Vektorok összeadása, kivonása, szorzás számmal, koordináták
|
|
- Eszter Gálné
- 1 évvel ezelőtt
- Látták:
Átírás
1 Vektorok összeadása, kivonása, szorzás számmal, koordináták 1. Mik lesznek a P (3, 4, 8) pont C (3, 7, 2) pontra vonatkozó tükörképének a koordinátái? 2. Egy szabályos hatszög középpontja K (4, 1, 4), két szomszédos csúcsa A(3, 1, 5) és B(3, 2, 4). Adjuk meg a többi négy csúcs koordinátáit! 3. Az ABC D paralelogramma csúcsai A(3, 2, 5), B(0, 1, 0), C ( 5, 2, 7). Számítsuk ki a D csúcs koordinátáit! 4. Egy paralelogramma középpontja K ( 3, 2, 1), két szomszédos csúcsa A(1, 1, 3), B( 7, 0, 0). Adjuk meg a másik két csúcs koordinátáit! 5. Egy paralelepipedon egyik csúcsa az origó, az ebből kiinduló élek végpontjai A(3, 6, 4), B( 4, 7, 0), C (9, 1, 3). Számítsuk ki a többi négy csúcs koordinátáit! 6. Egy szabályos ötszög egyik csúcsának a koordinátái A(1, 0), középpontja az origó. Adjuk meg a többi csúcs koordinátáit! 7. Döntsük el, hogy kollineárisak-e a következő vektorpárok! a) a( 3, 4, 7) és b(2, 5, 1); b) c(12, 9, 15) és d(8, 6, 10) 8. Döntsük el, hogy az alábbi ponthármasok egy egyenesen vannak-e! a) A( 4, 5, 2), B(2, 0, 3), C (14, 10, 13); b) D(0, 3, 5), E(4, 0, 7), F (4, 18, 23); 9. Az adott A(4, 1, 3), B(5, 4, 1) pontokhoz meghatározandók a C (7, y, z) pont y, z koordinátái úgy, hogy az A, B, C pontok egy egyenesen legyenek. 10. Komplanárisak-e a 3a 4b; a+7b; a+43b vektorok? Skaláris szorzat 11. Az ABC szabályos háromszög oldalhossza 2. Számítsuk ki az AB AC szorzat értékét! 12. Adottak a(3, 2, 5) és b( 1, 0, 2) vektorok. Számítsuk ki a következő szorzatok értékét! ab, (3a 2b)a, (a b) 2, a A szögek kiszámítása nélkül döntsük el, hogy az alábbi vektorpárok hegyes-, derék- vagy tompaszöget zárnak be egymással: a) ( 3, 2, 0), (4, 1, 5); b) (1, 1, 9), (2, 1, 3); c) (1, 1, 1), ( 10, 7, 3); d) (5, 3, 4), (1, 1, 2).
2 14. Számítsuk ki az alábbi vektorok hosszát, és adjuk meg a velük egyirányú egységvektorok koordinátáit! a(8, 14, 8); b(0, 3, 0); c(14, 10, 13); d(4, 9, 10); e(24, 7); f (1, 1). 15. Számítsuk ki a következő vektorpárok szögét! a) a(7, 1, 6), b(2, 20, 1); b) g(4, 9), h(2, 5). 16. Adottak a(3, 6, 1) és b(12, 4, z) vektorok. Határozzuk meg z értékét úgy, hogy a és b merőlegesek legyenek egymásra! 17. Bontsuk fel az a(3, 6, 9) vektort a b(2, 2, 1) vektorral párhuzamos és rá merőleges összetevőkre! 18. Bontsuk fel az c(3, 6, 2) vektort a d(5, 4, 20) vektorral párhuzamos és rá merőleges összetevőkre. 19. Mekkora a v( 9, 1, 1) vektornak az a(5, 6, 30) irányú egyenesen lévő vetülete? 20. Bontsuk fel a v(13, 56) vektort az a(2, 7) és b( 3, 0) vektorokkal párhuzamos összetevőkre! 21. Adottak az a(2, 1, 1), b( 1, 3, 0), c(1, 0, 7) vektorok. Bontsuk fel a d(9, 9, 10) vektort a, b és c irányú összetevőkre! 22. Adjunk meg olyan vektort, amely felezi az a( 1, 4, 8) és b( 5, 4, 20) vektorok szögét! Vektoriális szorzat 23. Számítsuk ki annak a paralelogrammának a területét, amelynek élvektorai a és b: a) a( 4, 1, 2), b(5, 2, 7); b) a(1, 7), b( 3, 2). 24. Számítsuk ki az ABC háromszög területét, ha a) A(0, 0, 0), B( 1, 4, 7) C (5, 2, 1); b) A(3, 6), B(2, 7) C (4, 4). 25. Számítsuk ki az ABC háromszög B csúcsához tartozó magasság hosszát és az a csúcsnál lévő szöget, ha a csúcsok koordinátái: A(1, 1, 2), B(5, 6, 2), C (1, 3, 1). 26. Adjuk meg az x és y értékeket úgy, hogy a c(x, y, 16) merőleges legyen az a(1, 5, 4) és b( 1, 3, 1) vektorokra.
3 Vegyesszorzat 27. Mekkora az a(2, 3, 4), b(2, 3, 1), c(1, 2, 3) vektorok által felfeszített paralelepipedon térfogata? 28. Számítsuk ki az ABC háromszög területét, és az ABCD tetraéder térfogatát! Határozza meg az ABCD tetraéder D csúcsához tartozó magasságát! A(2, 1, 1), B(5, 5, 4), C (3, 2, 1), D(4, 1, 3); 29. Döntsük el, hogy komplanárisak-e az alábbi vektorhármasok: (2, 3, 1), (1, 1, 3), (1, 9, 11); 30. Döntsük el, hogy egy síkban vannak-e az alábbi pontnégyesek: (1, 2, 1), (0, 1, 5), ( 1, 2, 1), (2, 1, 3); 31. Válasszuk meg z értékét úgy, hogy az a(4, 1, 2), b(1, 2, 3), c(3, 3, z) vektorok komplanárisak legyenek. 32. Döntsük el, hogy az alábbi vektorhármasok lineárisan függetlenek-e: a) ( 4, 2, 1), (0, 4, 3), ( 4, 6, 4); b) (0, 0, 0), (2, 9, 7), ( 1, 1, 0); c) ( 2, 3), (4, 1), (1, 5). 33. Döntsük el, függetlenek-e az alábbi vektorok: a( 1, 5, 19), b(17, 1, 4), c( 8, 9, 10), d(1, 0, 0). Síkok, egyenesek, metszések 34. Határozzuk meg a sík egy pontjának és egy normálvektorának a koordinátáit, ha egyenlete: a) 2x+5y 4z=11, b) 2x 11y=7, c) 6x= Határozzuk meg az egyenes egy pontjának és egy irányvektorának koordinátáit és írjuk fel egyenes vektorparaméteres előállítását, ha egyenletrendszere a) x 2 y 5 z b) 1 z+8 x 3 y Írjuk fel a P(1, 5, 7) ponton átmenő n(1, 1, 2) normálvektorú sík egyenletét! 37. Írjuk fel a P(2, 5, 5) ponton átmenő xy síkkal párhuzamos sík egyenletét! 38. Írjuk fel az A(2, 1, 3) ponton átmenő és a 2x 7y+5z=6 síkkal párhuzamos sík egyenletét! 39. Írjuk fel az A(1,2,3) és B(5, 4, 3) pontok által meghatározott szakasz felezőmerőleges síkjának az egyenletét!
4 x Írjuk fel az A(2, 4, 3) pontra és 3 y 4 z 5 egyenesre illeszkedő sík egyenletét! 41. Írjuk fel az M pontra illeszkedő, és az a és b vektorokkal párhuzamos sík egyenletét! M(1, 2, 1), a(1, 1, 1), b(2, 2, 3) 42. Írjuk fel az A(3, 2, 1) pontra illeszkedő, az a(1, 2, 1) vektorral párhuzamos és 2x+5y z=3 síkra merőleges sík egyenletét! 43. Írjuk fel az A(0, 0, 0) pontra illeszkedő, az x y+z=1 és a 2x 3y 5z=2 síkokra merőleges sík egyenletét! 44. Írjuk fel az ABC sík egyenletét, ha A(4, 0, 2) B( 1, 2, 3), C(5, 1, 3)! 45. Van-e olyan sík, amelyik illeszkedik az A(1, 2, 3), B(2, 1, 5), C(3, 4, 7), D(5, 1, 2) pontokra? x 2 y 46. Írjuk fel az z és az x 8 z y8 2 egyenesek által meghatározott sík egyenletét! 47. Az S síkra az origóból bocsátott merőleges talppontja P(2, 1, 1) pont. Írjuk fel az S sík egyenletét! 48. Az e egyenesre az origóból bocsátott merőleges talppontja P(3, 4) pont. Írjuk fel az e egyenes egyenletét! 49. Írjuk fel az A(1, 2, 3), B(2, 1, 5) pontokat összekötő egyenes paraméteres egyenletrendszerét ill. egyenletrendszerét! 50. Írjuk fel annak az egyenesnek a vektorparaméteres egyenletét illetve egyenletrendszerét, amely illeszkedik a P pontra és párhuzamos a v vektorral! a) P(3, 2, 1), v(1, 3, 4) b) P(7, 2, 5), v(0, 0, 1) 51. Egy háromszög csúcspontjainak koordinátái: A( 4, 1), B(2, 3), C(0, 5). Írja fel az A csúcsból induló súlyvonal egyenletét! 52. Egy háromszög csúcspontjainak koordinátái: A(-3,0), B(5,0) és C(3,6) Számítsa ki a háromszög köré írható kör középpontjának koordinátáit! x 2 y 1 z 5 egyenesek normál x 2 y Írjuk fel az z és az 4 2 transzverzálisának egyenletrendszerét! 54. Írjuk fel a 2x 5y+z=3 és a 3x y+2z=7 síkok metszésvonalának egyenletrendszerét! 55. Határozzuk meg az e egyenes és az S sík döféspontját! a) e: r(t)=(3, 2, 1)+t( 1, 3, 4) és S: 2x 5y+2z+7=0 b) e: 1 z+8 x 3 y és S: 3x y+4z=
5 Távolság, szög 56. Határozzuk meg a P(5, 7, 2) pontnak a Q( 2, 3, 4) ponton átmenő és n(1, 2, 1) normálvektorú síktól való távolságát! 57. Határozzuk meg az 54. feladatban szereplő két sík távolságát! 58. Számítsuk ki a 2x y+5z=7 és az 5x+2y z=3 síkok hajlásszögét! 59. Legyenek adottak az OA (4, 0, 2), OB ( 1, 2, 3), OC (2, 4, 5) vektorok. Határozzuk meg az OC egyenes és OAB sík hajlásszögét! 60. Számítsuk ki az P pontnak az e egyenestől való távolságát! a) P(1, 1, 2) és e: b) P( 3, 1, 4) és e: x 4 y x 1 y 1 t z Számítsuk ki az P pontnak az S síktól való távolságát! a) P(3, 4, 5) és S: x 1 4t s y 3 t 2s z 4 2t 3s b) P( 2, 2, 1) és S: 6x+5y 7z 11=0 62. Határozza meg a P(5, 6, 7) pont távolságát az A(2, 0, 0), B(0, 1, 0), C(0, 0, 3) pontokon átmenő síktól! 63. Számítsa ki az x 17t y 2t egyenes és az x+2y 3z=1 sík távolságát! z 1 t 64. Határozzuk meg az e egyenes és az S sík szögét! a) e: r(t)=(3, 2, 1)+t( 1, 3, 4) és S: 2x 5y+2z+57=0 b) e: 1 z+8 x 3 y és S: 3x y+4z= Határozza meg az alábbi egyenesek szögét! a) x 1t y t z 4 t és x 1t y 3 t z 2 2t z 5
6 b) c) x 1t y 2 3t z 5 4t és x 2 y 3 z és 4 2 x 4 y z 5 x 2 y 1 z Határozzuk meg az x 2 y 3 z és az x 2 y 1 z 5 egyenesek távolságát! Határozzuk meg a 2x 5y=3 és a 3x y=7 egyenesek szögfelezőinek egyenletét! 68. Határozzuk meg a 2x 5y+z=3 és a 3x y+2z=7 síkok szögfelező síkjának (síkjainak) egyenletét!
Analitikus térgeometria
5. fejezet Analitikus térgeometria Kezd és végpontjuk koordinátáival adott vektorok D 5.1 A koordináta-rendszer O kezd pontjából a P pontba mutató OP kötött vektort a P pont helyvektorának nevezzük. T
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor
Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.
Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre
Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)
Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,
Érettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
Érettségi feladatok: Koordináta-geometria 1/5
Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból
Összeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális
Koordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón
Vektoralgebra. 1.) Mekkora a pillanatnyi sebesség 3 s elteltével, ha a kezdősebesség (15;9;7) m/s, a gravitációs gyorsulás pedig (0;0;-10) m/s 2?
Vektoralgebra Elmélet: http://digitus.itk.ppke.hu/~b_novak/dmat/vektorfolcop.pdf Mikor érdemes más, nem ortonormált bázist alkalmazni? Fizikában a ferde hajításoknál megéri úgynevezett ferdeszögű koordináta-rendszert
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
= 7, a 3. = 7; x - 4y =-8; x + 2y = 10; x + y = 7. C-bôl induló szögfelezô: (-2; 3). PA + PB = PA 1. (8; -7), n(7; 8), 7x + 8y = 10, x = 0 & P 0;
98 Az egyenes egyenletei. a) A( 0) B(0 6) AB_ - 6i& n( ) x + y = b) x - y =- c) 6x - y = 0 d) 6x + y = e) x + y = f) x + y = a g) x - y = a.. A(a 0) B(0 b) AB_ -a bi n (b a) bx + ay = ab osszuk el a $
Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az
, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD
Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van
3 m ; a víz sodráé sec. Bizonyítsuk be, hogy a legnagyobb szöge 120 0 -os! α =. 4cos 2
3... Egyenes szíjhatás esetén milyen hosszú szíj szükséges 50 cmes és 6 cm-es sugarú tárcsák összekapcsolásához, ha a tárcsák tengelyeinek távolsága 335 cm? 3... Csónakkal akarunk a folyó túlsó partjára
5. előadás. Skaláris szorzás
5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút
15. Koordinátageometria
I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +
Geometriai példatár 2.
Geometriai példatár 2 Metrikus feladatok Baboss, Csaba, Nyugat-magyarországi Egyetem Geoinformatikai Kar Szabó, Gábor, Nyugat-Magyarországi Egyetem Geoinformatikai Kar Geometriai példatár 2: Metrikus feladatok
15. Koordinátageometria
I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +
EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS
GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok
Minimum követelmények matematika tantárgyból 11. évfolyamon
Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata
Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit
Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,
Matematika a műszaki főiskolák számára. Matematikai feladatok
Matematika a műszaki főiskolák számára Matematikai feladatok Matematika a műszaki főiskolák számára Matematikai feladatok Szerkesztette Scharnitzky Viktor Nemzeti Tknkönyvkiadó, Budapest FŐISKOLAI SEGÉDKÖNYV
14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük:
14. Vektorok I. Elméleti összefoglaló Vektor Az irányított szakaszokat vektoroknak nevezzük: Jelölés: a kezdő és a végpont megadásával: AB ; egy kisbetűvel: v, írásban aláhúzás is szokásos: a; nyomtatásban
Exponenciális és logaritmusos kifejezések, egyenletek
Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.
Feladatok az 1. Geometria gyakorlathoz Geometria 1 haladó szint (2011/2012 es tanév, 2. félév)
Feladatok az 1. Geometria gyakorlathoz 1) Az euklideszi síkon adva van két egyenlő sugarú kör k 1 és k 2, amelyek az M, N pontokban metszik egymást. Jelölje r a két kör sugarát. Az M ponttal, mint centrummal,
A vektor fogalma (egyszer
Vektorműveletek a koordináta-rendszerben Vektorműveletek a koordináta-rendszerben Elméleti anyag: A vektor fogalma (egyszerű meghatározás): az irányított szakaszokat nevezzük vektoroknak. Egy vektornak
1. Szabadvektorok és analitikus geometria
1. Szabadvektorok és analitikus geometria Ebben a fejezetben megismerkedünk a szabadvektorok fogalmával, amely a középiskolai vektorfogalom pontosítása. Előzetes ismeretként feltételezzük az euklideszi
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
9. előadás. Térbeli koordinátageometria
9. előadás Térbeli koordinátageometria Koordinátageometria a térben Descartes-féle koordinátarendszerben dolgozunk. A legegyszerűbb alakzatokat fogjuk vizsgálni. Az ezeket leíró egyenletek első-, vagy
Definíció: A tér irányított szakaszait vektoroknak nevezzük. Egy vektort akkor tekintünk adottna, ha ismerjük a nagyságát és az irányát.
1. Vektorok 1.1. Alapfogalmak, alapműveletek 1.1.1. Elméleti összefoglaló Definíció: A tér irányított szakaszait vektoroknak nevezzük. Egy vektort akkor tekintünk adottna, ha ismerjük a nagyságát és az
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36
Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás
Add meg az összeadásban szereplő számok elnevezéseit!
1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok
Matematika (Lineáris algebra és többváltozós függvények), NGB_MA002_2, 1. zárthelyi , 1A-csoport. Név:... Neptun:... Aláírás:...
Matematika (Lineáris algebra és többváltozós függvények), NGB_MA002_2, 1. zárthelyi 2015. 03. 11., 1A-csoport 1. Milyen parciális törtekre bontanánk az alábbi racionális törtfüggvényt? (Az együtthatókat
Geometria 1 összefoglalás o konvex szögek
Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.
Egy sík és a koordinátasíkok metszésvonalainak meghatározása
1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -
Háromszögek, négyszögek, sokszögek 9. évfolyam
Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk
Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint
TÁMOP-.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint Vasvár,
Gyakorló feladatsor 11. osztály
Htvány, gyök, logritmus Gykorló feldtsor 11. osztály 1. Számológép hsznált nélkül dd meg z lábbi kifejezések pontos értékét! ) b) 1 e) c) d) 1 0, 9 = f) g) 7 9 =. Számológép hsznált nélkül döntsd el, hogy
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1
Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az
10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2
10. Tétel Háromszög Tulajdonságok: - Háromszögnek nevezzük a sokszöget, ha 3 oldala, 3 csúcsa és 3 szöge van - A háromszög belső szögeinek összege 180 o - A háromszög külső szögeinek összege 360 o - A
M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24
OKTATÁSI MINISZTÉRIUM M/D/13 Dolgozók gimnáziuma Dolgozók szakközépiskolája Szakmunkások szakközépiskolája intenzív tagozat) 003. május ) Határozza meg a következő egyenlet racionális gyökét! 1 3 4 + 5
Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint
TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.
Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?
Feladatok 1. a) Mekkora egy 5 cm oldalú négyzet átlója? A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy négyzet
54. Mit nevezünk rombusznak? A rombusz olyan négyszög,
52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes
3. előadás. Elemi geometria Terület, térfogat
3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt
1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen
10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős
Klár Gergely 2010/2011. tavaszi félév
Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Pont 1 Pont 2 3 4 5 Tartalom Pont Descartes-koordináták Homogén koordináták
Érettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2
1. a) Mekkora egy 5 cm oldalú négyzet átlója? Pitagorasz-tétel A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy
Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika
Hasonlóság kísérleti feladatgyűjtemény 10. osztályos matematika POKG 2015. Hasonló háromszögek oldalaránya 0. Keressük meg az alábbi háromszögek összetartozó oldalpárjait és arányossággal számítsuk ki
GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a
GOMTRI ndrea Philippou, Marios ntoniades Szakaszok és félegyenesek gy szakasz felezőmerőlegese egy olyan egyenes, félegyenes vagy szakasz, ami áthalad a szakasz középpontján és merőleges a szakaszra. Tétel:
Összeállította: dr. Leitold Adrien egyetemi docens
Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b
Ismételjük a geometriát egy feladaton keresztül!
Laczkó László Készült a Fazekas ihály Oktatási Kulturális és Sport lapítvány támogatásával z árák elektronikus változatát Véges árton (009c) diák készítette feladat z hegyesszögű háromszög -nél levő szöge.
1. FELADAT. Írjuk fel az adott P ponton átmenő és az adott iránnyal párhuzamos egyenes explicit paraméteres és implicit egyenletrendszerét!
1. FELADAT. Írjuk fel az adott P ponton átmenő és az adott iránnyal párhuzamos egyenes explicit paraméteres és implicit egyenletrendszerét! 1.1. Kérdés. P (1,, ), v = (, 1, 4). 1.1.1. Megoldás. p = p 0
Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)
1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy
XX. Nemzetközi Magyar Matematika Verseny
XX. Nemzetközi Magyar Matematika Verseny Bonyhád, 011. március 11 15. 10. osztály 1. feladat: Legyen egy háromszög három oldalának a hossza a, b és c. Bizonyítsuk be, hogy 3 (a+b+c) ab+bc+ca 4 Mikor állhat
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész
1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT:
1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: a) ( 7) + ( 12) = 19 b) ( 24) + (+15) = 9 c) ( 5) + ( 27) = 32 d) (+19) + (+11) = +30 e) ( 7) ( 25) = +175 f) ( 5) (+14) = 70 g) ( 36) (+6)
Gyakorló feladatok vektoralgebrából
Gyakorló feladatok ektoralgebrából Az alábbi feladatokban, hasak nem jelezzük másként, az i, j, k bázist használjk.. a.) Milyen messze annak egymástól az A(,,) és a B(4,-,6) pontok? b.) Számítsa ki az
Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =
2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)
Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 11. évfolyam 2. félév ESZKÖZÖK Matematika A 11. évfolyam 6. modul 6.1 kártyakészlet 6.1 kártyakészlet leírása A kártyákon pontok koordinátáit találjuk. A tanulók
Néhány szó a mátrixokról
VE 1 Az Néhány szó mátrixokról A : 11 1 m1 1 : m......... 1n n : mn tábláztot, hol ij H (i1,,m, j1,,n) H elemeiből képzett m n típusú vlós mátrixnk nevezzük. Továbbá zt mondjuk, hogy A-nk m sor és n oszlop
Számítási feladatok a Számítógépi geometria órához
Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát
Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András
Feladatok a 2010. májusi emelt szintű matematika érettségi példáihoz Hraskó András 1. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. HA.1.1. Adott a síkon
Geometriai példatár 1.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Baboss Csaba Szabó Gábor Geometriai példatár 1 GEM1 modul Koordináta-geometria SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999
4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve!
(9/1) Vektorok, Koordináta Geometria 1) Szerkessze meg az a + b és az a b vektort, ha a és b egy szabályos háromszögnek a mellékelt ábra szerinti oldalvektorai! 2) Az ABC háromszög két oldalának vektora
1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.
Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk
6. előadás. Vektoriális szorzás Vegyesszorzat
6. előadás Vektoriális szorzás Vegyesszorzat Bevezetés Definíció: Az a és b vektorok vektoriális szorzata egy olyan axb vektor, melynek hossza a vektorok abszolút értékének és hajlásszögük szinuszának
Intergrált Intenzív Matematika Érettségi
. Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.
Exponenciális és logaritmusos kifejezések, egyenletek
Gyaorló feladato Eponenciális és logaritmusos ifejezése, egyenlete. Hatványozási azonosságo. Számítsd i a övetező hatványo pontos értéét! g) b) c) d) 7 e) f) 9 0, 9 h) 0, 6 i) 0,7 j), 6 ), l). A övetező
A mátrix típusát sorainak és oszlopainak száma határozza meg. Tehát pl. egy 4 sorból és 3 oszlopból álló mátrix 4 3- as típusú.
1. Vektorok, lineáris algebra 1.1. Mátrixok 1.1.1. Fogalmak, tételek Definíció A mátrix elemek általában számok táblázata téglalap alakú elrendezésben. Nyomtatott nagybetűvel jelölik ezen felül nyomtatásban
Feladatgyűjtemény Geometria I. kurzushoz
Feladatgyűjtemény Geometria I. kurzushoz Vígh Viktor 1. Térelemek kölcsönös helyzete, illeszkedés 1.1. gyakorlat. Bizonyítsuk be, hogy ha három sík közül bármely kettő egy egyenesben metszi egymást, és
10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok
10. Síkgeometria I. Elméleti összefoglaló Szögek, nevezetes szögpárok Egy adott pontból kiinduló két félegyenes a síkot két részre bontja. Egy-egy ilyen rész neve szögtartomány, vagy szög. A két félegyenest
Feladatok MATEMATIKÁBÓL
Feladatok MATEMATIKÁBÓL a 1. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! a) b) 7 c) 5 d) 5 1 e) 6 1 6 f) ( 81 16 ) g) 0,00001 5. Írjuk fel gyökjelekkel a következő hatványokat!
Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7
A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat
8. előadás. Kúpszeletek
8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =
NULLADIK MATEMATIKA szeptember 7.
A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. Válaszait csak az üres mezőkbe írja! A javítók a szürke
Minden feladat teljes megoldása 7 pont
Telefon: 7-8900 Fax: 7-8901 4. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. 9 kg mogyorót vásároltunk,
VII.4. RAJZOLGATUNK II. A feladatsor jellemzői
VII.4. RAJZOLGATUNK II. Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,
Izsák Imre Gyula természettudományos verseny
199 Jelölje m a, m b, m c egy háromszög magasságait, ρ a háromszög beírt körének a sugarát. Igazoljuk, hogy ma + mb + mc 9ρ Mikor áll fenn az egyenlség? Osszuk fel egy tetszleges ABCD konvex négyszög AB,
Lineáris algebra és többváltozós függvények (NGB_MA_002_2)
Lineáris algebra és többváltozós függvények (NGB_MA ) Készítette: Kiss-Tóth Christian Széchenyi István Egyetem Budapest, 5. február 3. Tartalomjegyzék. Integrálszámítás 3.. Racionális törtfüggvények integrálása........................
Hatvány, gyök, normálalak
Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő
MATEMATIKA ÉRETTSÉGI október 20. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 009. október 0. KÖZÉPSZINT I. 1) Számítsa ki 5 és 11 számtani és mértani közepét! A számtani közép értéke: 7. A mértani közép értéke: 55. Összesen: pont ) Legyen az A halmaz a 10-nél
KOSZTOLÁNYI MIKE MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY ÉVESEKNEK MEGOLDÁSOK (II. KÖTET)
KOSZTOLÁNYI MIKE MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY 10 14 ÉVESEKNEK MEGOLDÁSOK (II. KÖTET) Kosztolányi József - Mike János MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY 10-14 ÉVESEKNEK MEGOLDÁSOK **
Az osztályozóvizsgák követelményrendszere 9. évfolyam
Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és
Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program
Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z
Geometriai példatár 2.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Baboss Csaba Szabó Gábor Geometriai példatár 2 GEM2 modul Metrikus feladatok SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999 évi
Mezei Ildikó-Ilona. Analitikus mértan
Mezei Ildikó-Ilona Analitikus mértan feladatgyűjtemény Kolozsvár 05 Tartalomjegyzék. Vektoralgebra 3.. Műveletek vektorokkal.................................. 3.. Egyenes vektoriális egyenlete..............................
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria
) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria A szürkített hátterű feladatrzek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
MATEMATIKA ÉRETTSÉGI február 21. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 00. február. EMELT SZINT I. ) Oldja meg a valós számok halmazán az alábbi egyenletet! cos x sin x 5sin x 0 ( pont) cos x sin a megoldandó egyenlet: sin x 5sin x 3 0 A sinx -re másodfokú
TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI
TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI http://zanza.tv/matematika/geometria/thalesz-tetele http://zanza.tv/matematika/geometria/pitagorasz-tetel http://zanza.tv/matematika/geometria/nevezetes-tetelek-derekszogu-haromszogben
Így a Bálint számára kedvező esetek száma +, hiszen duplán számoltuk azokat az eseteket, amikor a számok sem 2-vel, sem 5-tel nem oszthatók.
Országos Középiskolai Tanulmányi Verseny, 2006 2007-es tanév MATEMATIKA, III. kategória a gimnáziumok speciális matematikai osztályainak tanulói részére Az első forduló feladatainak megoldásai Kérjük a
x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2
Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését