Megoldás:

Részletesebben

Határozatlan integrál, primitív függvény

Határozatlan integrál, primitív függvény Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,

Részletesebben

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2 Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...

Részletesebben

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

Függvényhatárérték és folytonosság

Függvényhatárérték és folytonosság 8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk

Részletesebben

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27. Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten MÁSODFOKÚ EGYENLETEK ÉS EGYENLŽTLENSÉGEK Készítette: Gábor Szakmai felel s: Gábor

Részletesebben

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4 Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

25 i, = i, z 1. (x y) + 2i xy 6.1

25 i, = i, z 1. (x y) + 2i xy 6.1 6 Komplex számok megoldások Lásd ábra z = + i, z = + i, z = i, z = i z = 7i, z = + 5i, z = 5i, z = i, z 5 = 9, z 6 = 0 Teljes indukcióval 5 Teljes indukcióval 6 Az el z feladatból következik z = z = =

Részletesebben

Feladatok matematikából 3. rész

Feladatok matematikából 3. rész Debreceni Egyetem Matematikai Intézet Feladatok matematikából 3. rész fizika és villamosmérök alapszakos hallgatók részére Debrecen, 6 ősz Határozatlan integrál. Számítsuk ki a következő integrálokat!

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja) Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Irracionális egyenletek, egyenlôtlenségek

Irracionális egyenletek, egyenlôtlenségek 9 Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek /I a) Az egyenlet bal oldala a nemnegatív számok halmazán, a jobb oldal minden valós szám esetén

Részletesebben

I. feladatsor. (t) z 1 z 3

I. feladatsor. (t) z 1 z 3 I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.

Részletesebben

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

x a x, ha a > 1 x a x, ha 0 < a < 1

x a x, ha a > 1 x a x, ha 0 < a < 1 EL 18 Valós exponenciális függvények Definíció: Ha a R, a>0, akkor legyen a x = e x lna, x R A valós változós exponenciális függvények grafikonja: x a x, ha a > 1 x a x, ha 0 < a < 1 A szinusz függvény

Részletesebben

Egyenletek, egyenlőtlenségek V.

Egyenletek, egyenlőtlenségek V. Egyenletek, egyenlőtlenségek V. DEFINÍCIÓ: (Másodfokú egyenlet) Az ax + bx + c = 0 alakban felírható egyenletet (a, b, c R; a 0), ahol x a változó, másodfokú egyenletnek nevezzük. TÉTEL: Az ax + bx + c

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

(x + 1) sh x) (x 2 4) = cos(x 2 ) 2x, e cos x = e

(x + 1) sh x) (x 2 4) = cos(x 2 ) 2x, e cos x = e Az. gyakorlat HF-inak megoldása. Deriváljuk az alábbi függvényeket. sin x cos x = cos x sin x, x ln x = x / ln x + x x x, x x = x / = x/ = = e x cos x+e x sin x e x cos x cos x, x sin x ln x = + x x, x

Részletesebben

Matematikai analízis II.

Matematikai analízis II. Matematikai analízis II. Feladatgyűjtemény GEMAN6-B Gazdaságinformatikus, Programtervező informatikus és Mérnökinformatikus hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . feladatlap Implicit függvények

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

SHk rövidítéssel fogunk hivatkozni.

SHk rövidítéssel fogunk hivatkozni. Nevezetes függvény-határértékek Az alábbiakban a k sorszámú függvény-határértékek)re az FHk rövidítéssel, a kompozíció határértékéről szóló első, illetve második tételre a KL1, illetve a KL rövidítéssel,

Részletesebben

Komplex számok. 2014. szeptember 4. 1. Feladat: Legyen z 1 = 2 3i és z 2 = 4i 1. Határozza meg az alábbi kifejezés értékét!

Komplex számok. 2014. szeptember 4. 1. Feladat: Legyen z 1 = 2 3i és z 2 = 4i 1. Határozza meg az alábbi kifejezés értékét! Komplex számok 014. szeptember 4. 1. Feladat: Legyen z 1 i és z 4i 1. (z 1 z ) (z 1 z ) (( i) (4i 1)) (6 9i 8i + ) 8 17i 8 + 17i. Feladat: Legyen z 1 i és z 4i 1. Határozza meg az alábbi kifejezés értékét!

Részletesebben

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket! Másodfokú egyenletek 1. Alakítsuk teljes négyzetté a következő kifejezéseket! a.) - 4 + 4 b.) - 6 + 8 c.) + 8 - d.) - 4 + 9 e.) - + 8 - f.) - - 4 + 3 g.) + 8-5 h.) - 4 + 3 i.) -3 + 6 + 1. Ábrázoljuk és

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 19 XIX A HATÁROZOTT INTEGRÁL ALkALmAZÁSAI 1 TERÜLET ÉS ÍVHOSSZ SZÁmÍTÁSA Területszámítás Ha f az [a,b] intervallumon nemnegatív, folytonos függvény, akkor az görbe, az x tengely,

Részletesebben

Magasabbfokú egyenletek

Magasabbfokú egyenletek 86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y

Részletesebben

Matematika 1 mintafeladatok

Matematika 1 mintafeladatok Matematika mintafeladatok Lukács Antal 06. február 0. Tartalomjegyzék. Komplex számok algebrai alakja. Komplex számok trigonometrikus alakja 6. Függvénytani alapfogalmak 4. Számsorozatok 46 5. Függvények

Részletesebben

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és 2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend

Részletesebben

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév)

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév) . Házi feladat és megoldása (DE, KTK, 4/5 tanév első félév) () Határozza meg a következő függvények (első) deriváltját: 3 + f() ctg, g() (3 )3 tg, h() cos( 3 + e ), i() lg(ln(e + 4 ln )), j() (3) ln, k()

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Vizsgatematika. = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika 1 / 42

Vizsgatematika. = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika 1 / 42 Vizsgatematika = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika / 42 Bevezetés(logikai formulák és halmazok): logikai m veletek és m velettábláik,

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36 Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás

Részletesebben

Permutációk véges halmazon (el adásvázlat, február 12.)

Permutációk véges halmazon (el adásvázlat, február 12.) Permutációk véges halmazon el adásvázlat 2008 február 12 Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: ismétlés nélküli variáció leképezés indulási és érkezési halmaz

Részletesebben

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) (11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)

Részletesebben

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =

Részletesebben

Miért van az, hogy a legtöbben. a szöveges feladatokkal nem boldogulnak? Részletek a szövegértést fejleszt, kidolgozott feladatlapokból

Miért van az, hogy a legtöbben. a szöveges feladatokkal nem boldogulnak? Részletek a szövegértést fejleszt, kidolgozott feladatlapokból Miért van az, hogy a legtöbben a szöveges feladatokkal nem boldogulnak? Részletek a szövegértést fejleszt, kidolgozott feladatlapokból Elszó 0 éves személyes tapasztalataim azt mutatják, hogy a tanulóknak

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC 6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák)

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák) Feladatok megoldásokkal az ötödik gyakorlathoz Taylor polinom, szöveges szélsőérték problémák) 1. Feladat. Írjuk fel az fx) = e x függvény a = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével

Részletesebben

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda Trigonometrikus egyenletek megoldása Azonosságok és 1 mintapélda Frissítve: 01. novermber 19. :07:41 1. Azonosságok 1.1. Azonosság. A sin és cos szögfüggvények derékszög háromszögben vett, majd kiterjesztett

Részletesebben

4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval

4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval 4. fejezet Egyváltozós valós függvények deriválása Elm 4.. Differenciálás a definícióval A derivált definíciójával atározza meg az alábbi deriváltakat!. Feladat: f) = 6 + f 4) =? f 4) f4 + ) f4) 5 + 6

Részletesebben

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1. Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

f (ξ i ) (x i x i 1 )

f (ξ i ) (x i x i 1 ) Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <

Részletesebben

Matematika példatár 4.

Matematika példatár 4. Nyugat-magyarországi Egyetem Geoinformatikai Kara Csabina Zoltánné Matematika példatár 4 MAT4 modul Integrálszámítás szabályai és módszerei SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül

Részletesebben

Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa

Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa 1. Mutasd meg, hogy a tízes számrendszerben felírt 111111111111 tizenhárom jegyű szám összetett szám, azaz

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. 5. Add meg az összeadásban szereplő Add meg a kivonásban szereplő Add meg a szorzásban szereplő Add meg az osztásban szereplő Hogyan függ két szám előjelétől a két szám szorzata, hányadosa?

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket

Részletesebben

y + a y + b y = r(x),

y + a y + b y = r(x), Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan

Részletesebben

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások: . Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben