10. Koordinátageometria
|
|
- Ádám Varga
- 6 évvel ezelőtt
- Látták:
Átírás
1 I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember (matematika, fizika BSc) A nevező nem lehet nulla, emiatt x, ezért az x és az x egyenesek nem tartoznak a megoldáshoz. Ha a számláló nulla, akkor a nevező tetszőleges, nemnulla értéke mellett teljesül az egyenlőtlenség, így az y x parabola pontjai a ; és az A tört akkor pozitív, ha a számlálója és nevezője azonos előjelű. ; pontok kivételével a megoldáshalmaz elemei. A számláló pozitív, ha y x, aminek a parabola alatti pontok felelnek meg. A nevező pozitív, ha x, vagyis az x egyenestől balra, illetve az x egyenestől jobbra elhelyezkedő félsíkok pontjai. E kettő metszete tartozik a megoldáshalmazhoz. A számláló is és a nevező is negatív a parabola fölött (y > x ) és a két függőleges egyenesünk között ( x < ). A megoldás: (Az üres karikával jelölt pontok és a szaggatott vonallal jelölt egyenes pontjai nem tartoznak a megoldáshoz.)
2 . Hol metszi az y-tengelyt az A0;, B;, C ;5 csúcspontokkal rendelkező háromszög B- ből induló súlyvonala? (A) 4 y (B) 7 y (C) y 3,3 (D) 0 y (E) 3 y 9 9 BME 05. szeptember. (6A) A B -ből induló súlyvonal áthalad az AC szakasz felezőpontján. F AC 0 5 ; ;3 A vektor a keresett súlyvonal irányvektora, 90 -os elforgatással kapunk egy normálvektort. BFAC 3 3 v BF AC ;3 ;, tehát n ; A súlyvonal egyenlete a B pontot használva: 3 3 x y 3 x y 5 Az y-tengellyel való metszéspont első koordinátája 0, ezért a második koordinátát megkapjuk, ha x helyére 0-t helyettesítünk: A jó válasz a (D). 3 5 y, tehát 0 y A következő kifejezések közül melyik lehet egy valódi kör egyenlete?.. 3. x y x y 4 0 x y y x y x y (A) Csak az. (B) Csak a. (C) Csak a 3. (D) Több is igaz. (E) Egyik sem igaz. BME 04. december 5. (6A)
3 Az. egyenletben az x és az y együtthatója nem egyenlő, emiatt nem lehet kör egyenlete. A. és a 3. egyenletet át kell alakítanunk, hogy lássuk a kör középpontját és sugarát. A. egyenlet: x x y y y x y 4 A jobb oldalon negatív számot kaptuk, ezért ez az egyenlet egy üreshalmazt ad meg. A 3. egyenlet: x y x y x y x y Ez egy valódi kör egyenlete. (A kör középpontja (3; ), sugara.) Tehát a jó válasz a (C). 4. A derékszögű koordináta-rendszer síkjában adott egy négyszög négy csúcsával: A; 3, 4; 3, 4;, ; B C D és egy kör az egyenletével: x y x y Határozza meg annak az egyenesnek az egyenletét, amely felezi a négyszögnek is és a körnek is a területét! ELTE 0. szeptember (matematika BSc) Megnézve a megadott négyszög csúcsainak koordinátáit látható, hogy egy téglalapról van szó. A téglalap területét azok az egyenesek felezik, melyek átmennek a téglalap középpontján. (A téglalap középpontján átmenő egyenesek két egybevágó síkidomra bontják a téglalapot.) Hasonlóan a kör területét a kör középpontján átmenő egyenesek felezik. Meg kell tehát keresnünk mindkét alakzat középpontját, majd felírni a két ponton átmenő egyenes egyenletét. 4 3 A téglalap középpontja az AC szakasz felezőpontja: ; ;4 A kör középpontjának megállapításához át kell alakítanunk a kör egyenletét. A kör középpontja tehát a K 0;6 pont. F AC x y x y x y x y
4 A két középponton átmenő egyenes irányvektora: v 0;4 6 9; n KF AC, tehát ; 9 A keresett egyenes egyenlete a normálvektorral és x 9y 94 x 9y 34 F AC ponttal felírva: 4
5 II. Ismételjünk! Vektorok a koordináta-rendszerben, egyenes egyenlete, kör egyenlete: -. oldal III. Gyakorló feladatok. Hol helyezkednek el a koordináta-rendszerben azok az ( x; y ) pontok, amelyekre teljesül az alábbi két feltétel:. Adott 3 vektor: a 3; 4, b 5;, c 8;0 a) a b 3c b) a c b x + y < 8 és y x + 4. Végezze el az alábbi vektorműveleteket! 3. Adottak az a ( 7;) és a b (3; 4) vektorok. Mennyi az általuk bezárt szög koszinusza? (A) (B) (C) (D) 5 5 (E) Ezek egyike sem. BME 0. szeptember. (6A) 4. Adott egy háromszög: A;, B 7,4, C,. a) Adja meg a háromszög AB oldalának felezőpontját a koordinátáival! b) Adja meg a háromszög súlypontjának koordinátáit! c) Adja meg a CB vektor koordinátáit! d) Határozza meg a háromszög kerületét! 5. Egy rombusz egyik átlója a másik átlójának a kétszerese. A rövidebbik átló végpontjai A6; 4 és C ;6. Határozza meg a hiányzó csúcsok koordinátáit! 5 ELTE 03. szeptember (matematika tanárszak) 6. Írja fel annak az egyenesnek az egyenletét, amely átmegy a P 3;5 ponton és a koordinátatengelyekből egyenlő (nem nulla) hosszúságú szakaszokat vág le! ELTE 00. szeptember (földtudomány, környezettan BSc) 7. Határozza meg annak az egyenesnek az egyenletét, amely áthalad a P3; ponton, és a) párhuzamos az e: x 5y 4 egyenletű egyenessel! b) merőleges az e: x 5y 4 egyenletű egyenesre!
6 8. Az alábbiak közül melyik az a pont, amely illeszkedik az A;3, B0;, C 4; háromszög B-ből induló magasságvonalára? (A) ;6 (B) ;5 (C) ; 7 (D) ; 6 (E) ; 5 9. Milyen távol van a ;7 0. Adott egy k kör az egyenletével: P pont az e: 3x y 6 egyenestől? x x y y azonos középpontú), feleakkora sugarú kör egyenletét!. Hol metszi az e : x y egyenletű egyenes a) a 3x y 3 egyenletű egyenest? b) az x y 3 5 egyenletű kört?. Írja fel az A; ; B 5; ; ; 3. Írja fel az alábbi A 5; ; B0; ; C 8; BME 05. május 8. (6A) Írja fel a k-val koncentrikus (vagyis C háromszög köré írható körének egyenletét! háromszög köré írható körének egyenletét! 4. Adott egy kör az egyenletével: x y körön, a 3. síknegyedben van, első koordinátája. a) Határozza meg P második koordinátáját! b) Írja fel a kör P-n átmenő érintőjének egyenletét! 3 5. Egy P pontról tudjuk, hogy rajta van a 5. Adott egy kör a koordináta-rendszer síkjában, amelynek a középpontja az origóban van és a sugara 0 egység. Határozza meg azoknak a köröknek az egyenletét, melyek érintik ezt a kört, valamint az x-tengelyt a 0;0 pontban. ELTE 05. szeptember (tanárszakok) IV. Megoldások. Hol helyezkednek el a koordináta-rendszerben azok az ( x; y ) pontok, amelyekre teljesül az alábbi két feltétel: x + y < 8 és y x + 4 Vizsgáljuk csak az első feltételt! Az egyenlőtlenségből fejezzük ki y-t: y < x + 4 6
7 Ábrázoljuk az y = x + 4 egyenest! A fenti egyenlőtlenséget azoknak a pontoknak a koordinátái teljesítik, amelyek az egyenes alatt helyezkednek el (az egyenes pontjai nem). Nézzük meg külön a. feltételt is! Ábrázoljuk az y = x + 4 függvényt! (Pontosan fogalmazva x x + 4 függvényt.) Az y x + 4 feltételnek a grafikon pontjai és a felette elhelyezkedő pontok felelnek meg. A két feltételnek egyszerre kell teljesülnie, tehát a két halmaz közös részét, metszetét keressük. Egy háromszög alakú területet kapunk. Az üres karikával jelölt pontok és a szaggatott vonallal jelölt oldal nem tartozik hozzá a keresett tartományhoz. 7
8 . Adott 3 vektor: a 3; 4, b 5;, c 8;0 a) a b 3c b) a c b. Végezze el az alábbi vektorműveleteket! a) a b 3c 3; 4 5; 3 8;0 6; 8 5; 4; ; ; 0 b) a c b Megjegyzés: 3; 4 8;0 5; ; 4 ( 0;4) Két vektor összegének, különbségének, egy vektor számszorosának az eredménye vektor, viszont két vektor skaláris szorzatának az eredménye egyetlen szám. 3. Adottak az a ( 7;) és a b (3; 4) vektorok. Mennyi az általuk bezárt szög koszinusza? (A) (B) (C) (D) 5 5 (E) Ezek egyike sem. BME 0. szeptember. (6A) A két vektor által közbezárt szög a skaláris szorzatból könnyen számolható. Tudjuk, hogy ab a b cos. Átrendezve: ab cos a b A jó válasz az (A). 4. Adott egy háromszög: A;, B 7,4, C,. a) Adja meg a háromszög AB oldalának felezőpontját a koordinátáival! b) Adja meg a háromszög súlypontjának koordinátáit! c) Adja meg a CB vektor koordinátáit! d) Határozza meg a háromszög kerületét! a) A felezőpont koordinátáit a végpontok koordinátáinak számtani közepeként kapjuk: F AB 7 4 ; 4;3 b) A háromszög súlypontjának koordinátái a csúcsok koordinátáinak számtani közepe: 8
9 7 4 ( ) 0 5 S ; ; c) Két pont közötti vektor koordinátáit megkapjuk, ha a végpontból kivonjuk a kezdőpont koordinátáit. CB 7 ;4 5;5 d) A háromszög oldalainak hosszát a csúcsainak távolságaként kapjuk. AB BC AC 0 K ,56 5. Egy rombusz egyik átlója a másik átlójának a kétszerese. A rövidebbik átló végpontjai A6; 4 és C ;6. Határozza meg a hiányzó csúcsok koordinátáit! ELTE 03. szeptember (matematika tanárszak) A rombusz átlói felezik egymást és merőlegesek egymásra. Ezért a keresett két csúcspontot megkapjuk, ha a középpontot eltoljuk a rövidebbik átló vektorának 90 -os elforgatottjával mindkét irányba. A rombusz középpontja az AC szakasz felezőpontja: F AC ; ; AC 6;6 4 8;0 9
10 90 -kal elforgatva 0;8 illetve 0; 8. Ezekkel a vektorokkal kell a középpontot eltolni. B ; 0;8 ;9 és D ; 0; 8 8; 7 6. Írja fel annak az egyenesnek az egyenletét, amely átmegy a P 3;5 ponton és a koordinátatengelyekből egyenlő (nem nulla) hosszúságú szakaszokat vág le! ELTE 00. szeptember (földtudomány, környezettan BSc) A koordinátatengelyekből egyenlő hosszúságú szakaszokat az m és az m meredekségű egyenesek vágnak le. Így a keresett egyenes egyenlete y x b, vagy y x b. Ezekbe P koordinátáit helyettesítve kapjuk b lehetséges értékeit. 5 3 b vagy 5 3 b b b 8 Két megoldást kaptunk: y x, illetve y x Határozza meg annak az egyenesnek az egyenletét, amely áthalad a P3; ponton, és a) párhuzamos az e: x 5y 4 egyenletű egyenessel! b) merőleges az e: x 5y 4 egyenletű egyenesre! A megadott egyenes normálvektora az egyenletéből leolvasható: ;5 n. a) A párhuzamos egyenesnek ugyanez a normálvektora. A keresett egyenes egyenlete: x 5y 3 5 x 5y 4 b) A merőleges egyenesnek a normálvektorát 90 -os elforgatással kapjuk: n 5; keresett egyenes egyenlete: e f. A 0
11 5x y 53 5x y 9 8. Az alábbiak közül melyik az a pont, amely illeszkedik az A;3, B0;, C 4; háromszög B-ből induló magasságvonalára? (A) BME 05. május 8. (6A) Írjuk fel a B-ből induló magasságvonal egyenletét! Az ehhez szükséges normálvektor az AC. n AC 6;. Így a magasságvonal: x y koordinátája, ezt helyettesítsük a kapott egyenletbe! A jó válasz a (B). 9. Milyen távol van a ;7 ;6 (B) ;5 (C) ; 7 (D) ; 6 (E) ; A megadott pontok első 6 y y 5 P pont az e: 3x y 6 egyenestől? Egy pont egyenestől való távolsága a pontból az egyenesre állított merőleges szakasz hossza. Ennek megfelelően a megoldás lépései:. merőlegest állítunk a P pontból az e egyenesre: f;. e és f metszéspontja: M; 3. M és P távolsága a keresett távolság.. Az e egyenes normálvektora: n 3; Az f egyenes erre merőleges: n ;3 pontja a P, tehát az f egyenes egyenlete: x y e e és f metszéspontját egyenletrendszer megoldásával számoljuk: f. Egy
12 Összeadva az egyenleteket: Visszahelyettesítve az. egyenletbe: A metszéspont: M 4;3 3x y 6 x 3y 7 9x 6y 8 4x 6y 34 3x 5 x y 6 y 6 y 3 MP Adott egy k kör az egyenletével: x x y y azonos középpontú), feleakkora sugarú kör egyenletét! Írja fel a k-val koncentrikus (vagyis Alakítsuk át a kör egyenletét, hogy le tudjuk olvasni a kör középpontját és sugarát! A kör középpontja tehát ; 4 sugara pedig,5. Egyenlete: x x y y x y x y K, sugara r 5. A keresett körnek tehát ugyanez a középpontja, x y. Hol metszi az e : x y egyenletű egyenes a) a 3x y 3 egyenletű egyenest? b) az x y 3 5 egyenletű kört? 4 6, 5 Két alakzat metszéspontját megkapjuk, ha megoldjuk az egyenletükből álló egyenletrendszert. a) Egy elsőfokú egyenletrendszert kell megoldanunk. Dolgozhatunk az egyenlő együtthatók módszerével, ehhez a második egyenletet szorozzuk -vel, majd összeadjuk az egyenleteket.
13 x y 3x y 3 x y 6x y 6 Visszahelyettesítve az első egyenletbe: A keresett metszéspont: M 4;. 7x 8 x 4 4 y y y b) A megoldandó egyenletrendszer egyik egyenlete elsőfokú, a másik másodfokú. Az elsőfokú egyenletből fejezzük ki x -et, és írjuk be a másodfokú egyenletbe! x y y y y y x y y 4y y 4y 4 5 5y 0 y 4 y Visszahelyettesítve az x y egyenletbe kapjuk, hogy x, x 6. A keresett két metszéspont tehát: M ;, 6;. Írja fel az A; ; B 5; ; ; M. C háromszög köré írható körének egyenletét! 3
14 Vegyük észre, hogy a háromszög derékszögű! Ellenőrizzük: ha az AB és az AC oldalak merőlegesek egymásra, a megfelelő vektorok skaláris szorzata nulla. AB 6;, AC ; , AB AC A Thalész-tétel szerint a köré írható kör középpontja az átfogó felezőpontja, a sugara az átfogó hosszának fele. F BC 3 3 ; CB 5 50 ; ; r 50 A keresett kör egyenlete: x y 3. Írja fel az alábbi A 5; ; B0; ; C 8; háromszög köré írható körének egyenletét! A háromszög köré írható körének középpontja az oldalfelező merőlegesek metszéspontja. A megoldás lépései:. AB oldal felezőmerőlegesének egyenlete: e;. AC oldal felezőmerőlegesének egyenlete: f; 3. e és f metszéspontja: K a kör középpontja; 4. a kör sugara K és A távolsága; 5. a kör egyenlete. 4
15 F AB ; ; n AB 5; 9 e e :5x 3y F AC ; ; n AC 3;3 f f : x y 6 3. Megoldandó a 5 x 3 y 3 x y 6 egyenletrendszer. dolgozhatunk a vele párhuzamos 5; 3 vektorral dolgozhatunk a vele párhuzamos ; vektorral. A második egyenletből kifejezzük x-et, majd beírjuk az. egyenletbe. x 6 y K 0;6 r KA y 3y y 3y 3 5. A keresett kör egyenlete: x y 8y 48 y 6 x Adott egy kör az egyenletével: x y körön, a 3. síknegyedben van, első koordinátája. a) Határozza meg P második koordinátáját! b) Írja fel a kör P-n átmenő érintőjének egyenletét! 3 5. Egy P pontról tudjuk, hogy rajta van a a) Mivel P rajta van a körön, a kör egyenletébe x -et helyettesítve megkapjuk P második koordinátáját. y y 5 y 9 y 3 y y 5 Tudjuk, hogy P a 3. síknegyedben van, ezért az y 5 a feladat megoldása. b) A kör érintőjét a körvonal egy adott pontjában keressük. Tudjuk, hogy az érintő merőleges az érintési pontba húzott sugárra. A keresett érintő normálvektora a KP vektor, ahol K a kör középpontja. 5
16 A kör középpontjának koordinátái leolvashatók az egyenletéből: K(3; ) n KP 4; 3. Így az érintő egyenlete: 4x 3y 4 ( 3) 5 4x 3y 9 5. Adott egy kör a koordináta-rendszer síkjában, amelynek a középpontja az origóban van és a sugara 0 egység. Határozza meg azoknak a köröknek az egyenletét, melyek érintik ezt a kört, valamint az x-tengelyt a 0;0 pontban. Készítsünk ábrát a feladathoz! ELTE 05. szeptember (tanárszakok) A feladat szimmetriájából következik, hogy két megfelelő, azonos sugarú kör van. Jelöljük a sugarat r-rel. A körök középpontjainak koordinátái 0; r. Az érintkező körök érintési pontjai és középpontjaik egy egyenesen vannak. Az ábrán is bejelölt derékszögű háromszögre felírva a Pitagorasz-tételt kapjuk r értékét. A két kör egyenlete: r 0 r r r 0r r r 5 x 0 y 5 5 és x y
Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.
1 Összeadás: Legyen a (7; 3) és b (- 2; 4), akkor az összegük a + b (7 + (-2); 3 + 4) = (5; 7) Kivonás: Legyen a (7; 3) és b (- 2; 4), akkor a különbségük a b (7 - (-2); 3-4)=(9; - 1) Valós számmal való
RészletesebbenHelyvektorok, műveletek, vektorok a koordináta-rendszerben
Helyvektorok, műveletek, vektorok a koordináta-rendszerben. Rajzold meg az alábbi helyvektorokat a derékszögű koordináta-rendszerben, majd számítsd ki a hosszúságukat! a) (4 ) b) ( 5 ) c) ( 6 ) d) (4 )
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenVektorok és koordinátageometria
Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,
RészletesebbenKoordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)
Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Írd fel a K (0; 2) középpontú 7 sugarú kör egyenletét! A keresett kör egyenletét felírhatjuk a képletbe való behelyettesítéssel: x 2 + (y + 2) 2 = 49. 2. Írd fel annak a körnek az egyenletét,
RészletesebbenKoordináta-geometria feladatgyűjtemény
Koordináta-geometria feladatgyűjtemény A feladatok megoldásai a dokumentum végén találhatók Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két csúcs
RészletesebbenI. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor:
I. Vektorok 1. Vektorok összege Általánosan: Az ábra alapján Adott: a(4; 1) és b(; 3) a + b (4 + ; 1 + 3) = (6; ) a(a 1 ; a ) és b(b 1 ; b ) a + b(a 1 + b 1 ; a + b ). Vektorok különbsége Általánosan:
RészletesebbenKoordinátageometria Megoldások
005-0XX Középszint Koordinátageometria Megoldások 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. és B 3 1; Írja fel az AB szakasz 1 3 + 4 + 1 3 F ; = F ;1 ) Egy kör sugarának
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenKoordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd
RészletesebbenKoordinátageometriai gyakorló feladatok I ( vektorok )
Koordinátageometriai gyakorló feladatok I ( vektorok./ Határozd meg az AB szakasznak azt a pontját, amely a szakaszt : ha A ( ; és a B ( ; 8!./ Adott az A ( 3 ; 5 és a ( ; 6 B pont. Számítsd ki az AB vektor
RészletesebbenA kör. A kör egyenlete
A kör egyenlete A kör A kör egyenlete 8 a) x + y 6 b) x + y c) 6x + 6y d) x + y 9 8 a) x + y 6 + 9 b) x + y c) x + y a + b 8 a) (x - ) + (y - ) 9, rendezve x + y - 8x - y + b) x + y - 6x - 6y + c) x +
RészletesebbenÉrettségi feladatok: Koordináta-geometria 1/5
Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból
Részletesebben15. Koordinátageometria
I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +
RészletesebbenÉrettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
RészletesebbenKoordináta geometria III.
Koordináta geometria III. TÉTEL: A P (x; y) pont akkor és csak akkor illeszkedik a K (u; v) középpontú r sugarú körre (körvonalra), ha (x u) 2 + (y v) 2 = r 2. Ez az összefüggés a K (u; v) középpontú r
RészletesebbenNagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.
Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre
RészletesebbenKoordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Koordinátageometria M veletek vektorokkal grakusan 1. Az ABCD négyzet oldalvektorai közül a = AB és b = BC. Adja meg az AC és BD vektorokat a
Részletesebben, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD
Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van
RészletesebbenExponenciális és logaritmusos kifejezések, egyenletek
Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.
Részletesebbenegyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.
Magyar Ifjúság. X. TRIGONOMETRIKUS FÜGGVÉNYEK A trigonometrikus egyenletrendszerek megoldása során kísérletezhetünk új változók bevezetésével, azonosságok alkalmazásával, helyettesítő módszerrel vagy más,
Részletesebben15. Koordinátageometria
I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +
RészletesebbenKoordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
RészletesebbenKoordináta-geometria II.
Koordináta-geometria II. DEFINÍCIÓ: (Alakzat egyenlete) A síkon adott egy derékszögű koordináta rendszer. A síkban levő alakzat egyenlete olyan f (x, y) = 0 egyenlet, amelyet azoknak és csak azoknak a
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk
RészletesebbenA keresett kör középpontja Ku ( ; v, ) a sugara r = 1. Az adott kör középpontjának koordinátái: K1( 4; 2)
55 A kör 87 8 A keresett kör középpontja Ku ( ; v, ) a sugara r = Az adott kör középpontjának koordinátái: K( ; ) és a sugara r =, az adott pont P(; ) Ekkor KP = és KK = () ( u ) + ( v ) =, () ( u ) +
Részletesebben6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
Részletesebben3 m ; a víz sodráé sec. Bizonyítsuk be, hogy a legnagyobb szöge 120 0 -os! α =. 4cos 2
3... Egyenes szíjhatás esetén milyen hosszú szíj szükséges 50 cmes és 6 cm-es sugarú tárcsák összekapcsolásához, ha a tárcsák tengelyeinek távolsága 335 cm? 3... Csónakkal akarunk a folyó túlsó partjára
RészletesebbenMatematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.
Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
RészletesebbenA kör. A kör egyenlete
A kör egyenlete A kör A kör egyenlete 8 a) x + y 6 b) x + y c) 6x + 6y d) x + y 9 8 a) x + y 6 + 9 b) x + y c) x + y a + b 8 a) (x - ) + (y - ) 9, rendezve x + y - 8x - 0y + 0 b) x + y - 6x - 6y + 0 c)
Részletesebben3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1
Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az
RészletesebbenFüggvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenKoordináta - geometria I.
Koordináta - geometria I A koordináta geometria témaköre geometriai problémákat old meg algebrai módszerekkel úgy, hogy a geometriai fogalmaknak algebrai fogalmakat feleltet meg: a pontokat, vektorokat
RészletesebbenGeometria 1 összefoglalás o konvex szögek
Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.
RészletesebbenSíkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik
Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala
RészletesebbenÖsszeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális
RészletesebbenVektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit
Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,
Részletesebben= Y y 0. = Z z 0. u 1. = Z z 1 z 2 z 1. = Y y 1 y 2 y 1
Egyenes és sík a térben Elméleti áttekintés Az egyenes paraméteres egyenlete: X = u 1 λ + x 0 Y = u λ + y 0, Z = u λ + z 0 ahol a λ egy valós paraméter Az u = (u 1, u, u ) az egyenes irányvektora és P
RészletesebbenEgybevágóság szerkesztések
Egybevágóság szerkesztések 1. Adott az ABCD trapéz, alapjai AB és CD. Szerkesszük meg a vele tengelyesen szimmetrikus trapézt, ha az A csúcs tükörképe a BC oldal középpontja. Nyilvánvaló, hogy a tengelyes
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenVEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)]
Bodó Beáta 1 VEKTOROK 1. B Legyen a( ; 2; 4), b( 2; 1; 2), c(; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(0; 10; 0)] (b) c + b 7a [(18; 15; 29)] (c) 2d c + b [ (5; ; ) = 6, 56] (d) 4a + 8b 7c [ ( 49; 44; 5) =
Részletesebben3. Egyenletek, egyenletrendszerek, egyenlőtlenségek
. Egyenletek, egyenletrendszerek, egyenlőtlenségek I. Nulladik ZH-ban láttuk: 1. Mennyi a 2x 2 8x 5 = 0 egyenlet gyökeinek a szorzata? (A) 10 (B) 2 (C) 2,5 (D) 4 (E) ezek egyike sem Megoldás I.: BME 2011.
RészletesebbenMegoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2.
1. Egy 33-as létszámú zenetagozatos osztályban hegedülni és zongorázni tanulnak a diákok. Minden diák játszik legalább egy hangszeren. Azok száma, akik mindkét hangszeren játszanak, akik csak hegedülnek,
RészletesebbenKoordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:
005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen
RészletesebbenMinimum követelmények matematika tantárgyból 11. évfolyamon
Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata
RészletesebbenAz egyenes és a sík analitikus geometriája
Az egyenes és a sík analitikus geometriája Az egyenes a kétdimenziós koordinátarendszerben A kétdimenziós koordinátarendszerben az egyenest egy n(a, B) normálvektorával és egy r 0 helyvektorú P(x 0,y 0
Részletesebben9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
RészletesebbenOrszágos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor
Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket
Részletesebbenb) Az egyenesnek és a körnek akkor és csak akkor van közös pontja, ha az egyenleteikből álló egyenletrendszernek van megoldása (1 pont)
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az
RészletesebbenFeladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András
Feladatok a 2010. májusi emelt szintű matematika érettségi példáihoz Hraskó András 1. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. HA.1.1. Adott a síkon
Részletesebben= 7, a 3. = 7; x - 4y =-8; x + 2y = 10; x + y = 7. C-bôl induló szögfelezô: (-2; 3). PA + PB = PA 1. (8; -7), n(7; 8), 7x + 8y = 10, x = 0 & P 0;
98 Az egyenes egyenletei. a) A( 0) B(0 6) AB_ - 6i& n( ) x + y = b) x - y =- c) 6x - y = 0 d) 6x + y = e) x + y = f) x + y = a g) x - y = a.. A(a 0) B(0 b) AB_ -a bi n (b a) bx + ay = ab osszuk el a $
Részletesebben1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint
A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül
RészletesebbenEgyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások
) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja
Részletesebben5. előadás. Skaláris szorzás
5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút
RészletesebbenSíkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón
RészletesebbenMegoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő
RészletesebbenAz egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
RészletesebbenMegoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7
A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat
Részletesebben(d) a = 5; c b = 16 3 (e) b = 13; c b = 12 (f) c a = 2; c b = 5. Számítsuk ki minden esteben a háromszög kerületét és területét.
Euklidész tételei megoldások c = c a + c b a = c c a b = c c b m c = c a c b 1. Számítsuk ki az derékszögű ABC háromszög hiányzó oldalainak nagyságát, ha adottak: (a) c a = 1,8; c b =, (b) c = 10; c a
RészletesebbenJAVÍTÓ VIZSGA 12. FE
JAVÍTÓ VIZSGA 12. FE TEMATIKA: Koordináta-geometria (vektorok a koordináta-rendszerben, egyenes egyenlete, két egyenes metszéspontja, kör egyenlete, kör és egyenes metszéspontjai) Sorozatok (számtani-
RészletesebbenEmelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész
Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )
RészletesebbenÉrettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor
Részletesebben9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;
Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;
RészletesebbenKOORDINÁTA-GEOMETRIA
XIV. Témakör: feladatok 1 Huszk@ Jenő XIV.TÉMAKÖR Téma A pont koordinátageometriája A kör koordinátageometriája KOORDINÁTA-GEOMETRIA A projekt típus ú feladatok tartalmi szintézise A feladat sorszáma Oldal
RészletesebbenSzámítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
RészletesebbenFeladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?
Feladatok 1. a) Mekkora egy 5 cm oldalú négyzet átlója? A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy négyzet
RészletesebbenOktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont
Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú
RészletesebbenFüggvény fogalma, jelölések 15
DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük
RészletesebbenTrigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
RészletesebbenA 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA ( SZAKKÖZÉPISKOLA ) Javítási-értékelési útmutató
OktatásiHivatal A 014/01. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA ( SZAKKÖZÉPISKOLA ) Javítási-értékelési útmutató 1. feladat: Adja meg az összes olyan (x,
RészletesebbenMatematika javítóvizsga témakörök 10.B (kompetencia alapú )
Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) 1. A négyzetgyök fogalma, a négyzetgyökvonás művelete 2. A négyzetgyökvonás azonosságai 3. Műveletek négyzetgyökökkel 4. A nevező gyöktelenítése
Részletesebben10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2
10. Tétel Háromszög Tulajdonságok: - Háromszögnek nevezzük a sokszöget, ha 3 oldala, 3 csúcsa és 3 szöge van - A háromszög belső szögeinek összege 180 o - A háromszög külső szögeinek összege 360 o - A
RészletesebbenKoordinátageometria Megoldások
) Koordinátageometria Megoldások - - Koordinátageometria - megoldások a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 0, egyik
RészletesebbenAz 1. forduló feladatainak megoldása
Az 1. forduló feladatainak megoldása 1. Bizonyítsa be, hogy a kocka éléből, lapátlójából és testátlójából háromszög szerkeszthető, és ennek a háromszögnek van két egymásra merőleges súlyvonala! Megoldás:
Részletesebben2. ELŐADÁS. Transzformációk Egyszerű alakzatok
2. ELŐADÁS Transzformációk Egyszerű alakzatok Eltolás A tér bármely P és P pontpárjához pontosan egy olyan eltolás létezik, amely P-t P -be viszi. Bármely eltolás tetszőleges egyenest vele párhuzamos egyenesbe
RészletesebbenKoordináta-geometria alapozó feladatok
Koordináta-geometria alapozó feladatok 1. Határozd meg az AB szakasz felezőpontját! (1,5 ; 3,5) (0,5 ; ) (6,5 ; 8,5) (4,5 ; ) (0,5 ; 1,5) (0 ; 0) (0 ; 8,5) (1 ; 1) ( 1,5 ; ) (3,5 ; 3) (0 ; 3) ( 1 ; 1,5).
Részletesebbena) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
RészletesebbenAbszolútértékes és gyökös kifejezések Megoldások
Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása
RészletesebbenFeladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.
Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y
RészletesebbenSíkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Részletesebben1. Halmazok, számhalmazok, alapműveletek
1. Halmazok, számhalmazok, alapműveletek I. Nulladik ZH-ban láttuk: 1. Határozza meg az (A B)\C halmaz elemszámát, ha A tartalmazza az összes 19-nél kisebb természetes számot, továbbá B a prímszámok halmaza
Részletesebben6. modul Egyenesen előre!
MATEMATIKA C 11 évfolyam 6 modul Egyenesen előre! Készítette: Kovács Károlyné Matematika C 11 évfolyam 6 modul: Egyenesen előre! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
Részletesebben4 = 0 egyenlet csak. 4 = 0 egyenletből behelyettesítés és egyszerűsítés után. adódik, ennek az egyenletnek két valós megoldása van, mégpedig
Oktatási Hivatal Az forduló feladatainak megoldása (Szakközépiskola) Melyek azok az m Z számok, amelyekre az ( m ) x mx = 0 egyenletnek legfeljebb egy, az m x + 3mx 4 = 0 egyenletnek legalább egy valós
RészletesebbenHASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egyszerű, hasonlósággal kapcsolatos feladatok 1. Határozd meg az x, y és z szakaszok hosszát! y cm cm z x 2, cm 2. Határozd meg az x, y, z és u szakaszok hosszát! x
RészletesebbenEGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS
GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok
RészletesebbenMATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika. évfolyam TANULÓK KÖNYVE. FÉLÉV A kiadvány KHF/487-/008. engedélyszámon 008..7. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Részletesebben54. Mit nevezünk rombusznak? A rombusz olyan négyszög,
52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes
Részletesebben8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész
Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=
RészletesebbenAz Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai
Az Országos Középiskolai Tanulmányi Verseny 008-009. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára. Határozzuk meg az alábbi egyenletrendszer valós megoldásait. ( x
Részletesebben1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
Részletesebben3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben.
3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben. TÁVOLSÁG Általános definíció: két alakzat távolsága a két alakzat pontjai között húzható legrövidebb szakasz hosszaa távolság
RészletesebbenRacionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q
Szóbeli tételek matematikából 1. tétel 1/a Számhalmazok definíciója, jele (természetes számok, egész számok, racionális számok, valós számok) Természetes számok: A pozitív egész számok és a 0. Jele: N
Részletesebben