A keresett kör középpontja Ku ( ; v, ) a sugara r = 1. Az adott kör középpontjának koordinátái: K1( 4; 2)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A keresett kör középpontja Ku ( ; v, ) a sugara r = 1. Az adott kör középpontjának koordinátái: K1( 4; 2)"

Átírás

1 55 A kör 87 8 A keresett kör középpontja Ku ( ; v, ) a sugara r = Az adott kör középpontjának koordinátái: K( ; ) és a sugara r =, az adott pont P(; ) Ekkor KP = és KK = () ( u ) + ( v ) =, () ( u ) + ( v ) = ()() egyenletrendszer gyökei: u =, v =, u = 8,, v = 0, A keresett körre két megoldást kaptunk ( x ) + ( y ) = és ( x 8, ) + ( y 0, ) = 87 Ha két kör kívülrôl, vagy belülrôl érinti egymást, akkor az érintési pontok a középpontokon átmenô egyenesekre illeszkednek A keresett kör középpontjai; K ( ; ), az adott kör középpontja K ( 0 ; ) A centrális egyenes egyenlete: y= x 8 Ez az egyenes az adott kört két pontban metszi E(; 5 ), E (; ) A sugarak hossza KE= 5, KE= 5 egység A körök egyenletei: ( x ) + + ( y ) = 5 és ( x ) + ( y ) = 5 Utóbbi kör az adott kört belülrôl érinti 88 Adott kör középpontja K( ; ), a sugara r = egység A keresett kör középpontja Ku ( ; v) a sugara r = 8 egység A K pontnak két feltételt kell kielégítenie K K= 8 + és K P= 8 7 N 5 N A keresett kör egyenlete: ( x ) + ( y ) = 8 0 x+ + K v = 8 O K O 8 Az adott körök kívülrôl érintik egymást, mert a középpontjaik távolsága a sugaraik hosszának összegével egyenlô K( ; ), r= 0, K( 0; ), r = 5 K K = 5 A keresett kör középpontja rajta van a K K egyenesen, másrészt az x tengelyre illeszkedik K K egyenlete: x y= A K középpont koordinátái (; 0), a sugara r = + = 5, az egyenlete ( x ) + y = 5 0 Az adott kör középpontja K( ; ), a sugara r = 0, az adott pontja P(7; 8) A keresett kör K középpontjának koordinátái u és v, a sugara r= v, mert érinti az x tengelyt K rajta van a KP egyenesen, és K P= r A keresett kör egyenlete: ( x ) + ( y 5) = 5 A keresett kör K középpontjának koordinátái K( u; u) és a sugara r= u Felírhatjuk ura a következô egyenletet (figyelembevéve, hogy az adott kör középpontja K(; ), a sugara r = 5: ( u+ ) + ( u+ ) = ( 5+ u) Innen u= 5 A keresett kör egyenlete: ( x 5) + _ y 5i = 5 Az adott körök középpontjainak koordinátái: K( 0; 0), K ( ; ), a sugaraik r = 5, r = egység A keresett kör középpontja Ku ( ; v) a sugara 5 egység; Kra felírhatjuk a következô egyenletrendszert: () u + v = 00 Kl( 0, ; 7, ) 0 Kll (, ; 0, ) ()( u ) + ( v ) = 8 Az adott körök sugarai megegyeznek Ezért elegendô meghatározni a K( ; ), K (; ) és a K ( ; 8) középpontokon átmenô k kör egyenletét, azután a k kör sugarát egységgel csökkentve, illetve növelve megkapjuk a keresett körök egyenletét ( x 5) + ( y 5) = és ( x 5) + ( y 5) = Két egymást metszô kör hajlásszögét a metszéspontban húzott érintôk hajlásszögével definiáljuk Az adott körök metszéspontjai: P (, ;,), P (, ;,) A P pontbeli érintôk

2 Körök kölcsönös helyzete, közös pontjaik meghatározása 557 egyenletei: e :, x+, y= és e: 8, x +, y = 0 e normálvektora n (, ;,), e normálvektora n ( 8, ;, ) n $ n = 0 a hajlásszög 0 P pontban a hajlásszög szintén 0, mert P és P a centrális egyenesre szimmetrikus pontok 5 A keresett kör egyenlete ( x u) + ( y v) = r Mivel a kör átmegy az (; 0) és a (0; ) koordinátájú pontokon, azért u= v Ekkor ( u) + u = r, illetve u u+ = r Másrészt a metszéspont, a Ku ( ; v) pont és az adott kör K( ; 0) középpontja egy derékszögû háromszög csúcsai, mivel a két kör merôlegesen metszi egymást Így alkalmazva Pitagorasz tételét: ( u ) + u = + r A két egyenletbôl: u=, r = A keresett kör egyenlete: 5 8 N N 5 x + K y = O K O 8 A keresett kör egyenlete: ( x u) + ( y v) = A P(; ) pont rajta van a körön, ezért ( u) + ( v) = Az E metszéspont, a Ku ( ; v) pont és az O(0; 0) pont derékszögû háromszög csúcsai, mert a keresett kör az adott kört derékszögben metszi Ezért u + v = + A felírt egyenletek megoldá N sai: (; ) és K ; O Két megoldás van: ( x + ) + ( y ) = N N és x + y K = O K O 7 A k k= 0 valóban egyenes egyenlete: x y+ = 0 A centrális egyenes egyenlete: x+ y= 7 A két egyenes merôleges egymásra, mert $ + $ ( ) = 0 A feladat könnyen általánosítható Legyen a két kör egyenlete: x + y = r, ( xa) + y = r 8 a) Oldjuk meg az egyenletrendszert: () x + y = () x 8y = 0 & x 7! =, 50 8! y = A húr hossza d = egység b) egység; c) egység; 5 7 d) egység; e) 0 egység 7 A keresett P pont koordinátái: ( x; y ) Az adott körök adatai: K (; ), r =, K (; ), r =, az érintési pontok E és E Ekkor a PKE háromszög és a PKE háromszög derékszögû (Az átfogók PK és PK ) A következô egyenleteket írhatjuk fel, alkalmazva a Pitagorasz tételét: () ( x ) + ( y ) = +, () ( x ) ( y ) + = + ()() egyenletrendszer gyökei adják a P pont koordinátáit P (; 5 5), P ( ; ) 000 A közös húr végpontjainak koordinátáit az x + y = 0 egyenletrendszer gyökei adják P (; ), P ( ; ) A húr egyenlete: x + y = x + y x y+ = 0 A háromszög területe területegység 00 Az adott k kör középpontja K( ; ), a sugara r = 0 egység A keresett k kör középpontja K( u; v) a sugara r= v mert a kör érinti az x tengelyt (A sugár merôleges az érintôre) Mivel k érinti a k kört a P(7; 8) pont

3 558 A kör ban, azért a K pont rajta van a KP egyenesen KP egyenlete: x+ y= A k kör egyenlete: ( x u) + ( y v) = v A P pont koordinátái kielégítik a kör egyenletét, a kör ( u; v) koor dinátái kielégítik a KP egyenletét Ekkor () u+ v= ()() egyenletrendszer gyökei: u=, v= 5, u=, v= 0 A keresett kör egyenlete: () ( x ) + ( y 5) = () ( 7 u) + ( 8 v) = v = 5 vagy () ( x ) + ( y 0) = 00A()as kör belülrôl a ()es kör kívülrôl érinti az adott kört a P(7; 8) pontban 00 A K( 8; ) középpontú és r = 0 egység sugarú kör érinti a K ( ; ) középpontú és r = 0 egység sugarú kört, mert az egyenletrendszert egyetlen ( x+ 8) + ( y ) = 00 ( x ) + ( y+ ) = 00 számpár, az E( ; ) számpár elégíti ki A keresett k kör K középpontjának koordinátái ( u; v ), a sugara r= v, mert a kör érinti az x tengelyt Másrészt a K pont rajta van a K K egyenesen, amelynek egyenlete x+ y= A K kör átmegy az E(; ) ponton, ezért E koordinátái kielégítik a k kör egyenletét Két érintôkör N 0 N 00 van: ( x+ ) + ( y 0) = 00 és x+ + K y = O K O 8 00 ( x 0) + ( y ) = 00 és ( x 5) + ( y ) = 5 00 Készítsünk ábrát A k kör K középpontjának koordinátái K( ; ) a sugara r = 0 egység A k kör K középpontjának koordinátái K ( ; 8 ) a sugara r = 5 egység KK = 5, a két kör érinti egymást Az E érintési pont koordinátái E(7; 5) A k kör Ku ( ; v) középpontja rajta van a 00 K K egyenesen és a PE szakasz felezômerôlegesén, mert k érinti a k kört belülrôl, a k kört kívülrôl az E pontban, és átmegy a P ponton ura, vre felírhatjuk a következô egyenletrendszert: () u v= () u v= () a PE szakasz felezômerôlegesének egyenlete, () a K K egyenes egyenlete Innen u =, v =, a sugár 5 egység k egyenlete: ( x ) + + ( y ) = Az ( x+ ) + ( y+ ) = r egyenletû kör, amely az adott körrel koncentrikus az x tengelyt az 00 A r c + ; 0m és a Cc r ; 0m, az y tengelyt a B 0; r c + m és a Dc0; r m pontokban metszi, ahol r > Az ABCD négyszög átlói merôlegesek egymásra és a területe: AC $ BD r $ r = = 8 5 Innen r = A k kör egyenlete: ( x+ ) + ( y+ ) = 00 Az adott k kör K középpontja az origó, K ( 0; 0), a sugara r = egység, a k kör K középpontjának koordi

4 Körök kölcsönös helyzete, közös pontjaik meghatározása 55 5 nátái K ( ; 5), a sugara r = egység KK = egység A centrális egyenlete y= x A két körhöz közös érintô a külsô, illetve a belsô hasonlósági pontból húzható A külsô hasonlósági P pont koordinátái legyenek (a; b) P nek az origótól való távolságát a KMP és a KNP hasonló derékszögû háromszögek segítségével számíthatjuk ki KP K M + KP = & = Innen KP KP K N KP = és K P = egység Ekkor az 5 (a; b) koordinátákra a következô egyenletrendszert írhatjuk fel: b= a és N K O a + b = K O Innen a, b 5 = = A KSP és a KRP hasonló derékszögû háromszögek segítségével számíthatjuk ki a P 5 N belsô hasonlósági pont koordinátáit P ; K O 007 Tegyük fel, hogy a P(; a b) pontból húzható egyenlô d hosszúságú érintô az adott körökhöz Ekkor a P pont, a körök K( ; 5) és K ( ; ) középpontja és az E, E érintési pontok a PK E és a PK E derékszögû háromszögeket feszítik ki PE= PE= d, KE =, KE = PK ( a ) 5 = + +, PK = ( a ) + d = ( a+ ) + 5 és d = ( a ) + N + + Ezekbôl az egyenletekbôl a = Az x tengely ; 0 K O pontjából húzhatók egyenlô hosszúságú érintôk az adott körökhöz (Az egyenlô érintôk, 05 egység hosszúak) 008 elöljük az x tengely azon P pontjának koordinátáit (a; 0)val, amelybôl a N k : x K + ( y 8) =, 5 O egyenletû körhöz kétszer olyan hosszú érintô húzható, mint a k:( x+ ) + ( y+ ) = 5 körhöz A P pont a körök középpontjai és az érintési pontok egyegy derékszögû háromszöget határoznak meg Legyen a k körhöz húzott érintô hossza l Ekkor a N következô egyenleteket írhatjuk fel Pitagorász tétele szerint: l= a K + ( 08), 5 O, l = ( a + ) + ( 0+ ) 5 Két megoldás van P ( ; 0), P ( ; 0) 00 A keresett k kör Ku ( ; v) középpontja rajta van az PQ szakasz felezômerôlegesén az x+ y= 008 egyenletû egyenesen Másrészt KR = KP + = = KQ + Ennek alapján az (u; v) koordinátákra a következô egyenleteket írhatjuk fel: () u+ v=, () u + v = = u + ( v ) + K(,; 8 77,) és K (, ;, 7) A feladatnak a K felel meg A K középpontú K P sugarú körnek az R ( 0; 0) pont belsô pontja A keresett kör sugara KP méter A tó átmérôje méter pontossággal méter

5 50 A parabola A parabola A parabola egyenlete 00 és 0 A feladatok megoldását az olvasóra bízzuk 0 A parabola egyenlete: y p x = Ha a P( x; y) pont rajta van a parabolán, akkor y p x = álasszunk olyan P(; x y) pontot, amely a parabola külsô pontja Húzzunk a P ponton át a parabola tengelyével párhuzamos egyenest Ez egy P( x; y) pontban metszi a parabolát Ekkor x= x és y< y Ezért y > p x p x = = y Hasonlóan igazolható, hogy ha a Px (; y) pont a parabola belsô pontja, akkor < p x y 0 Az (; ) pont belsô pont, mert > A (; ) parabolapont, ( ; ) belsô, a ( 7; ) külsô pont 0 a) y p x = egyenletbe helyettesítsük be a (; ) pontot Ekkor = Innen p p = Tehát a parabola egyenlete: y= x Ha a parabola tengelye az x tengely, akkor az y = px egyenletbôl = p $, y = x b) y x =, y = x ; c) y= x, y = x; d) y= x, y = x 05 a) y= x ; b) y= x; c) y= x ; d) y= x; e) y = x; 8 f) y = 0x 0 a) y = 8xb) y= x 07 a) A parabola paramétere p = Az y= x egyenletû parabolát eltoljuk a v(; ) 8 vektorral Az eltolt parabola egyenlete y= ( x ) + Innen x 8x 8y+ = 0 (07 8 ábra) b) x x+ y+ = 0; c) x x+ y = 0; d) y y x+ = 0; e) y yx = 0; f) x + x 8y+ 7= 0; 07 g) y y x+ 8= 0 h) Két megoldás van: x y + = 0 vagy x + y 0 = 0 i) Két megoldás van: y y 8x+ = 0 vagy y y+ 8x 0= 0 08 a) c = 0 b) A P(; ) pont koordinátái kielégítik a parabola egyenletét: a+ b+ c = 0; c) a b+ c= 0; d) a+ b+ c+ = 0

6 A parabola egyenlete 5 0 A parabola tengelypontjának koordinátái: C(u; ), a paramétere: p = Az egyenlete: y= ( x u) + Mivel a parabola átmegy a (0; 8) ponton, azért 8 = ( u) + Innen u =! Két megoldás van: y= ( x ) + vagy y= ( x+ ) + 00 Két eset lehetséges A parabola az x tengely pozitív irányában vagy negatív irányában nyílik szét p =, tehát ( y v) = xu az egyenlete, vagy ( y v) =( x u) Figyelembe véve az adott parabolapontok koordinátáit: a következô egyenletrendszereket írhatjuk fel: ( v) =u () ( v) = u és () ( v) =( u) Az ()es egyenletrendszerbôl ( v) =( u) ( y 5) = x+ 7, a ()es egyenletrendszerbôl y = ( x 0) egyenleteket kapjuk 0 a) A tengelypont koordinátái (0; v), a parabola egyenlete ( y v) = px Az adott pontok koordinátái kielégítik a parabola egyenletét: ( ) v = p Innen v ( v) =8p =, p =, v =, p = Két parabolát kapunk ( ) y + = x N és y+ K = x O b) y= ( x5) és ( x ) = y 0 A keresett parabolák egyenletei: y= ( x) vagy y= ( x+ ) 5 0 A parabola tengelyesen szimmetrikus A keresett parabola szimmetriatengelye az x = egyenletû egyenes A parabola átmegy a (; 0) ponton és ezen pontnak az x = egyenletû egyenesre vonatkozó tükörképén a (0; 0) ponton is Felírhatjuk a, b, cre a következô egyenletrendszert: 0= a+ b+ c Innen a =, b =, c = 0 0= 0$ a+ 0$ b+ c = a+ b+ c 0 A közös fókuszú parabolák vezéregyeneseit úgy kapjuk meg, hogy a parabola definícióját figyelembe véve a P és P pontok körül PF és PF sugarú köröket rajzolunk, és meghatározzuk ezen körök közös külsô érintôit Az érintôk egyikegyik parabola vezéregyenesét adják PF =, PF = 5, PP < PF + PF A két kör metszi egymást A centrális egyenlete x+ y= 8 Az egyik külsô érintô az x tengely, a másik külsô érintô egyenlete: y= x+ Az egyik parabola paramétere, a másik 0 parabola paramétere az F( ; ) pontnak a x+ y = 0 egyenletû egyenestôl mért távolsága:, egység 05 Mivel mindkét egyenletben az x együtthatója azonos, a két parabola egybevágó (mindkét parabola felfelé nyílik szét) A csúcspontjaik koordinátái: C `p; p j, C`p; p j A CC vektor koordinátái: `p; p j N 7 CC = ( p) + `p j = p K + O

7 5 A parabola 00 Az eltolásvektor hossza akkor a legkisebb, ha p =, p =! CC = egység min 0 a) x x y= 0; b) y= x ; c) y= x x+ 5; d) 7x 5x+ y+ = 0; e) x x y+ 7 = 0 07 A parabola egyenlete: ( y v) = p( xu) alakú Itt v= 0, u=5 és a P(0; ) pont a parabolára illeszkedik A parabola egyenlete 5y x ay + b x ab = 0 0 bx + a y a b = Az ábra szerint a CPQ szabályos háromszög CC magassága = egység A CP egyenes egyenlete y = tg0 ( x ), illetve y = _ xi A P pont abszcisszá ja +, az ordinátája a CP egyenletbôl y = b+ l, y = 5 A keresett parabola átmegy a C(; ), P b+ ; 5lés a Q b+ ; l pontokon A parabola egyenlete: ( y v) = p( x u), ahol ( u; v) a C csúcspont (tengelypont) koordinátái u=, v= Helyettesítsük a parabola egyenletébe a P pont koordinátáit Ekkor ( 5 ) = p b+ l Innen p = A CPQ pontokon átmenô parabola egyenlete: ( y ) = ( x ) (Szimmetria miatt a Q pont koordinátái is kielégítik a parabola egyenletét) Még egy megoldást kapunk, ha a CPQ háromszöget az x = egyenletû egyenesre tükrözzük A C(; ), Pb ; 5l, Qb ; l csúcspontokon átmenô parabola egyenlete: ( y ) = ( x ) 0 Helyezzük el a parabolát a koordinátarendszerben úgy, hogy a híd tartószerkezetének két végpontja A(0; 0), B(0; 0) és a legmagasabb pontja C(0; 5) legyen A parabolaív egyenlete: y p x = + 5 Ekkor 0 = , innen p = 0 A parabola egyenlete: p y= x + 5, ahol 0 # x # 0 A függôleges tartóvasak hossza méterben rendre: ; ; ; ; ; 5, ha az x helyére rendre behelyettesítjük a 5, 0, 5, 0, 5, 0 értékeket A szimmetria miatt az elsô öt hosszúság a másik oldalon is érvényes

8 A parabola egyenlete 5 0 A parabola átmegy az A(0; 0), B(; 0) és a 0 C(8; ) pontokon, a tengelye párhuzamos az y tengellyel, a tengelypontja a C pont Az egyenlete: () y ( ) p x u = + v alakú, ahol u= 8, v= és x= y= 0 Ezeket az adatokat behelyettesítve az ()es egyenletbe p = 7 A röppálya egyenlete: y= ( x 8) +, ahol 0 # x # 7 0 Induljon a vízsugár az A( ; 0) pontból és a B(; 0) pontba érkezzen vissza a talajra p = A parabolaív egyenlete: y 0 p x = + v Ekkor 0 = + v N A vízsugár v = 5 méter magasra emelkedik K 5 O 0 Tekintsük az ábrát A parabola fókusza az A(0; 0) pont és a parabola átmegy a p N T K ; 0 O tengelyponton és a háromszög B a ; a N K O K O és C a ; a N K O csúcsain Ekkor a parabola egyenlete: y = p K K O L P p N x+ O alakú Behelyettesítve a B vagy a C csúcs koordinátáit, pre a a a b l következô egyenletet kapjuk: p + ba l p = 0 Innen, mivel p > 0, p = N a a adódik A parabola egyenlete: y K O = ab l x+ Ha a tengelypont T p N ; 0 K O K O, L P N a a akkor az egyenlet: y K O = ab+ l x K O L P 05 A parabola tengelye az y tengely, az (r; 0), r b c ; bm, c r b ; bm (r; 0) pontok rajta vannak a parabolán Egyenlete: y p x = + v alakú Legyen y = 0, x= r, ekkor r = pv A c r b ; bm pont is illeszkedik a parabolára Ezért b p r b = ` j + v Az r = pv r egyenletrendszerbôl p= b és v = Aparabola egyenlete: pb = b r + pv b x r y = +, illetve x + by r = 0 b b N 0 a) p =, F(0; ), y + = 0; b) p =, F(0; ), y = 0; c) p =, F K 0; O, N y + = 0; d) p =, F 0; K O, y = 0; e) p=, F(0; ), y = 0; f) p =,

9 5 A parabola F(; 7), y = 0; g) p =, F(; ), y = 0; h) p =, F(0; ), x + = 0; i) p =, N F(0; 7), y + = 0; j) Az egyenlet y = x K O alakban is felírható Innen p =, p N =, F ; 0 K O, F 5 N ; 0 K O, x 7 N = +, x = k) p =, F 0; K O, y = 0; L P 7 N l) p =, F 0; K O, y = 0 m) A parabola egyenlete: y= `x + x+ j +, y= ( x+ ) + alakban is felírható Hasonlítsuk össze a parabola egyenletét az y ( ) p x u = + v egyenlettel p =, u =, v = A tengelypont koordinátái C( ; ), F( ; ), a vezéregyenes egyenlete: y = 0 n) y= `x x+ j, 5 N y= _ x i p=, F ; K O, y = +, y = o) ( y ) = 0( x+ ) egyenletbôl p = 5, F ; K O, x N N + = 0 p) p =, F ; K O, y + = 0; q) p =, F(; ), N y 8 = 0; r) p = ; F ; 0 00 K 00 O, x N + = 0; s) ( y 5) = x 00 K O egyenletbôl N p =, F(5; 5), y + = 0; t) p = ; F 8; 0 K 0 O, y 5 N = 0; u)p= 5; F ; 0 0 K 0 O, y + 5 = 0 07 y = x, ha x = ( x ) Megoldás: P(; ) 08 Az egyenlôtlenség átalakítható: y> ( x 5) + Az egyenlôtlenséget a parabola belsô (a fókuszt tartalmazó tartomány) pontjainak koordinátái elégítik ki 0 A szorzat pontosan akkor nulla, ha valamelyik tényezôje 0 Tehát y= x vagy x =!, vagy ( y)( y ) = 0ból y = vagy y = A ponthalmaz a normál parabola az x =, x =, y =, y =, egyenletû egyenesek pontjainak uniója Ezen halmaz pontjainak koordinátái és csakis ezek elégítik ki az adott egyenlôtlenséget 0 00 Az egyenlettel ekvivalens az `x yj =, illetve az x y=! egyenlet Innen y= x vagy y= x + Az adott egyenlet az y= x és az y= x + egyenletû parabolák pontjainak koordinátái elégítik ki 0 A megoldást az ábrán látható zárt síktartomány belsô pontjainak koordinátái adják 0 ( yx) `y x + xj < 0, ha a) y< x és y> N N K x O ; b) y> x és y< x K O

10 A parabola egyenlete 55 N Az y = x, egyenes és az y= x K O parabola közös pontjainak koordinátái: x= y =, x= y = 0, Az a) b) feltételeket kielégítô pontok halmazát az ábrán vázoltuk 0 Ha x $ 0, akkor x x xy# 0, illetve x`x yj# 0 Ez az egyenlôtlenség csak úgy teljesülhet, ha y$ x Ha pedig x < 0, akkor y$ x + A ponthalmazt az ábrán vázoltuk 0 Legyen a Q_ x; yi pont az y= x egyenletû parabola pontja és a Q_ x; yi a Q pontnak a P(; ) pontra vonatkozó tükörképe Ekkor x + x y+ y =, = Innen x = x, 0 y= y y= x, tehát y= _ xi y= x + x Az y= x egyenletû parabola tükörképe az y= x + x ; y= ( x ) + egyenletû parabola 05 Legyen a Q_ x; yi pont az y= x + x egyenletû parabola pontja a Q_ x; yi a Q pont tükörképe Ekkor x= x és y= y Helyettesítve az adott parabola egyenletébe, és rendezve az egyenletet: y= _ x5i Az y= ( x+ ) + egyenletû parabolát tükrözve a P(; ) pontra a tükörkép parabola, amelynek egyenlete: y= ( x5) 0 Ismeretes, hogy ha a P_ x; yi pontot az y= x egyenletû egyenesre tükrözzük, akkor a P pont a Q_ x; yi pontba megy át a) Az y= x x+ egyenletû parabola az x= y y+ egyenletû görbébe megy át, amely egyenlet a következôképpen is írható: () ( y ) = ( x+ 5) () olyan parabola egyenlete, amelynek tengelye párhuzamos az x tengellyel, a tengelypontja C(5; ), a paramétere, a fókuszának koordinátái: F ; K O N b) C(; ), F(; ) 07 A parabola pontjai a következôk: P ( ; ), P ( ; ), P ( ; ), P ( ; ) A lehetséges húr közül egyenlô hosszúságú PP = 8, 0 PP = 8 + N 5 08 P(; ), F 0; K, O PF = 0 P ( ; ), F (; 0 ), PF =

A kör. A kör egyenlete

A kör. A kör egyenlete A kör egyenlete A kör A kör egyenlete 8 a) x + y 6 b) x + y c) 6x + 6y d) x + y 9 8 a) x + y 6 + 9 b) x + y c) x + y a + b 8 a) (x - ) + (y - ) 9, rendezve x + y - 8x - y + b) x + y - 6x - 6y + c) x +

Részletesebben

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Írd fel a K (0; 2) középpontú 7 sugarú kör egyenletét! A keresett kör egyenletét felírhatjuk a képletbe való behelyettesítéssel: x 2 + (y + 2) 2 = 49. 2. Írd fel annak a körnek az egyenletét,

Részletesebben

Koordináta geometria III.

Koordináta geometria III. Koordináta geometria III. TÉTEL: A P (x; y) pont akkor és csak akkor illeszkedik a K (u; v) középpontú r sugarú körre (körvonalra), ha (x u) 2 + (y v) 2 = r 2. Ez az összefüggés a K (u; v) középpontú r

Részletesebben

Koordinátageometriai gyakorló feladatok I ( vektorok )

Koordinátageometriai gyakorló feladatok I ( vektorok ) Koordinátageometriai gyakorló feladatok I ( vektorok./ Határozd meg az AB szakasznak azt a pontját, amely a szakaszt : ha A ( ; és a B ( ; 8!./ Adott az A ( 3 ; 5 és a ( ; 6 B pont. Számítsd ki az AB vektor

Részletesebben

A kör. A kör egyenlete

A kör. A kör egyenlete A kör egyenlete A kör A kör egyenlete 8 a) x + y 6 b) x + y c) 6x + 6y d) x + y 9 8 a) x + y 6 + 9 b) x + y c) x + y a + b 8 a) (x - ) + (y - ) 9, rendezve x + y - 8x - 0y + 0 b) x + y - 6x - 6y + 0 c)

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

10. Koordinátageometria

10. Koordinátageometria I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd

Részletesebben

3 m ; a víz sodráé sec. Bizonyítsuk be, hogy a legnagyobb szöge 120 0 -os! α =. 4cos 2

3 m ; a víz sodráé sec. Bizonyítsuk be, hogy a legnagyobb szöge 120 0 -os! α =. 4cos 2 3... Egyenes szíjhatás esetén milyen hosszú szíj szükséges 50 cmes és 6 cm-es sugarú tárcsák összekapcsolásához, ha a tárcsák tengelyeinek távolsága 335 cm? 3... Csónakkal akarunk a folyó túlsó partjára

Részletesebben

Koordinátageometria Megoldások

Koordinátageometria Megoldások 005-0XX Középszint Koordinátageometria Megoldások 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. és B 3 1; Írja fel az AB szakasz 1 3 + 4 + 1 3 F ; = F ;1 ) Egy kör sugarának

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Koordináta-geometria feladatok (emelt szint)

Koordináta-geometria feladatok (emelt szint) Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik

Részletesebben

15. Koordinátageometria

15. Koordinátageometria I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

Helyvektorok, műveletek, vektorok a koordináta-rendszerben

Helyvektorok, műveletek, vektorok a koordináta-rendszerben Helyvektorok, műveletek, vektorok a koordináta-rendszerben. Rajzold meg az alábbi helyvektorokat a derékszögű koordináta-rendszerben, majd számítsd ki a hosszúságukat! a) (4 ) b) ( 5 ) c) ( 6 ) d) (4 )

Részletesebben

15. Koordinátageometria

15. Koordinátageometria I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +

Részletesebben

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010. Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre

Részletesebben

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0. Magyar Ifjúság. X. TRIGONOMETRIKUS FÜGGVÉNYEK A trigonometrikus egyenletrendszerek megoldása során kísérletezhetünk új változók bevezetésével, azonosságok alkalmazásával, helyettesítő módszerrel vagy más,

Részletesebben

Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.

Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög. 1 Összeadás: Legyen a (7; 3) és b (- 2; 4), akkor az összegük a + b (7 + (-2); 3 + 4) = (5; 7) Kivonás: Legyen a (7; 3) és b (- 2; 4), akkor a különbségük a b (7 - (-2); 3-4)=(9; - 1) Valós számmal való

Részletesebben

= 7, a 3. = 7; x - 4y =-8; x + 2y = 10; x + y = 7. C-bôl induló szögfelezô: (-2; 3). PA + PB = PA 1. (8; -7), n(7; 8), 7x + 8y = 10, x = 0 & P 0;

= 7, a 3. = 7; x - 4y =-8; x + 2y = 10; x + y = 7. C-bôl induló szögfelezô: (-2; 3). PA + PB = PA 1. (8; -7), n(7; 8), 7x + 8y = 10, x = 0 & P 0; 98 Az egyenes egyenletei. a) A( 0) B(0 6) AB_ - 6i& n( ) x + y = b) x - y =- c) 6x - y = 0 d) 6x + y = e) x + y = f) x + y = a g) x - y = a.. A(a 0) B(0 b) AB_ -a bi n (b a) bx + ay = ab osszuk el a $

Részletesebben

Vektorok és koordinátageometria

Vektorok és koordinátageometria Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,

Részletesebben

8. előadás. Kúpszeletek

8. előadás. Kúpszeletek 8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek.

20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek. . tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek. Először megadom a síkbeli definíciójukat, mert ez alapján vezetjük le az egyenletüket. Alakzat

Részletesebben

Koordináta-geometria feladatgyűjtemény

Koordináta-geometria feladatgyűjtemény Koordináta-geometria feladatgyűjtemény A feladatok megoldásai a dokumentum végén találhatók Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két csúcs

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

Koordináta-geometria II.

Koordináta-geometria II. Koordináta-geometria II. DEFINÍCIÓ: (Alakzat egyenlete) A síkon adott egy derékszögű koordináta rendszer. A síkban levő alakzat egyenlete olyan f (x, y) = 0 egyenlet, amelyet azoknak és csak azoknak a

Részletesebben

Egybevágóság szerkesztések

Egybevágóság szerkesztések Egybevágóság szerkesztések 1. Adott az ABCD trapéz, alapjai AB és CD. Szerkesszük meg a vele tengelyesen szimmetrikus trapézt, ha az A csúcs tükörképe a BC oldal középpontja. Nyilvánvaló, hogy a tengelyes

Részletesebben

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú

Részletesebben

KOORDINÁTA-GEOMETRIA

KOORDINÁTA-GEOMETRIA XIV. Témakör: feladatok 1 Huszk@ Jenő XIV.TÉMAKÖR Téma A pont koordinátageometriája A kör koordinátageometriája KOORDINÁTA-GEOMETRIA A projekt típus ú feladatok tartalmi szintézise A feladat sorszáma Oldal

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

Az egyenes és a sík analitikus geometriája

Az egyenes és a sík analitikus geometriája Az egyenes és a sík analitikus geometriája Az egyenes a kétdimenziós koordinátarendszerben A kétdimenziós koordinátarendszerben az egyenest egy n(a, B) normálvektorával és egy r 0 helyvektorú P(x 0,y 0

Részletesebben

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások ) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja

Részletesebben

Geometria 1 összefoglalás o konvex szögek

Geometria 1 összefoglalás o konvex szögek Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.

Részletesebben

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27. Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Oktatási Hivatal A 0/04 tanévi Országos Középiskolai Tanulmányi erseny második forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 57 olyan háromjegyű szám, amelynek számjegyei

Részletesebben

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1 Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az

Részletesebben

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira: 005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen

Részletesebben

(d) a = 5; c b = 16 3 (e) b = 13; c b = 12 (f) c a = 2; c b = 5. Számítsuk ki minden esteben a háromszög kerületét és területét.

(d) a = 5; c b = 16 3 (e) b = 13; c b = 12 (f) c a = 2; c b = 5. Számítsuk ki minden esteben a háromszög kerületét és területét. Euklidész tételei megoldások c = c a + c b a = c c a b = c c b m c = c a c b 1. Számítsuk ki az derékszögű ABC háromszög hiányzó oldalainak nagyságát, ha adottak: (a) c a = 1,8; c b =, (b) c = 10; c a

Részletesebben

Koordináta - geometria I.

Koordináta - geometria I. Koordináta - geometria I A koordináta geometria témaköre geometriai problémákat old meg algebrai módszerekkel úgy, hogy a geometriai fogalmaknak algebrai fogalmakat feleltet meg: a pontokat, vektorokat

Részletesebben

Középpontos hasonlóság szerkesztések

Középpontos hasonlóság szerkesztések Középpontos hasonlóság szerkesztések 1. Adott az AV B konvex szög és a belsejében egy P pont. Húzzunk a P ponton át egy egyenest úgy, hogy a szög száraiból kimetszett szeletek aránya 3 : 4 legyen. Legyen

Részletesebben

I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor:

I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor: I. Vektorok 1. Vektorok összege Általánosan: Az ábra alapján Adott: a(4; 1) és b(; 3) a + b (4 + ; 1 + 3) = (6; ) a(a 1 ; a ) és b(b 1 ; b ) a + b(a 1 + b 1 ; a + b ). Vektorok különbsége Általánosan:

Részletesebben

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel; Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket

Részletesebben

Abszolútértékes és gyökös kifejezések Megoldások

Abszolútértékes és gyökös kifejezések Megoldások Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása

Részletesebben

1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint

1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

Geometriai példatár 2.

Geometriai példatár 2. Geometriai példatár 2 Metrikus feladatok Baboss, Csaba, Nyugat-magyarországi Egyetem Geoinformatikai Kar Szabó, Gábor, Nyugat-Magyarországi Egyetem Geoinformatikai Kar Geometriai példatár 2: Metrikus feladatok

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk

Részletesebben

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Koordinátageometria M veletek vektorokkal grakusan 1. Az ABCD négyzet oldalvektorai közül a = AB és b = BC. Adja meg az AC és BD vektorokat a

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

= Y y 0. = Z z 0. u 1. = Z z 1 z 2 z 1. = Y y 1 y 2 y 1

= Y y 0. = Z z 0. u 1. = Z z 1 z 2 z 1. = Y y 1 y 2 y 1 Egyenes és sík a térben Elméleti áttekintés Az egyenes paraméteres egyenlete: X = u 1 λ + x 0 Y = u λ + y 0, Z = u λ + z 0 ahol a λ egy valós paraméter Az u = (u 1, u, u ) az egyenes irányvektora és P

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Ismételjük a geometriát egy feladaton keresztül!

Ismételjük a geometriát egy feladaton keresztül! Laczkó László Készült a Fazekas ihály Oktatási Kulturális és Sport lapítvány támogatásával z árák elektronikus változatát Véges árton (009c) diák készítette feladat z hegyesszögű háromszög -nél levő szöge.

Részletesebben

VEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)]

VEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)] Bodó Beáta 1 VEKTOROK 1. B Legyen a( ; 2; 4), b( 2; 1; 2), c(; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(0; 10; 0)] (b) c + b 7a [(18; 15; 29)] (c) 2d c + b [ (5; ; ) = 6, 56] (d) 4a + 8b 7c [ ( 49; 44; 5) =

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )

Részletesebben

b) Az egyenesnek és a körnek akkor és csak akkor van közös pontja, ha az egyenleteikből álló egyenletrendszernek van megoldása (1 pont)

b) Az egyenesnek és a körnek akkor és csak akkor van közös pontja, ha az egyenleteikből álló egyenletrendszernek van megoldása (1 pont) 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az

Részletesebben

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az

Részletesebben

3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben.

3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben. 3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben. TÁVOLSÁG Általános definíció: két alakzat távolsága a két alakzat pontjai között húzható legrövidebb szakasz hosszaa távolság

Részletesebben

Egy sík és a koordinátasíkok metszésvonalainak meghatározása

Egy sík és a koordinátasíkok metszésvonalainak meghatározása 1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -

Részletesebben

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András Feladatok a 2010. májusi emelt szintű matematika érettségi példáihoz Hraskó András 1. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. HA.1.1. Adott a síkon

Részletesebben

11. osztály. 1. Oldja meg az egyenletrendszert a valós számok halmazán! (10 pont) Megoldás: A három egyenlet összege: 2 ( + yz + zx) = 22.

11. osztály. 1. Oldja meg az egyenletrendszert a valós számok halmazán! (10 pont) Megoldás: A három egyenlet összege: 2 ( + yz + zx) = 22. osztály Oldja meg az egyenletrendszert a valós számok halmazán! y + yz = 8 yz + z = 9 z + y = 5 (0 pont) Megoldás: A három egyenlet összege: ( + yz + z) = Ebből kivonva az egyenleteket: y =, yz = 6, z

Részletesebben

Az ABCD köré írható kör egyenlete: ( x- 3) + ( y- 5) = 85. ahol O az origó. OB(; 912). Legyen y = 0, egyenletrendszer gyökei adják.

Az ABCD köré írható kör egyenlete: ( x- 3) + ( y- 5) = 85. ahol O az origó. OB(; 912). Legyen y = 0, egyenletrendszer gyökei adják. 5 egyes feldtok Az dott körök k : x + ( y- ) = és k : ( x- ) + y = K (; 0), r, K (; 0), r K K = 0 > +, két körnek nincs közös pontj Legyen (; ) Az egyenlô hosszú érintôszkszokr felírhtjuk következô egyenletet:

Részletesebben

Geometriai alapfogalmak

Geometriai alapfogalmak Geometriai alapfogalmak Alapfogalmak (nem definiáljuk): pont, egyenes, sík, tér. Félegyenes: egy egyenest egy pontja két félegyenesre bontja. Ez a pont a félegyenes végpontja. A félegyenes végtelen hosszú.

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő

Részletesebben

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27. Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2 1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon

Részletesebben

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1. Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y

Részletesebben

Geometriai példatár 2.

Geometriai példatár 2. Nyugat-magyarországi Egyetem Geoinformatikai Kara Baboss Csaba Szabó Gábor Geometriai példatár 2 GEM2 modul Metrikus feladatok SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999 évi

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

Koordinátageometria Megoldások

Koordinátageometria Megoldások ) Koordinátageometria Megoldások - - Koordinátageometria - megoldások a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 0, egyik

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria ) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria A szürkített hátterű feladatrzek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Analitikus térgeometria

Analitikus térgeometria 5. fejezet Analitikus térgeometria Kezd és végpontjuk koordinátáival adott vektorok D 5.1 A koordináta-rendszer O kezd pontjából a P pontba mutató OP kötött vektort a P pont helyvektorának nevezzük. T

Részletesebben

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 12. évfolyam

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 12. évfolyam 01. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 1. évfolyam A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás

Részletesebben

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok

Részletesebben

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint TÁMOP-.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint Vasvár,

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III. Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak

Részletesebben

Vektorok összeadása, kivonása, szorzás számmal, koordináták

Vektorok összeadása, kivonása, szorzás számmal, koordináták Vektorok összeadása, kivonása, szorzás számmal, koordináták 1. Mik lesznek a P (3, 4, 8) pont C (3, 7, 2) pontra vonatkozó tükörképének a koordinátái? 2. Egy szabályos hatszög középpontja K (4, 1, 4),

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 14 XIV NEVEZETES GÖRbÉk 1 AZ EGYEnES EGYEnLETE A és pontokon átmenő egyenes egyenlete: (1), Az hányados neve iránytényező (iránytangens, meredekség) A ponton átmenő, m iránytangensű

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba

Részletesebben

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24 OKTATÁSI MINISZTÉRIUM M/D/13 Dolgozók gimnáziuma Dolgozók szakközépiskolája Szakmunkások szakközépiskolája intenzív tagozat) 003. május ) Határozza meg a következő egyenlet racionális gyökét! 1 3 4 + 5

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM)

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) Javítási értékelési útmutató 1. Melyek azok a pozitív p és q prímek, amelyekre a számok mindegyike

Részletesebben

6. modul Egyenesen előre!

6. modul Egyenesen előre! MATEMATIKA C 11 évfolyam 6 modul Egyenesen előre! Készítette: Kovács Károlyné Matematika C 11 évfolyam 6 modul: Egyenesen előre! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Szélsőérték problémák elemi megoldása II. rész Geometriai szélsőértékek Tuzson Zoltán, Székelyudvarhely

Szélsőérték problémák elemi megoldása II. rész Geometriai szélsőértékek Tuzson Zoltán, Székelyudvarhely Szélsőérték problémák elemi megoldása II. rész Geometriai szélsőértékek Tuzson Zoltán, Székelyudvarhely Ebben a részben geometriai problémák szélsőértékeinek a megállapításával foglalkozunk, a síkgeometriai

Részletesebben

KOSZTOLÁNYI MIKE MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY ÉVESEKNEK MEGOLDÁSOK (II. KÖTET)

KOSZTOLÁNYI MIKE MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY ÉVESEKNEK MEGOLDÁSOK (II. KÖTET) KOSZTOLÁNYI MIKE MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY 10 14 ÉVESEKNEK MEGOLDÁSOK (II. KÖTET) Kosztolányi József - Mike János MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY 10-14 ÉVESEKNEK MEGOLDÁSOK **

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk

Részletesebben

Geometriai példatár 1.

Geometriai példatár 1. Geometriai példatár 1. Koordináta-geometria Baboss, Csaba, Nyugat-magyarországi Egyetem Geoinformatikai Kar Szabó, Gábor, Nyugat-Magyarországi Egyetem Geoinformatikai Kar Geometriai példatár 1.: Koordináta-geometria

Részletesebben