Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.
|
|
- Attila Szekeres
- 9 évvel ezelőtt
- Látták:
Átírás
1 Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A megvásárlásra vonatkozó információkért kérem látogasson el honlapomra. Ez a logó Dittrich Katalin ötlete alapján született. 1
2 1. Másodfokú egyenlet 1.1. Főbb nevezetes azonosságok (a + b) 2 = a 2 + b 2 + 2ab (a b) 2 = a 2 + b 2 2ab (a + b)(a b) = a 2 b Másodfokú egyenlet A ax 2 + bx + c = 0 másodfokú egyenlet megoldása(i) (feltéve, hogy a 0; b 2 4ac 0) : x 1,2 = b± b 2 4ac 2a 1.3. A másodfokú egyenlet diszkriminánsa Az ax 2 + bx + c = 0 (a 0) másodfokú egyenlet diszkriminánsa: D = b 2 4ac -ha D > 0: az egyenletnek két különböző valós gyöke van -ha D = 0: az egyenlet két gyöke megegyezik (egy valós gyök) -ha D < 0: az egyenletnek nincsen valós gyöke 2
3 1.4. Parabola csúcsa és szimmetria tengelye Az y = p(x q) 2 + r (p 0) parabola -csúcsának koordinátái: (q, r) -szimmetria tengelyének az egyenlete: x = q Másodfokú kifejezés szorzattá alakítása Ha a 0 és b 2 4ac 0 akkor ax 2 + bx + c = a(x x 1 )(x x 2 ), ahol x 1 és x 2 az ax 2 +bx+c = 0 egyenlet két gyöke Azonosság fogalma Ha ax 2 + bx + c = px 2 + qx + r minden x-re, akkor a = p és b = q és c = r. jelölés: ax 2 + bx + c px 2 + qx + r 1.7. Függvény transzformáció Az f(x) függvény grafikonját az alábbi függvény grafikonjába átvivő transzformáció: f( x): tükrözés az y tengelyre f(x): tükrözés az x tengelyre f(x a), ahol a > 0: x tengely menti eltolás a 3
4 értékkel pozitív irányban f(x + a), ahol a > 0: x tengely menti eltolás a értékkel negatív irányban f(x) + a, ahol a > 0: y tengely menti eltolás a értékkel pozitív irányban f(x) a, ahol a > 0: y tengely menti eltolás a értékkel negatív irányban af(x), ahol a > 0: y tengely menti a-szoros nyújtás 1 f(ax), ahol a > 0: x tengely menti a -szoros nyújtás 1.8. Feladat - másodfokú egyenletek 20 perc Keresd meg az alábbi egyenletek gyökeit: a) 3x 2 7x + 2 = 0. b) 2x 2 x 3 = 0. c) 3x 2 5x + 5 = 0. d) x 2 6x + 9 = 0. e) 5x x 6 = 0. f) 5x x = 0. g) 5x 2 45 = 0. 4
5 Tipp: Lásd 1.2 itt: 2 vagy alakíts szorzattá. a) 2, 1 3 ; b) 1.5, -1; c) x ; d) 3; e) 3, 2 5 ; f) 0, -3; g) 3, Feladat - másodfokú egyenletek 5 perc a) Oldd meg az alábbi egyenletet: x 2 2x 4 = 0. A végeredményt egyszerűsítsd! b) Oldd meg az alábbi egyenletet: 2x 2 +8x+4 = 0. A végeredményt egyszerűsítsd! Tipp1: Lásd 1.2 itt: 2. a) 1 + 5; 1 5; b) 2 + 2; 2 2; Feladat+ másodfokú egyenletek megoldása fejben 18 perc Számold ki fejben az alábbi egyenletek gyökeit: a) x 2 5x + 6 = 0; b) x 2 7x + 12 = 0; c) x 2 9x + 20 = 0; d) x 2 5x + 10 = 0; e) x 2 11x + 30 = 0; f) x 2 13x + 30 = 0; g) x 2 17x + 30 = 0; h) x 2 31x + 30 = 0; 5
6 i) x 2 x 30 = 0; j) x 2 + x 30 = 0; k) x 2 13x 30 = 0; l) x x + 30 = 0; m) x 2 + 2x 15 = 0; n) x 2 + 9x + 18 = 0; Tipp: Az x 2 + bx + c = 0 egyenletben a gyökök szorzata c, a gyökök összege pedig b. a) 2, 3; b) 3, 4; c) 4, 5; d) x (nincsen valós megoldás); e) 5, 6; f) 3, 10; g) 2, 15; h) 1, 30; i) 6, -5; j) 5, -6; k) 15, -2; l) -3, -10; m) 3, -5; n) -3; Feladat - másodfokú kifejezések átalakításai 33 perc Végezd el a műveleteket: a) (x + 3)(3x 2) 5(x 3) 2. b) (5x 2)(x 3) 2(x 4) 2. c) (x 2)(2x 4) 3(2x + 5) 2. d) (2x 3)(2x + 3) (x 1) 2. e) (x + 2)(3x 6) 5(3x 2) 2. f) (x 4)(5x + 2) 2(x + 6) 2. g) (x 3)(x + 1) 2. h) (x + 5)(x 2) 2. 6
7 Tipp: Lásd 1.1 itt: 2. a) 2x x 51; b) 3x 2 x 26; c) 10x 2 68x 67; d) 3x 2 + 2x 10; e) 42x x 32; f) 3x 2 42x 80; g) x 3 x 2 5x 3; h) x 3 + x 2 16x + 20; Feladat - azonosságok 20 perc a) Feltéve, hogy x 2 2x + 3 = px 2 + qx + r minden x esetén, határozd meg p, q, r konstansok értékét. b) Feltéve, hogy 2x 2 +px+8 = q(x+1) 2 +r minden of x esetén, határozd meg p, q, r konstansok értékét. c) Feltéve, hogy 3x 2 +px+7 = q(x 2) 2 +r minden of x esetén, határozd meg p, q, r konstansok értékét. d) Feltéve, hogy qx 2 30x + r = 5(x p) 2 2 minden of x esetén, határozd meg p, q, r konstansok értékét. Tipp: Lásd 1.6 itt: 3. 7
8 a) p = 1; q = 2; r = 3; b) p = 4; q = 2; r = 6; c) p = 12; q = 3; r = 5; d) p = 3; q = 5; r = 43; Feladat - teljes négyzetté alakítás; 10 perc Az alábbi kifejezéseket hozd (x + b) 2 + c alakra, ahol b és c valós számok. a) x 2 + 6x + 3; b) x 2 8x 5; c) x x + 2; d) x 2 14x 5; e) x 2 + 2x + 3; f) x 2 16x + 3; g) x 2 3x + 2 Tipp: x együtthatójának a felét keresd meg, majd vond ki a négyzetét. Ellenőrizd le a megoldásod. a) (x + 3) 2 6; b) (x 4) 2 21; c) (x + 5) 2 23; d) (x 7) 2 54; e) (x + 1) 2 + 2; f) (x 8) 2 61; g) (x 1.5) Feladat - teljes négyzetté alakítás; 30 perc Az alábbi kifejezéseket hozd a(x + b) 2 + c alakra, ahol a, b és c valós számok. a) 2x 2 +12x+20; b) 2x 2 +8x 2; c) 2x 2 4x 6; d) 8
9 2x 2 16x 8; e) 2x 2 12x 10; f) 2x 2 +20x+30; g) 3x 2 24x+21; h) 2x 2 20x+31; i) 2x 2 +16x+15; Tipp: 1. lépés: emeld ki x együtthatóját; 2. lépés: a zárójelen belül végezd el az előző feladatban lévő átalakítást; 3. lépés: szorozz vissza; Ellenőrizd a megoldásod. a) 2(x+3) 2 +2; b) 2(x+2) 2 10; c) 2(x 1) 2 8; d) 2(x 4) 2 40; e) 2(x 3) 2 28; f) 2(x+5) 2 20; g) 3(x 4) 2 27; h) 2(x 5) 2 19; i) 2(x+4) 2 17; Feladat - teljes négyzetté alakítás; 12 perc Az alábbi kifejezéseket hozd (x+b) 2 +c alakra, ahol b és c valós számok. a) x 2 8x 3; b) x 2 +2x+5; c) x 2 10x 7; d) x 2 + 6x + 9; e) x 2 12x 3; Tipp: 1. lépés: emelj ki -1-et; 2. lépés: a zárójelen belül végezd el a 1.13 feladatban lévő átalakítást; 3. lépés: szorozz vissza; Ellenőrizd a megoldásod. 9
10 a) (x + 4) ; b) (x 1) 2 + 6; c) (x + 5) ; d) (x 3) ; e) (x + 6) ; Feladat - teljes négyzetté alakítás; a parabola csúcspontja; a parabola szimmetria tengelye; 30 perc a) (i) Fejezd ki az x 2 8x+12 másodfokú kifejezést (x ± p) 2 ± q alakban (p és q valós számok). (ii) Állapítsd meg az y = x2 8x + 12 alakzat (V ) csúcspontjának a koordinátáit. (iii) Határozd meg a grafikon szimmetria tengelyének egyenletét. b) (i) Fejezd ki az x 2 +6x+20 másodfokú kifejezést (x ± p) 2 ± q alakban (p és q valós számok). (ii) Állapítsd meg az y = x2 + 6x + 20 alakzat (V ) csúcspontjának a koordinátáit. (iii) Határozd meg a grafikon szimmetria tengelyének egyenletét. c) (i) Fejezd ki a 2x 2 20x + 43 másodfokú kife- 10
11 jezést p(x ± q) 2 ± r alakban (p és q valós számok). (ii) Állapítsd meg az y = 2x2 20x + 43 alakzat (V ) csúcspontjának a koordinátáit. (iii) Határozd meg a grafikon szimmetria tengelyének egyenletét. d) (i) Fejezd ki a 2x 2 +4x+11 másodfokú kifejezést p(x ± q) 2 ± r alakban (p és q valós számok). (ii) Állapítsd meg az y = 2x2 + 4x + 11 alakzat (V ) csúcspontjának a koordinátáit. (iii) Határozd meg a grafikon szimmetria tengelyének egyenletét. e) (i) Fejezd ki a 2x 2 28x + 69 másodfokú kifejezést p(x ± q) 2 ± r alakban (p és q valós számok). (ii) Állapítsd meg az y = 2x2 28x + 69 alakzat (V ) csúcspontjának a koordinátáit. (iii) Határozd meg a grafikon szimmetria tengelyének egyenletét. f) (i) Fejezd ki a x 2 6x+10 másodfokú kifejezést 11
12 p(x ± q) 2 ± r alakban (p és q valós számok). (ii) Állapítsd meg az y = x2 6x + 10 alakzat (V ) csúcspontjának a koordinátáit. (iii) Határozd meg a grafikon szimmetria tengelyének egyenletét. Tipp: Lásd 1.4 itt: 3. a) (i) (x 4) 2 4; (ii) V (4, 3); (iii) x = 4 b) (i) (x + 3) ; (ii) V ( 3, 11); (iii) x = 3 c) (i) 2(x 5) 2 7; (ii) V (5, 7); (iii) x = 5 d) (i) 2(x + 1) 2 + 9; (ii) V ( 1, 9); (iii) x = 1 e) (i) 2(x 7) 2 29; (ii) V (7, 29); (iii) x = 7 f) (i) (x + 3) ; (ii) V ( 3, 19); (iii) x = Feladat - másodfokú polinom szorzattá alakítása; 24 perc a) Fejezd ki a 2x 2 11x+15 másodfokú kifejezést p(x q)(x r) alakban, ahol p, q és r valós számok. b) Fejezd ki a 3x 2 + 5x 2 másodfokú kifejezést p(x q)(x r) alakban, ahol p, q és r valós 12
13 számok. c) Fejezd ki a 5x 2 + 5x 10 másodfokú kifejezést p(x q)(x r) alakban, ahol p, q és r valós számok. d) Fejezd ki az x 2 +8x+15 másodfokú kifejezést p(x q)(x r) alakban, ahol p, q és r valós számok. e) Fejezd ki a 2x 2 + 5x 25 másodfokú kifejezést p(x q)(x r) alakban, ahol p, q és r valós számok. f) Fejezd ki a 3x 2 7x 20 másodfokú kifejezést p(x q)(x r) alakban, ahol p, q és r valós számok. Tipp: Lásd 1.5 itt: 3. a) 2(x 2.5)(x 3); b) 3(x + 2)(x 1 3 ); c) 5(x 1)(x + 2); d) (x + 3)(x + 5); e) 2(x + 5)(x 2.5); f) 3(x 4)(x ) 13
14 1.18. Feladat - elsőfokú egyenlőtlenségek megoldása; 4 perc Oldd meg az alábbi egyenlőtlenségeket a valós számok halmazán. a) x > 6. b) 2x > 6. c) 2 > 6 2x. Tipp: Ha negatív számmal szorzod vagy osztod az egyenletet, fordítsd meg a relációs jelet. a) x < 6; b) x < 3; c) x > 4; Feladat - Másodfokú egyenlőtlenségek; 40 perc Oldd meg az alábbi egyenlőtlenségeket a valós számok halmazán. a) x 2 4x < 3. b) x > 4x. c) x 2 7x + 10 < 0. d) x 2 7x e) x 2 4x + 5 > 0. 14
15 f) x 2 4x + 5 < 0. g) x 2 + 3x + 4 > 0. h) 2x 2 + 5x 5 > 0. i) 3x 2 6x 10 < 0. j) x > 3x. k) x x. Tipp: 1. lépés: nullára redukálás 2. lépés: zérus hely megkeresése (mintha egyenlet lenne) 3. lépés: parabola ábrázolása a zérus helyek figyelembe vételével (ha x 2 együtthatója negatív, akkor megfordítva kell ábrázolni) 4. lépés: a megoldás leolvasása a) 1 < x < 3; b) x < 1 or x > 3; c) 2 < x < 5; d) x 2 or x 5; e) x R (minden valós szám megoldás); f) x (nincsen megoldás); g) 1 < x < 4; h) x (nincsen megoldás); i) x R (minden valós szám megoldás); j) x R \ {1.5}; k) x = 1.5; 15
16 1.20. Feladat - elsőfokú és másodfokú egyenlőtlenségek alkalmazása; 10 perc Egy téglalap alakú szoba szélessége x méter. A hossza 3 méterrrel több, mint a szélessége. Feltéve, hogy a szoba kerülete nagyobb, mint 22 méter, (i) mutasd meg, hogy x > 4. (ii) figyelembe véve, hogy az előző feltétel mellett a szoba területe kevesebb, mint 40 m 2 határozd meg x lehetséges értékeit. Tipp: Készíts ábrát. Lásd az előző feladatokat. (i) 4x + 6 > 22 x > 4; (ii) x(x + 3) < 40 8 < x < 5; 4 < x < Feladat - elsőfokú és másodfokú egyenlőtlenségek alkalmazása; 12 perc Egy téglalap alakú szoba szélessége x méter. A hossza 5 méterrrel több, mint a szélessége. Feltéve, hogy a szoba kerülete kevesebb, mint 42 méter, (i) mutasd meg, hogy x < 8. (ii) figyelembe véve, hogy az előző feltétel mel- 16
17 lett a szoba területe több, mint 50 m 2 határozd meg x lehetséges értékeit. Tipp: Készíts ábrát. Lásd az előző feladatokat. (i) 4x + 10 < 42 x < 8; (ii) x(x + 5) > 50 x < 10 vagy 5 < x; (iii) 5 < x < Feladat - diszkrimináns; 10 perc a) Határozd meg a 2x 2 4x 3 = 0 egyenlet valós gyökeinek a számát az egyenlet megoldása nélkül. b) Határozd meg a x 2 + 5x + 8 = 0 egyenlet valós gyökeinek a számát az egyenlet megoldása nélkül. c) Határozd meg a x 2 6x + 9 = 0 egyenlet valós gyökeinek a számát az egyenlet megoldása nélkül. d) Határozd meg a 2x 2 3x + 5 = 0 egyenlet valós gyökeinek a számát az egyenlet megoldása nélkül. e) Határozd meg a 3x 2 6x + 2 = 0 egyenlet valós gyökeinek a számát az egyenlet megoldása 17
18 nélkül. f) Határozd meg az x 2 2x + 1 = 0 egyenlet valós gyökeinek a számát az egyenlet megoldása nélkül. Tipp: Lásd 1.3 itt: 2. a) D = 40 > 0 két különböző valós gyök; b) D = 7 < 0 nincsen valós gyök; c) D = 0 egy valós gyök (két egybeeső gyök); d) D = 31 < 0 nincsen valós gyök; e) D = 12 > 0 két különböző valós gyök; f) D = 0 egy valós gyök (két egybeeső gyök); Feladat - diszkrimináns; 150 perc a) Az x 2 kx + 16 = 0 egyenletnek egy valós gyöke van. Határozd meg az egyenlet diszkriminánsát, majd k lehetséges értékeit. b) Az x 2 6x + k = 0 egyenlet gyökei egyenlőek. Határozd meg az egyenlet diszkriminánsát, majd k lehetséges értékeit. c) Az x 2 + kx + 25 = 0 egyenlet megoldásai 18
19 megegyeznek. Határozd meg az egyenlet diszkriminánsát, majd k lehetséges értékeit. d) Az x 2 12x k = 0 egyenletnek egy valós gyöke van. Határozd meg az egyenlet diszkriminánsát, majd k lehetséges értékeit. e) A kx 2 +(k 6)x+k = 0 egyenletnek egy valós gyöke van. Határozd meg az egyenlet diszkriminánsát, majd k lehetséges értékeit. f) A (k 4)x 2 + (k + 1)x + k + 4 = 0 egyenletnek egy valós gyöke van. Határozd meg az egyenlet diszkriminánsát, majd k lehetséges értékeit. g) A (k 4)x 2 +(2k 2)x+k+11 = 0 egyenletnek egy valós gyöke van. Határozd meg az egyenlet diszkriminánsát, majd k lehetséges értékeit. h) Az x 2 + kx + 9 = 0 egyenletnek nincsenek valós gyökei. Határozd meg az egyenlet diszkriminánsát, majd k lehetséges értékeit. i) Az x 2 + kx + 9 = 0 egyenletnek két különböző valós gyöke van. Határozd meg az egyenlet diszkriminánsát, majd k lehetséges értékeit. j) A 3x 2 6x k = 0 egyenletnek van valós gyöke (legalább egy). Határozd meg az egyenlet diszkriminánsát, majd k lehetséges értékeit. 19
20 k) A (k 2)x 2 +(3k 5)x+k+1 = 0 egyenletnek nincsenek valós gyökei. Határozd meg az egyenlet diszkriminánsát, majd k lehetséges értékeit. l) A (k 2)x 2 +(3k 5)x+k +1 = 0 egyenletnek két különböző valós gyöke van. Határozd meg az egyenlet diszkriminánsát, majd k lehetséges értékeit. m) A (k 2)x 2 +(3k 5)x+k+1 = 0 egyenletnek van valós gyöke (legalább egy). Határozd meg az egyenlet diszkriminánsát, majd k lehetséges értékeit. n) A (k 4)x 2 (k +1)x+k +4 = 0 egyenletnek nincsenek valós gyökei. Határozd meg az egyenlet diszkriminánsát, majd k lehetséges értékeit. o) A (k 4)x 2 (k + 1)x + k + 4 = 0 egyenletnek két különböző valós gyöke van. Határozd meg az egyenlet diszkriminánsát, majd k lehetséges értékeit. p) A (k 4)x 2 (k +1)x+k +4 = 0 egyenletnek van valós gyöke (legalább egy). Határozd meg az egyenlet diszkriminánsát, majd k lehetséges értékeit. q) A (2k 1)x 2 +(3k 1)x+2 k = 0 egyenletnek 20
21 nincsenek valós gyökei. Határozd meg az egyenlet diszkriminánsát, majd k lehetséges értékeit. r) A (2k 1)x 2 +(3k 1)x+2 k = 0 egyenletnek két különböző valós gyöke van. Határozd meg az egyenlet diszkriminánsát, majd k lehetséges értékeit. s) A (2k 1)x 2 +(3k 1)x+2 k = 0 egyenletnek van valós gyöke (legalább egy). Határozd meg az egyenlet diszkriminánsát, majd k lehetséges értékeit. t) A 2kx 2 + 3kx + 2 = x 2 + x + k egyenletnek van valós gyöke (legalább egy). Határozd meg az egyenlet diszkriminánsát, majd k lehetséges értékeit. Tipp: Lásd 1.3 itt: 2. a) D = k 2 64 = 0 k = 8 vagy k = 8; b) D = 36 4k = 0 k = 9; c) D = k = 0 k = 10 vagy k = 10; d) D = k = 0 k = 36; e) Ha k = 0, akkor az egyenlet elsőfokú és egy gyöke van, ha k 0 D = 3k 2 12k
22 k = 2 vagy k = 6, így k lehetséges értékei: 0, 2, -6. f) Ha k = 4 akkor az egyenlet elsőfokú és egy gyöke van, ha k 4 D = 3k 2 + 2k + 65 k = 5 vagy k = 13 3, így k lehetséges értékei: 4, 5, g) Ha k = 4 akkor az egyenlet elsőfokú és egy gyöke van, ha k 4 D = 36k k = 5, így k lehetséges értékei: 4, 5. h) D = k 2 36 < 0 6 < k < 6. i) D = k 2 36 > 0 k < 6 or k > 6. j) D = k 0 k 3. k) Ha k = 2 akkor az egyenlet elsőfokú és egy gyöke van, ha k 2 D = 5k 2 26k + 33 < < k < 3. l) Ha k = 2 akkor az egyenlet elsőfokú és egy gyöke van, ha k 2 D = 5k 2 26k + 33 > 0 k < 2.2 vagy k > 3 és k 2. m) Ha k = 2 akkor az egyenlet elsőfokú és egy gyöke van, ha k 2 D = 5k 2 26k k 2.2 or k 3. n) Ha k = 4 akkor az egyenlet elsőfokú és egy gyöke van, ha k 4 D = 3k 2 + 2k + 65 < 0, 22
23 így a megoldás: k < 13 3 or k > 5. o) Ha k = 4 akkor az egyenlet elsőfokú és egy gyöke van, ha k 4 D = 3k 2 + 2k + 65 > 0, így a megoldás: 13 3 < k < 5 és k 4. p) Ha k = 4 akkor az egyenlet elsőfokú és egy gyöke van, ha k 4 D = 3k 2 + 2k , így k lehetséges értékei: 13 3 k 5. q) Ha k = 1 2 akkor az egyenlet elsőfokú és egy gyöke van, ha k 1 2 D = 17k2 26k + 9 < 0, 9 így a megoldás: 17 < k < 1. r) Ha k = 1 2 akkor az egyenlet elsőfokú és egy gyöke van, ha k 1 2 D = 17k2 26k + 9 > 0, így a megoldás: k < 9 17 vagy 1 < k és k 1 2. s) Ha k = 1 2 akkor az egyenlet elsőfokú és egy gyöke van, ha k 1 2 D = 17k2 26k + 9 0, így a megoldás: k 9 17 vagy 1 k. t) Ha k = 1 2 akkor az egyenlet elsőfokú és egy gyöke van, ha k 1 2 D = 17k2 26k + 9 0, így a megoldás: k 9 17 vagy 1 k. 23
24 1.24. Feladat - diszkrimináns; 12 perc a) Egy alakzat egyenlete y = (x+3)(x 2 +5x+8). Határozd meg az x 2 + 5x + 8 = 0 egyenlet diszkriminánsát és így magyarázd meg, hogy az y = (x + 3)(x 2 + 5x + 8) alakzat mindíg pozitív, ha x > 3. b) Egy alakzat egyenlete y = (x 2)( x 2 + 4x 6). Hazározd meg a x 2 + 4x 6 = 0 egyenlet diszkriminánsát és így magyarázd meg, hogy az y = (x 2)( x 2 +4x 6) alakzat mindíg negatív, ha x > 2. a) D = 7 a másodfokú tényezőnek nincsenek zérus helyei, így mindig pozitív, másrészt x + 3 > 0. Két pozitív szám szorzata pozitív. b) D = 8 a másodfokú tényezőnek nincsenek zérus helyei, így mindig negatív (a parabola fordított), másrészt x 2 > 0. Egy pozitív és egy negatív szám szorzata negatív. 24
25 1.25. Feladat - másodfokúra visszavezethető magasabbfokú egyenletek; 22 perc a) Határozd meg az alábbi egyenlet valós gyökeit: x 4 5x = 0. b) Határozd meg az alábbi egyenlet valós gyökeit: x 6 + 7x 3 8 = 0. c) Határozd meg az alábbi egyenlet valós gyökeit: x 4 + 3x 2 4 = 0. d) Határozd meg az alábbi egyenlet valós gyökeit: x 6 + 9x = 0. e) Határozd meg az alábbi egyenlet valós gyökeit: 2x 4 x 2 1 = 0. f) Határozd meg az alábbi egyenlet valós gyökeit: 4x 4 37x = 0. g) Határozd meg az alábbi egyenlet valós gyökeit: x 4 x 2 = 0. h) Határozd meg az alábbi egyenlet valós gyökeit: 1 x 4 3 x 2 4 = 0. i) Határozd meg az alábbi egyenlet valós gyökeit: 4 x x 2 1 = 0. j) Határozd meg az alábbi egyenlet valós gyökeit: x 6 x + 3 = 0; A megoldást p ± q r alakban add meg, ahol p, q, r egész számok. 25
26 k) Határozd meg az alábbi egyenlet valós gyökeit: x 2x = 0; A megoldást p ± q r alakban add meg, ahol p, q, r egész számok. l) Határozd meg az alábbi egyenlet valós gyökeit: (2x + 1) 4 8(2x + 1) 2 9 = 0. Tipp: Lásd 1.2 itt: 2. a) 1, -1, 2, -2; b) 1, -2; c) 1, -1; d) -1, -2; e) 1, -1; f) 3, 3, 1 2, 1 2 ; g) 0, 1, -1; h) 1 2, 1 2 ; i) 2, -2; j) 42 ± 12 6; k) ; l) 1, -2; Feladat - egyenletrendszer megoldása behelyettesítő módszerrel; 50 perc a) (i) Oldd meg az alábbi egyenletrendszert: y = x 2 2x + 3 és 2x + y = 4. (ii) Mit állapíthatunk meg az (i) részben adott válasz alapján az y = x 2 2x + 3 parabola és a 2x + y = 5 egyenes helyzetéről? b) (i) Oldd meg az alábbi egyenletrendszert: y = x 2 + 5x 9 és 3x y = 1. 26
27 (ii) Mit állapíthatunk meg az (i) részben adott válasz alapján az y = x 2 + 5x 9 parabola és a 3x y = 1 egyenes helyzetéről? c) (i) Oldd meg az alábbi egyenletrendszert: y = x 2 + 4x + 5 és 2x y + 1 = 0. (ii) Mit állapíthatunk meg az (i) részben adott válasz alapján az y = x 2 + 4x + 5 parabola és a 2x y + 1 = 0 egyenes helyzetéről? d) (i) Oldd meg az alábbi egyenletrendszert: y = x 2 2x + 3 és 2x + y 3 = 0. (ii) Mit állapíthatunk meg az (i) részben adott válasz alapján az y = x 2 2x + 3 parabola és a 2x + y 3 = 0 egyenes helyzetéről? e) (i) Oldd meg az alábbi egyenletrendszert: y = x 2 2x + 1 és 5x y 11 = 0. (ii) Mit állapíthatunk meg az (i) részben adott válasz alapján az y = x 2 2x + 1 parabola és a 5x y 11 = 0 egyenes helyzetéről? f) (i) Oldd meg az alábbi egyenletrendszert: y = 27
28 x 2 5x 6 és 2x 3y 12 = 0. (ii) Mit állapíthatunk meg az (i) részben adott válasz alapján az y = x 2 5x 6 parabola és a 2x 3y 12 = 0 egyenes helyzetéről? a) Behelyettesítés után: x 2 = 1 (1, 2), ( 1, 6) két pontban metszik egymást. b) Behelyettesítés után: x 2 + 2x 8 = 0 (2, 5), ( 4, 13) két pontban metszik egymást. c) Behelyettesítés után: x 2 + 2x + 4 = 0 x nincsen közös pontjuk. d) Behelyettesítés után: x 2 = 0 (0, 3) az egyenes a parabola érintője. e) Behelyettesítés után: x 2 7x + 12 = 0 (3, 4), (4, 9) két pontban metszik egymást. f) Behelyettesítés után: 3x 2 17x 6 = 0 (6, 0), ( 1 3, 38 9 ) két pontban metszik egymást. 28
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:
Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.
Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
Egyenletek, egyenlőtlenségek V.
Egyenletek, egyenlőtlenségek V. DEFINÍCIÓ: (Másodfokú egyenlet) Az ax + bx + c = 0 alakban felírható egyenletet (a, b, c R; a 0), ahol x a változó, másodfokú egyenletnek nevezzük. TÉTEL: Az ax + bx + c
Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások
) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.
8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az
a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Abszolútértékes és gyökös kifejezések Megoldások
Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása
MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA
MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA
Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet 25. old. 3. feladat
Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet. old.. feladat a. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés: Az egyenlet bal oldalának ábrázolása függvényként.. lépés:
20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek.
. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek. Először megadom a síkbeli definíciójukat, mert ez alapján vezetjük le az egyenletüket. Alakzat
3. Egyenletek, egyenletrendszerek, egyenlőtlenségek
. Egyenletek, egyenletrendszerek, egyenlőtlenségek I. Nulladik ZH-ban láttuk: 1. Mennyi a 2x 2 8x 5 = 0 egyenlet gyökeinek a szorzata? (A) 10 (B) 2 (C) 2,5 (D) 4 (E) ezek egyike sem Megoldás I.: BME 2011.
10. Koordinátageometria
I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
Matematika 11. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály I. rész: Hatvány, gyök, logaritmus Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
2017/2018. Matematika 9.K
2017/2018. Matematika 9.K Matematika javítóvizsga 2018. augusztus szóbeli 3 rövidebb (feladat, definíció, tétel) és 3 hosszabb feladat megoldása a 30 perces felkészülési idő alatt a megoldás ismertetése
Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!
Másodfokú egyenletek 1. Alakítsuk teljes négyzetté a következő kifejezéseket! a.) - 4 + 4 b.) - 6 + 8 c.) + 8 - d.) - 4 + 9 e.) - + 8 - f.) - - 4 + 3 g.) + 8-5 h.) - 4 + 3 i.) -3 + 6 + 1. Ábrázoljuk és
Matematika pótvizsga témakörök 9. V
Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális
Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.
Nagy András Feladatok a logaritmus témaköréhez. osztály 00. Feladatok a logaritmus témaköréhez. osztály ) Írd fel a következő egyenlőségeket hatványalakban! a) log 9 = b) log 4 = - c) log 7 = d) lg 0 =
Feladatok a logaritmus témaköréhez 11. osztály, középszint
TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy
Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten MÁSODFOKÚ EGYENLETEK ÉS EGYENLŽTLENSÉGEK Készítette: Gábor Szakmai felel s: Gábor
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. 1. Az alábbi hozzárendelések közül melyik függvény? Válaszod indokold!
Megoldások 1. Az alábbi hozzárendelések közül melyik függvény? Válaszod indokold! A: Minden emberhez hozzárendeljük a munkahelyének nevét. B: Minden valós számhoz hozzárendeljük az ellentettjét. C: Minden
I. A négyzetgyökvonás
Definíció: Négyzetgyök a ( a : a a 0 I. A négyzetgyökvonás a ) jelenti azt a nem negatív számot, amelynek a négyzete a. a 0 b : b b R A négyzetgyök-függvény értéke is csak nem negatív lehet. Ha a b-t abszolút
ALGEBRAI KIFEJEZÉSEK, EGYENLETEK
ALGEBRAI KIFEJEZÉSEK, EGYENLETEK AZ ALGEBRAI KIFEJEZÉS FOGALMÁNAK KIALAKÍTÁSA (7-9. OSZTÁLY) Racionális algebrai kifejezés (betűs kifejezés): betűket és számokat a négy alapművelet véges sokszori alkalmazásával
1.1. Alapfogalmak. Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a
1. 1. hét 1.1. Alapfogalmak Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a (2, 3) Egyenes normál vektora egy pontban: egy olyan vektor
Irracionális egyenletek, egyenlôtlenségek
9 Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek /I a) Az egyenlet bal oldala a nemnegatív számok halmazán, a jobb oldal minden valós szám esetén
Matematika javítóvizsga témakörök 10.B (kompetencia alapú )
Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) 1. A négyzetgyök fogalma, a négyzetgyökvonás művelete 2. A négyzetgyökvonás azonosságai 3. Műveletek négyzetgyökökkel 4. A nevező gyöktelenítése
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)
2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )
Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden
Hatvány, gyök, normálalak
Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Matematika 9. matematika és fizika szakos középiskolai tanár. III. fejezet - Függvények (kb. 15 tanóra) > o < december 19.
Matematika 9 Tankönyv és feladatgyűjtemény Juhász László matematika és fizika szakos középiskolai tanár III. fejezet - Függvények (kb. 15 tanóra) > o < 2015. december 19. copyright: c Juhász László Ennek
Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:
Gyakorló feladatok 9.évf.. Mennyi az összes részhalmaza az A a c; d; e; f halmaznak, írd fel az öt elemű részhalmazokat!. Legyen U ;;;;;6;7;8;9, A ;;6;7; és B ;;8. Add meg a következő halmazokat és ábrázold
Paraméteres és összetett egyenlôtlenségek
araméteres és összetett egyenlôtlenségek 79 6 a) Minden valós szám b) Nincs ilyen valós szám c) c < vagy c > ; d) d # vagy d $ 6 a) Az elsô egyenlôtlenségbôl: m < - vagy m > A második egyenlôtlenségbôl:
Feladatok MATEMATIKÁBÓL II.
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2
Exponenciális és logaritmikus kifejezések Megoldások
Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Koordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
egyenlőtlenségnek kell teljesülnie.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Feladatok MATEMATIKÁBÓL II.
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2
Intergrált Intenzív Matematika Érettségi
. Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.
NULLADIK MATEMATIKA ZÁRTHELYI
A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával
Függvény fogalma, jelölések 15
DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük
Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint
TÁMOP-.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint Vasvár,
Halmazelméleti alapfogalmak
Halmazelméleti alapfogalmak halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. - halmaz alapfogalom. z azt jelenti, hogy csak példákon keresztül magyarázzuk,
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Az osztályozóvizsgák követelményrendszere MATEMATIKA
Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Koordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
Vektorok és koordinátageometria
Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ. 9. osztályosoknak SZAKKÖZÉP
J UHÁSZ I STVÁN P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ T é m a k ö r ö k é s p r ó b a f e l a d a t s o r 9. osztályosoknak SZAKKÖZÉP 1. oldal 9. OSZTÁLYOS PÓTVIZSGA TÉMAKÖRÖK: I.
Hiányos másodfokú egyenletek. x 8x 0 4. A másodfokú egyenlet megoldóképlete
Hiányos másodfokú egyenletek Oldjuk meg a következő egyenleteket a valós számok halmazán! 1. = 0 /:. = 8 /:. 8 0 4. 4 4 0 A másodfokú egyenlet megoldóképlete A másodfokú egyenletek általános alakja: a
Egy általános iskolai feladat egyetemi megvilágításban
Egy általános iskolai feladat egyetemi megvilágításban avagy mit kell(ene) tudnia egy 8.-osnak a matematika versenyeken Kunos Ádám Középiskolás pályázat díjkiosztó SZTE Bolyai Intézet 2011. november 12.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA
MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin
Magasabbfokú egyenletek
86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y
y + a y + b y = r(x),
Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
2017/2018. Matematika 9.K
2017/2018. Matematika 9.K Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép 2 órás, 4 jegyet ér 2018. május 28. hétfő 1-2. óra A312 terem Aki hiányzik, a következő
FÜGGVÉNYEK. A derékszögű koordináta-rendszer
FÜGGVÉNYEK A derékszögű koordináta-rendszer Az. jelzőszámot az x tengelyről, a 2. jelzőszámot az y tengelyről olvassuk le. Pl.: A(-3;-) B(3;2) O(0;0) II. síknegyed I. síknegyed A (0; 0) koordinátájú pontot
Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin
Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév
9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
2. Algebrai átalakítások
I. Nulladik ZH-ban láttuk: 2. Algebrai átalakítások 1. Mi az alábbi kifejezés legegyszerűbb alakja a változó lehetséges értékei esetén? (A) x + 1 x 1 (x 1)(x 2 + 3x + 2) (1 x 2 )(x + 2) (B) 1 (C) 2 (D)
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: Z) a) (x 1) (x + 1) 7x + 1 = x (4 + x) + 2 b) 1 2 [5 (x 1) (1 + 2x) 2 4x] = (7 x) x c) 2 (x + 5) (x 2) 2 + (x + 1) 2 = 6 (2x + 1) d) 6 (x 8)
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,
b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:
Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
Szé12/1/N és Szé12/1/E osztály matematika minimumkérdések a javítóvizsgára
Szé1/1/N és Szé1/1/E osztály matematika minimumkérdések a javítóvizsgára Halmazelmélet Halmaz, részhalmaz, végtelen halmaz, üres halmaz, halmaz megadása, halmazműveletek (metszet, unió, különbség, komplementer),
Paraméteres és összetett egyenlôtlenségek
araméteres és összetett egyenlôtlenségek 79 6 a) Minden valós szám b) Nincs ilyen valós szám c) c < vagy c > ; d) d # vagy d $ 6 a) Az elsô egyenlôtlenségbôl: m < - vagy m > A második egyenlôtlenségbôl:
MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA
függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(
FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal A 0/04 tanévi Országos Középiskolai Tanulmányi erseny második forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 57 olyan háromjegyű szám, amelynek számjegyei
Descartes-féle, derékszögű koordináta-rendszer
Descartes-féle, derékszögű koordináta-rendszer A derékszögű koordináta-rendszerben a sík minden pontjához egy rendezett valós számpár rendelhető. A számpár első tagja (abszcissza) a pont y tengelytől mért
6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás)
Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 017/18 ősz 6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) 1. Írjunk fel egy olyan legalacsonyabbrendű valós,
Osztályozó- és javítóvizsga. Matematika tantárgyból
Osztályozó- és javítóvizsga Matematika tantárgyból 2018-2019 A vizsga 60 perces írásbeli vizsga (feladatlap) a megadott témakörökből. A megjelölt százalék (50%) nem teljesítése esetén szóbeli vizsga is,
1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós
8. előadás. Kúpszeletek
8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel
Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor
Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS
Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg
MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember
MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra
SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM
SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM A vizsga szerkezete: A vizsga írásbeli és szóbeli vizsgarészből áll. 1.) Írásbeli vizsga Időtartama: 45 perc Elérhető pontszám: 65 pont Feladattípusok:
EGYENLETEK, EGYENLŐTLENSÉGEK
EGYENLETEK, EGYENLŐTLENSÉGEK Elsőfokú egyenletek megoldása mérleg elvvel Az egyenletek megoldása során a következő lépéseket hajtjuk végre: a kijelölt műveletek elvégzésével, az egynemű kifejezések összevonásával
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Határozott integrál és alkalmazásai
Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,
I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok!
Kedves 10. osztályos diákok! Szakaszvizsgára gyakorló feladatok 10. évfolyam Közeleg a szakaszvizsga időpontja, amelyre 019. április 1-én kerül sor. A könnyebb felkészülés érdekében adjuk közre ezt a feladatsort,
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Írd fel a K (0; 2) középpontú 7 sugarú kör egyenletét! A keresett kör egyenletét felírhatjuk a képletbe való behelyettesítéssel: x 2 + (y + 2) 2 = 49. 2. Írd fel annak a körnek az egyenletét,
egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.
Magyar Ifjúság. X. TRIGONOMETRIKUS FÜGGVÉNYEK A trigonometrikus egyenletrendszerek megoldása során kísérletezhetünk új változók bevezetésével, azonosságok alkalmazásával, helyettesítő módszerrel vagy más,