NULLADIK MATEMATIKA ZÁRTHELYI

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "NULLADIK MATEMATIKA ZÁRTHELYI"

Átírás

1 A NULLADIK MATEMATIKA ZÁRTHELYI Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával írt válaszok érvénytelenek! A feladatok szövege után öt lehetséges válasz (A, B, C, D és E) található, amelyek közül pontosan egy a helyes. Annak betűjelét írja be a kérdést követő üres mezőbe. Az egyéb módon (például aláhúzással, bekarikázással) jelölt válaszok érvénytelenek! A javítók az egyéb helyeken végzett számításokat és eredményeket nem ellenőrzik! Viszont ezek a helyek szabadon használhatók a mellékszámítások elvégzésére. Az alábbi adatokat NYOMTATOTT NAGY betűvel töltse ki! Neptun kódja: Neve: Szakja: Az alábbi kérdésekre adott válaszok kódját írja a jobb oldali üres mezőkbe. Milyen szinten érettségizett matematikából? E: emelt szinten K: középszinten R: régi típusú érettségi N: nem érettségiztem Járt-e középiskolában matematika fakultációra? J: jártam N: nem jártam Minden jó válasz pontot ér, hibás válasz - pont, üresen hagyott válaszmező 0 pont. Az elérhető maximális pontszám 60 pont. A dolgozatot sikeresnek tekintjük, ha legalább 2 pontot elér. A feladatok nem feltétlenül nehézségi sorrendben követik egymást. JÓ MUNKÁT KÍVÁNUNK!

2 . Egyszerűsítse a következő törtet a változók lehetséges értékei mellett: d 2 c 2 + d 2 c c 2 d 2 c c d cd 2 + c. c d 2 + c E: Ezek egyike sem.. A következő állítások közül mely(ek) igaz(ak)? (p 0). Ha p p n = 2 p 2, akkor n =. x 2 x 2 = 9 x 8 8. p 6 p = 2 p 2 Csak az. Csak a Csak a. Több is igaz. E: Egyik sem igaz.. Egy háromszög oldalai egy számtani sorozat egymást követő tagjai. A háromszög kerülete 0 cm, legrövidebb és leghosszabb oldalának szorzata 96 cm. Hány centiméter hosszú a háromszög legrövidebb oldala? E: 2 Adja meg a x 2 2x + 9 = 2x egyenlőség összes megoldását. x x, x x, E: Minden valós x-re. Állítsa nagyság szerint növekvő sorrrendbe a következő számokat. a = log 2 b = 9 log 7 2 c = log 2 9 a < b < c a < c < b b < c < a c < a < b E: c < b < a Adja meg x értékét, ha tudjuk, hogy az A(2; ), B(x; 2) és C( 2; ) pontok egy egyenesre esnek. 2 E: Ezek egyike sem. Határozza meg a p paraméter értékét úgy, hogy a x 2 9x + p = 0 egyenlet gyökeinek szorzata 6 legyen. p = 0 p = 6 p = 6 p = 0 E: Ezek egyike sem. Hány megoldása van a cos x = cos x egyenletnek a (0; 0) nyílt intervallumon? 0 2 Nincs megoldása. E: Végtelen sok. Számítsa ki az x 2 + y 2 x + 8y = 0 egyenletű kör kerületét! π π 8π 0π E: 6π

3 Egy f(x) = 2 x + a függvény görbéje átmegy a (2; ) ponton. Mi lesz a értéke? 0. a = 7 a = a = a = 7 E: Ezek egyike sem. 0. Egy szabályos sokszög egy belső szöge. Mennyi átlója van ennek a szabályos sokszögnek? E: 0 sin cos 00 + tg 22 = + E: Az alábbi függvények közül mely(ek) lesz(nek) monoton növő(ek) a [0; π] zárt intervallumon?. f(x) = x 2 + 2x + g(x) = cos x 2 h(x) = 2 x. Csak az f. Csak a g. Csak a h. Több is. E: Egyik sem. ( ) π cos 2 α = sin α cos α sin α sin α cos α E: cos α + sin α Egy tankörben 2 hallgató készített matematika, 6 hallgató pedig fizika házi feladatot. 8-an készítették el a házi feladatuk mindkét tárgyból, de volt olyan hallgató is, aki egyik órára sem készült. A tankörbe járók hány százaléka készítette el csak a matematika házi feladatát? E: 0

4 B NULLADIK MATEMATIKA ZÁRTHELYI Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával írt válaszok érvénytelenek! A feladatok szövege után öt lehetséges válasz (A, B, C, D és E) található, amelyek közül pontosan egy a helyes. Annak betűjelét írja be a kérdést követő üres mezőbe. Az egyéb módon (például aláhúzással, bekarikázással) jelölt válaszok érvénytelenek! A javítók az egyéb helyeken végzett számításokat és eredményeket nem ellenőrzik! Viszont ezek a helyek szabadon használhatók a mellékszámítások elvégzésére. Az alábbi adatokat NYOMTATOTT NAGY betűvel töltse ki! Neptun kódja: Neve: Szakja: Az alábbi kérdésekre adott válaszok kódját írja a jobb oldali üres mezőkbe. Milyen szinten érettségizett matematikából? E: emelt szinten K: középszinten R: régi típusú érettségi N: nem érettségiztem Járt-e középiskolában matematika fakultációra? J: jártam N: nem jártam Minden jó válasz pontot ér, hibás válasz - pont, üresen hagyott válaszmező 0 pont. Az elérhető maximális pontszám 60 pont. A dolgozatot sikeresnek tekintjük, ha legalább 2 pontot elér. A feladatok nem feltétlenül nehézségi sorrendben követik egymást. JÓ MUNKÁT KÍVÁNUNK!

5 A következő állítások közül mely(ek) igaz(ak)? (a 0).. Ha a n a 2 = a, akkor n = x 2 x 2 = 9 x 8 6. a a 6 = a 0 a. Csak az. Csak a Csak a. Több is igaz. E: Egyik sem igaz. Határozza meg a következő kifejezés értékét: 2+log lg E: Ezek egyike sem. Számítsa ki az x 2 + y 2 + 8x y = 0 egyenletű kör területét!. π π 0π 6π E: 2π. Egyszerűsítse a következő törtet a változók lehetséges értékei mellett: g2 + 2gh + h 2 g 2 h 2. 2gh g + h gh g 2 h 2 g + h g h E: Ezek egyike sem. Egy háromszög oldalai egy számtani sorozat egymást követő tagjai. A háromszög kerülete 6 cm, legrövidebb és leghosszabb oldalának szorzata 08 cm. Hány centiméter hosszú a háromszög leghosszabb oldala? 2 6 E: 8 Egy szabályos sokszögnek 20 átlója van. Mekkora a szabályos sokszög egy belső szöge? E: Hány megoldása van a sin x = sin x egyenletnek a (0; 0) nyílt intervallumon? 0 2 Nincs megoldása. E: Végtelen sok. Adja meg a x 2 2x + 9 = 2x egyenlőség összes megoldását. x x, x x, E: Csak, esetén. sin 2 2 cos 2 20 tg 20 = E: 8

6 0. Egy tankörben 2 hallgató készített matematika, 6 hallgató pedig fizika házi feladatot. 8-an készítették el a házi feladatuk mindkét tárgyból, de volt olyan hallgató is, aki egyik órára sem készült. A tankörbe járók hány százaléka készítette el csak a fizika házi feladatát? E: 6 Adja meg y értékét, ha tudjuk, hogy az A(2; y), B( ; 2) és C( 2; ) pontok egy egyenesre esnek. y = 2 y = y = 2 y = E: Ezek egyike sem. Határozza meg a q paraméter értékét úgy, hogy az x 2 + 2qx + 2 = 0 egyenlet gyökeinek összege 8 legyen. q = q = q = q = E: q = 8 Az f(x) = log a (x + ) függvény görbéje átmegy a (7; 0) ponton. Mi lesz a értéke?. a = 2 a = 2 a = a = E: Ezek egyike sem.. Az alábbi függvények közül mely(ek) lesz(nek) monoton csökkenő(ek) a (0; π) nyílt intervallumon? f(x) = 2x + g(x) = sin x + π h(x) = 2 log 2 x Csak az f. Csak a g. Csak a h. Több is. E: Egyik sem. ( ) π sin 2 + α = sin α cos α cos α sin α cos α E: cos α + sin α

7 6A NULLADIK MATEMATIKA ZÁRTHELYI Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával írt válaszok érvénytelenek! A feladatok szövege után öt lehetséges válasz (A, B, C, D és E) található, amelyek közül pontosan egy a helyes. Annak betűjelét írja be a kérdést követő üres mezőbe. Az egyéb módon (például aláhúzással, bekarikázással) jelölt válaszok érvénytelenek! A javítók az egyéb helyeken végzett számításokat és eredményeket nem ellenőrzik! Viszont ezek a helyek szabadon használhatók a mellékszámítások elvégzésére. Az alábbi adatokat NYOMTATOTT NAGY betűvel töltse ki! Neptun kódja: Neve: Szakja: Az alábbi kérdésekre adott válaszok kódját írja a jobb oldali üres mezőkbe. Milyen szinten érettségizett matematikából? E: emelt szinten K: középszinten R: régi típusú érettségi N: nem érettségiztem Járt-e középiskolában matematika fakultációra? J: jártam N: nem jártam Minden jó válasz pontot ér, hibás válasz - pont, üresen hagyott válaszmező 0 pont. Az elérhető maximális pontszám 60 pont. A dolgozatot sikeresnek tekintjük, ha legalább 2 pontot elér. A feladatok nem feltétlenül nehézségi sorrendben követik egymást. JÓ MUNKÁT KÍVÁNUNK!

8 . Írja fel az alábbi kifejezést a lehető legegyszerűbb alakban (negatív kitevők használata nélkül): a 2 + b 2 + 2a b, (a 0, b 0). a 2 b 2 a 2 + ab + b 2 (a + b) 2 a b (a + b) 2 a 2 b 2 E: 2(a 2 + ab + b 2 ) a 2 + b 2. Hány olyan négyjegyű szám van, ami hárommal osztva maradékot ad? E: Ezek egyike sem.. A következő állítások közül mely(ek) igaz(ak)?. Két szám legnagyobb közös osztója szigorúan kisebb mindegyik számnál. Két szám legkisebb közös többszörösének valamely osztója a két szám legnagyobb közös osztója.. Két prímszám összege nem lehet prímszám. Csak az. Csak a Csak a. Több is igaz. E: Egyik sem igaz.. Adja meg a következő egyenlőtlenség összes valós megoldását: x 2 x x x 2 x < 2 x > x < x > 2 x 2 x 6 x 2 x E: 2 x Mekkora sugarú kör írható egy derékszögő háromszög köré, ha befogóinak hossza 9 cm és 2 cm? cm 6 cm 6, cm 9 cm E: Ezek egyike sem. Fejezze ki x-et az alábbi egyenlőségből: lg lg a 2 (lg b + lg c), (x, a, b, c > 0). a / b 2 / c 2 / a / c 2 / b 2 / a b2 / c 2 / a / ( ) b 2 / + c 2 / E: a 2 (b + c) Hozza a lehető legegyszerűbb alakra a következő kifejezést a változó lehetséges értékei mellett: sin 2 α + cos α + cos α. 2 cos α 2 + cos α E: + cos 2 α + cos α Legyen tg α = és π 2 < α < π. Határozza meg sin α pontos értékét. E: Adja meg a valós számok azon legbővebb részhalmazát, amelyek esetén az f(x) = pozitív értéket vesz fel. 2x x + függvény x < x > x > x < E: < x <

9 0. Határozza meg a ( ; 2) koordinátákkal megadott helyvektor tükörképének koordinátját, ha azt az y = x egyenesre tükrözzük. (; 2) (; 2) (2; ) (2; ) E: ( 2; ) 0. Hány megoldása van a cos cos 2 x egyenletnek a [0; 2π] zárt intervallumon? 0 2 E: attól több Hol metszi az f(x) = x+ + 2 függvény grafikonja az y tengelyt? -nál. 2-nél. -nél. 2-nél. E: Nem metszi. Határozza meg az a és b paraméterek értékeit úgy, hogy a P (; 2) és P 2 (; 2) pontok illeszkedjenek az ax + by = egyenletű egyenesre.. a = 2 7, b = 7 a =, b = 2 7 a = 2 7, b = a = 2 7, b = E: a =, b = 2 7. Gyöktelenítse a következő tört nevezőjét:. E: 6 Kockapókerben dobókockával dobunk egyszerre. Ha az öt dobott számból pontosan négy megegyezik, akkor "kis pókerról" beszélünk. Mennyi a valószínűsége annak, hogy "kis pókerünk" lesz? (Jó tanács: különböztessük meg a kockákat.) E: 2 6

10 6B NULLADIK MATEMATIKA ZÁRTHELYI Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával írt válaszok érvénytelenek! A feladatok szövege után öt lehetséges válasz (A, B, C, D és E) található, amelyek közül pontosan egy a helyes. Annak betűjelét írja be a kérdést követő üres mezőbe. Az egyéb módon (például aláhúzással, bekarikázással) jelölt válaszok érvénytelenek! A javítók az egyéb helyeken végzett számításokat és eredményeket nem ellenőrzik! Viszont ezek a helyek szabadon használhatók a mellékszámítások elvégzésére. Az alábbi adatokat NYOMTATOTT NAGY betűvel töltse ki! Neptun kódja: Neve: Szakja: Az alábbi kérdésekre adott válaszok kódját írja a jobb oldali üres mezőkbe. Milyen szinten érettségizett matematikából? E: emelt szinten K: középszinten R: régi típusú érettségi N: nem érettségiztem Járt-e középiskolában matematika fakultációra? J: jártam N: nem jártam Minden jó válasz pontot ér, hibás válasz - pont, üresen hagyott válaszmező 0 pont. Az elérhető maximális pontszám 60 pont. A dolgozatot sikeresnek tekintjük, ha legalább 2 pontot elér. A feladatok nem feltétlenül nehézségi sorrendben követik egymást. JÓ MUNKÁT KÍVÁNUNK!

11 Hány olyan négyjegyű szám van, ami öttel osztva 2 maradékot ad? E: 802. A következő állítások közül mely(ek) igaz(ak)?. Két szám legkisebb közös többszöröse nem kisebb, mint a legnagyobb közös osztója. Két szám legnagyobb közös osztója mindkét szám osztóinak többszöröse.. Ha két szám relatív prím, akkor a legkisebb közös többszörösük a két szám szorzata. Csak az. Csak a Csak a. Több is igaz. E: Egyik sem igaz.. Határozza meg az a és b paraméterek értékeit úgy, hogy a P (7; 2) és P 2 (; ) pontok illeszkedjenek az ax + by = egyenletű egyenesre. a = 9, b = 9 6 a = 9, b = 9 6 a = 9 6, b = 9 Írja fel az alábbi kifejezést a lehető legegyszerűbb alakban: 2 a 2 b 2 2 a 2 + b 2 a = 6 9, b = 9 E: a = 9, b = 6 9 ( a 2 + ) b 2 : ( a 2 + b 2), (a 0, b 0). (a 2 + b 2 ) 2 a 2 b 2 E: a 2 b 2 (a 2 + b 2 ) 2. Fejezze ki x-et az alábbi egyenlőségből: lg (lg p + 2 (lg q lg r) ), (x, p, q, r > 0). p / q /2 r /2 p / q /2 r /2 p + q/2 r /2 p / + ( ) q /2 r /2 E: p + (q r) 2 Gyöktelenítse a következő tört nevezőjét: E: Ezek egyike sem. Adja meg a valós számok azon legbővebb részhalmazát, amelyek esetén az f(x) = 2x függvény pozitív értéket vesz fel. x 2 x < x > < x 2 E: x > 2 Adja meg a következő egyenlőtlenség összes valós megoldását: x x x x x < x > x < x > x 2 8x + x 2 + x 2 0. E: x

12 Mekkora sugarú kör írható egy derékszögő háromszög köré, ha befogóinak hossza cm és 2 cm? cm 6 cm 6, cm 7, cm E: Ezek egyike sem. 0. Határozza meg a (; ) koordinátákkal megadott helyvektor tükörképének koordinátját, ha azt az y = x egyenesre tükrözzük. (; ) (; ) (; ) (; ) E: ( ; ) 0. Legyen tg α = és π 2 < α < π. Határozza meg cos α pontos értékét. E: Hozza a lehető legegyszerűbb alakra a következő kifejezést a változó lehetséges értékei mellett: cos 2 α + sin α + sin α. 2 sin α 2 + sin α E: + sin 2 α + cos α. Kockapókerben dobókockával dobunk egyszerre. Úgynevezett "kis sort" dobunk, ha a kockákon az, 2,,, értékek láthatóak. Mennyi a valószínűsége annak, hogy "kis sort" dobunk? (Jó tanács: különböztessük meg a kockákat.) 2 6 6! 6 E:! 6 6. Hány megoldása van a tg tg x egyenletnek a [ π; π] zárt intervallumon? 0 2 E: attól több Hol metszi az f(x) = x+ 2 függvény grafikonja az y tengelyt? -nél. -nál. 2-nél. -nél. E: nem metszi.

13 7A NULLADIK MATEMATIKA ZÁRTHELYI Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával írt válaszok érvénytelenek! A feladatok szövege után öt lehetséges válasz (A, B, C, D és E) található, amelyek közül pontosan egy a helyes. Annak betűjelét írja be a kérdést követő üres mezőbe. Az egyéb módon (például aláhúzással, bekarikázással) jelölt válaszok érvénytelenek! A javítók az egyéb helyeken végzett számításokat és eredményeket nem ellenőrzik! Viszont ezek a helyek szabadon használhatók a mellékszámítások elvégzésére. Az alábbi adatokat NYOMTATOTT NAGY betűvel töltse ki! Neptun kódja: Neve: Szakja: Az alábbi kérdésekre adott válaszok kódját írja a jobb oldali üres mezőkbe. Milyen szinten érettségizett matematikából? E: emelt szinten K: középszinten R: régi típusú érettségi N: nem érettségiztem Járt-e középiskolában matematika fakultációra? J: jártam N: nem jártam Minden jó válasz pontot ér, hibás válasz - pont, üresen hagyott válaszmező 0 pont. Az elérhető maximális pontszám 60 pont. A dolgozatot sikeresnek tekintjük, ha legalább 2 pontot elér. A feladatok nem feltétlenül nehézségi sorrendben követik egymást. JÓ MUNKÁT KÍVÁNUNK!

14 . Írja fel az alábbi kifejezést a lehető legegyszerűbb alakban (negatív kitevők használata nélkül): ( 2 b ) b b 2, (b 0). b. b 6 2 b b b 8 E: b 6 2 Egy számsorozat bármely tagja az előző tagnál pontosan -gyel nagyobb. Határozza meg a sorozat 00. tagját, ha a tag értéke E: Ezek egyike sem. Végezze el az alábbi hatványozást: ( 2 + 2) E: A következő állítások közül mely(ek) igaz(ak), minden lehetséges a, b, c, k paraméterérték esetén? (a, b, c > 0, a, b, k 0). log a k b = k log a b a log b a = b. log a b + log a c = log a (bc) Csak az. Csak a Csak a. Több is igaz. E: Egyik sem igaz. Oldja meg a következő egyenletet a valós számok halmazán: ( ) + x ( ) 2 2 x =. 0,2 6 E: Nincs megoldása. Adja meg a c paraméter értékeinek azon legbővebb halmazát, amelyre nem lesz az x 2 x + c = 0 egyenletnek valós megoldása. c > c c > c E: Ezek egyike sem. Egy kocka egyik kiválasztott csúcsából a szomszédos csúcsokhoz vezető vektorok a, b és c. A kiválasztott csúcsból induló és a vele átellenes csúcsba vezető vektor: a a + b + c a + b c a b + c E: a b c sin 0 + cos 20 tg = E: 2

15 Írja fel az A(2; ) ponton átmenő, a y egyenletű egyenesre merőleges egyenes egyenletét. Hol metszi ez az egyenes az y tengelyt? y = 2 y = y = 0 y = E: y = 2 ( ) x 7 Határozza meg az alábbi kifejezés legbővebb értelmezési tartományát: log. x 0. x 7 x x x 7 x < x > 7 x < 7 x > E: x < 7 0. Az alábbi függvények közül mely(ek) lesz(nek) páratlan(ok)? f(x) = x 2 2x + ( g(x) = cos x π ) 2 h(x) = x Csak az f. Csak a g. Csak a h. Több is. E: Egyik sem. A következő állítások közül mely(ek) igaz(ak)?. Van olyan paralelogramma, ami nem trapéz. Minden trapéznak van tompaszöge.. Ha egy deltoid minden oldala egyenlő, akkor az négyzet. Csak az. Csak a Csak a. Több is igaz. E: Egyik sem igaz.. Állítsa nagyság szerint sorba az tg, y = tg 2 és z = tg mennyiségeket (a szögeket radiánban mérjük). x < y < z x < z < y y < x < z y < z < x E: z < y < x. Dodó a kétpupú teve, ha nagyon szomjas, akkor testtömegének 8 %-a víz. Itatás után 800 kg-ot nyom, és ekkor testtömegének 8 %-a víz. Hány kilogrammos Dodó, amikor nagyon szomjas? E: 70 ( A következők közül mely(ek) lehet(nek) a sin x 2π ) = egyenlet megoldása(i)?. 20 π + π 7π k, k Z πk, k Z Csak az. Csak a Csak a. Több is. E: Egyik sem.

16 7B NULLADIK MATEMATIKA ZÁRTHELYI Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával írt válaszok érvénytelenek! A feladatok szövege után öt lehetséges válasz (A, B, C, D és E) található, amelyek közül pontosan egy a helyes. Annak betűjelét írja be a kérdést követő üres mezőbe. Az egyéb módon (például aláhúzással, bekarikázással) jelölt válaszok érvénytelenek! A javítók az egyéb helyeken végzett számításokat és eredményeket nem ellenőrzik! Viszont ezek a helyek szabadon használhatók a mellékszámítások elvégzésére. Az alábbi adatokat NYOMTATOTT NAGY betűvel töltse ki! Neptun kódja: Neve: Szakja: Az alábbi kérdésekre adott válaszok kódját írja a jobb oldali üres mezőkbe. Milyen szinten érettségizett matematikából? E: emelt szinten K: középszinten R: régi típusú érettségi N: nem érettségiztem Járt-e középiskolában matematika fakultációra? J: jártam N: nem jártam Minden jó válasz pontot ér, hibás válasz - pont, üresen hagyott válaszmező 0 pont. Az elérhető maximális pontszám 60 pont. A dolgozatot sikeresnek tekintjük, ha legalább 2 pontot elér. A feladatok nem feltétlenül nehézségi sorrendben követik egymást. JÓ MUNKÁT KÍVÁNUNK!

17 Végezze el az alábbi hatványozást: ( + 2 ) E: Egy számsorozat bármely tagja az előző tagnál pontosan -tel kisebb. Határozza meg a sorozat 0 tagját, ha a. tag értéke E: Ezek egyike sem. Írja fel az alábbi kifejezést a lehető legegyszerűbb alakban (negatív kitevők használata nélkül): ( ) a 2 2 ( ) ab 2 :, (a 0, b 0).. b a 2 b. a 2 b 2 b 2 a 2 b a a 2 b 6 E: b 6 a Állítsa nagyság szerint sorba az cos, y = cos 2 és z = cos mennyiségeket (a szögeket radiánban mérjük). x < y < z x < z < y y < x < z z < y < x E: z < x < y A következő állítások közül mely(ek) igaz(ak) minden lehetséges a, b, c, k paraméterérték esetén? (a, b, c > 0, a, b ). log a k b k = k log a b a log b a = b. log a b log a c = log a (bc) Csak az. Csak a Csak a. Több is igaz. E: Egyik sem igaz. Oldja meg a következő egyenletet a valós számok halmazán: ( ) +x ( ) 2 2x =. 0,2 2 2 E: 2 Az alábbi függvények közül mely(ek) lesz(nek) páros(ak)? f(x) = x 2 2 g(x) = cos x 2 h(x) = log 2 x Csak az f. Csak a g. Csak a h. Több is. E: Egyik sem. Írja fel az A(2; ) ponton átmenő, a 2y + 0 egyenletű egyenesre merőleges egyenes egyenletét. Hol metszi ez az egyenes az y tengelyt? y = 2 y = y = y = E: y = 2

18 Dumbó, az elefánt, ha nagyon szomjas, akkor testtömegének 8 %-a víz. Itatás után 600 kg-ot nyom, és ekkor testtömegének 8 %-a víz. Hány kilogrammos Dumbó, amikor nagyon szomjas? E: 00 sin 90 (cos 00 tg 22 ) 2 = E: 2 0. ( ) x + Határozza meg az alábbi kifejezés legbővebb értelmezési tartományát: log 2. x 7 x 7 x x x 7 x < 7 x > x < x > 7 E: < x < 7 A következő állítások közül mely(ek) igaz(ak)?. Ha egy rombusznak van derékszöge, akkor négyzet. Van olyan téglalap, aminek átlói nem merőlegesek egymásra.. Van olyan paralelogramma, amelyik nem trapéz. Csak az. Csak a Csak a. Több is igaz. E: Egyik sem igaz.. Adja meg az a paraméter értékeinek azon legbővebb halmazát, amelyre az ax 2 +6x = 0 egyenletnek lesz valós megoldása. a 9 a 9 a > 9 a < 9 E: Ezek egyike sem.. ( A következők közül mely(ek) lehet(nek) a tg 2x 2π ) = egyenlet megoldása(i)?. 22 π 2 + π π k, k Z πk, k Z Csak az. Csak a Csak a. Több is. E: Egyik sem. Egy kocka egyik kiválasztott csúcsából a szomszédos csúcsokhoz vezető vektorok a, b és c. A kiválasztott csúcsból induló és a vele átellenes csúcsba vezető vektor: a a + b + c a + b c a b + c E: a b c

NULLADIK MATEMATIKA szeptember 7.

NULLADIK MATEMATIKA szeptember 7. A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. Válaszait csak az üres mezőkbe írja! A javítók a szürke

Részletesebben

NULLADIK MATEMATIKA szeptember 13.

NULLADIK MATEMATIKA szeptember 13. A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember. Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható nálható. Válaszait csak az üres mezőkbe írja! A javítók

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI szeptember 13.

NULLADIK MATEMATIKA ZÁRTHELYI szeptember 13. 6A NULLADIK MATEMATIKA ZÁRTHELYI 00. szeptember. Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. Válaszait csak az üres mezőkbe írja! A javítók

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1 Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben

Feladatok MATEMATIKÁBÓL II.

Feladatok MATEMATIKÁBÓL II. Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2

Részletesebben

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) (11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)

Részletesebben

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van! 1. Melyik a nagyobb? a) 6 5 vagy 5 7 b) vagy 11 10 vagy Gyökvonás 5 11 vagy 6 8 55 e) 7 vagy 60 16 1. Hozd egyszerűbb alakra a következő kifejezéseket! a) 7 18 b) 1 5 75 8 160 810 650 8a 5 a 7a e) 15a

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 1. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! a) b) 7 c) 5 d) 5 1 e) 6 1 6 f) ( 81 16 ) g) 0,00001 5. Írjuk fel gyökjelekkel a következő hatványokat!

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet

Részletesebben

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x = 2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

2009. májusi matematika érettségi közép szint

2009. májusi matematika érettségi közép szint I 1.feladat Oldja meg a valós számok halmazán az alábbi egyenletet! 2 x 2 +13x +24=0 2.feladat Számítsa ki a 12 és 75 számok mértani közepét! 3.feladat Egy négytagú csoportban minden tagnak pontosan két

Részletesebben

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc MATEMATIKA KISÉRETTSÉGI 2015. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

Matematika pótvizsga témakörök 9. V

Matematika pótvizsga témakörök 9. V Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM)

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) Javítási értékelési útmutató 1. Melyek azok a pozitív p és q prímek, amelyekre a számok mindegyike

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András Feladatok a 2010. májusi emelt szintű matematika érettségi példáihoz Hraskó András 1. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. HA.1.1. Adott a síkon

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

Matematika PRÉ megoldókulcs 2013. január 19. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT

Matematika PRÉ megoldókulcs 2013. január 19. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT Matematika PRÉ megoldókulcs 013. január 19. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi 1 feladat megoldása kötelező volt! 1) Adott A( 1; 3 ) és B( ; ) 7 9 pont. Határozza meg

Részletesebben

Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2

Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2 Név: osztály: Próba érettségi feladatsor 010 április 09 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű

Részletesebben

1. Feladatsor. I. rész

1. Feladatsor. I. rész . feladatsor. Feladatsor I. rész. Mely x valós számokra lesz ebben a sorrendben a cos x, a sinx és a tg x egy mértani sorozat három egymást követő tagja?... (). Egy rombusz egyik átlója 0 cm, beírható

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x. Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2010. október 19. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 19. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Próbaérettségi feladatsor_a NÉV: osztály Elért pont: Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

Szabolcs-Szatmár-Bereg megyei Ambrózy Géza Matematikaverseny 2012/2013 II. forduló 5. osztály

Szabolcs-Szatmár-Bereg megyei Ambrózy Géza Matematikaverseny 2012/2013 II. forduló 5. osztály 5. osztály 1. Hány olyan téglalap van, amelynek minden oldala centiméterben kifejezve egész szám, és a területe 60 cm 2? 2. Adott a síkon egy ABC szabályos háromszög. Keresd meg a síkon az összes olyan

Részletesebben

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!

Másodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket! Másodfokú egyenletek 1. Alakítsuk teljes négyzetté a következő kifejezéseket! a.) - 4 + 4 b.) - 6 + 8 c.) + 8 - d.) - 4 + 9 e.) - + 8 - f.) - - 4 + 3 g.) + 8-5 h.) - 4 + 3 i.) -3 + 6 + 1. Ábrázoljuk és

Részletesebben

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához

Részletesebben

MATEMATIKA EMELT SZINTŰ. PRÓBAÉRETTSÉGI VIZSGA február 14. Az írásbeli próbavizsga időtartama: 240 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ

MATEMATIKA EMELT SZINTŰ. PRÓBAÉRETTSÉGI VIZSGA február 14. Az írásbeli próbavizsga időtartama: 240 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ STUDIUM GENERALE MATEMATIKA SZEKCIÓ PRÓBAÉRETTSÉGI VIZSGA 2015. február 14. MATEMATIKA EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2015. február 14. Az írásbeli próbavizsga időtartama: 240 perc Név E-mail cím Tanárok

Részletesebben

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010. Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

10. Differenciálszámítás

10. Differenciálszámítás 0. Differenciálszámítás 0. Vázolja a következő függvények, és határozza meg az értelmezési tartomány azon pontjait, ahol nem differenciálhatóak: a, f() = - b, f()= sin c, f() = sin d, f () = + e, f() =

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

Matematika kisérettségi

Matematika kisérettségi Matematika kisérettségi 2010. május 11. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3.

Részletesebben

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27. Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

MATEMATIKA ÉRETTSÉGI október 20. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI október 20. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 009. október 0. KÖZÉPSZINT I. 1) Számítsa ki 5 és 11 számtani és mértani közepét! A számtani közép értéke: 7. A mértani közép értéke: 55. Összesen: pont ) Legyen az A halmaz a 10-nél

Részletesebben

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc MATEMATIKA KISÉRETTSÉGI 2014. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont

Részletesebben

Matematika javítóvizsga témakörök 10.B (kompetencia alapú )

Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) 1. A négyzetgyök fogalma, a négyzetgyökvonás művelete 2. A négyzetgyökvonás azonosságai 3. Műveletek négyzetgyökökkel 4. A nevező gyöktelenítése

Részletesebben

Nagy Ilona 2013.06.01.

Nagy Ilona 2013.06.01. Bevezető matematika példatár Kádasné Dr. V. Nagy Éva Nagy Ilona 0.06.0. Tartalomjegyzék Bevezető. Gyakorlatok.. Műveletek törtekkel, hatványokkal, gyökökkel................. A logaritmus fogalma; arány-

Részletesebben

4. A kézfogások száma pont Összesen: 2 pont

4. A kézfogások száma pont Összesen: 2 pont I. 1. A páros számokat tartalmazó részhalmazok: 6 ; 8 ; 6 ; 8. { } { } { }. 5 ( a ) 17 Összesen: t = = a a Összesen: ot kaphat a vizsgázó, ha csak két helyes részhalmazt ír fel. Szintén jár, ha a helyes

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I. PRÓBAÉRETTSÉGI FELADATSOR

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I. PRÓBAÉRETTSÉGI FELADATSOR MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I PRÓBAÉRETTSÉGI FELADATSOR EGYENES ÚT AZ EGYETEMRE 11 FELADATSOR 11 FELADATSOR I rész Felhasználható idő: 45 perc 6x 1 111) Melyik állítás igaz az alábbi egyenlet

Részletesebben

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok

Részletesebben

1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben.

1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben. Szak: Műszaki menedzser I. Dátum: 006. június. MEGOLDÓKULCS Tárgy: Matematika szigorlat Idő: 0 perc Neptun kód: Előadó: Berta Gábor szig 06 06 0 Pontszám: /00p. Oldja meg a z (5 + j (8 + j + = (+5j (7

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

3 2 x 1 = 5. (9 pont) 2. Mekkora a szabályos kilencszög kerülete és területe, ha a legrövidebb átlója 85? (11 pont)

3 2 x 1 = 5. (9 pont) 2. Mekkora a szabályos kilencszög kerülete és területe, ha a legrövidebb átlója 85? (11 pont) 1997 Írásbeli érettségi-felvételi feladatok 1. Oldja meg a következő egyenletet a valós számok halmazán: 3 2 x 1 2 2 x 1 + 2 2x 1 3 2 x 1 = 5. (9 pont) 2 2. Mekkora a szabályos kilencszög kerülete és területe,

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA Név:... osztály:... ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2.

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2. 1. Egy 33-as létszámú zenetagozatos osztályban hegedülni és zongorázni tanulnak a diákok. Minden diák játszik legalább egy hangszeren. Azok száma, akik mindkét hangszeren játszanak, akik csak hegedülnek,

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 12. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! 2. Írjuk fel gyökjelekkel a következő hatványokat! 3. Az ötnek hányadik hatványa a következő kifejezés?

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 007. május 8. KÖZÉPSZINT ) Egyszerűsítse a következő törtet! (a; b valós szám, ab 0)! a b ab ab ab ( a ) a ab I. Összesen: pont ) Egy mértani sorozat második eleme 3, hatodik eleme.

Részletesebben

Próba érettségi feladatsor április I. RÉSZ

Próba érettségi feladatsor április I. RÉSZ Név: osztály: Próba érettségi feladatsor 2007 április 17-18 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk

Részletesebben

Próba érettségi feladatsor 2008. április 11. I. RÉSZ

Próba érettségi feladatsor 2008. április 11. I. RÉSZ Név: osztály: Próba érettségi feladatsor 2008 április 11 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe írja!

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen 10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős

Részletesebben

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I. 1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 1. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 1. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 1. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Részletesebben