3 m ; a víz sodráé sec. Bizonyítsuk be, hogy a legnagyobb szöge os! α =. 4cos 2

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "3 m ; a víz sodráé sec. Bizonyítsuk be, hogy a legnagyobb szöge 120 0 -os! α =. 4cos 2"

Átírás

1 3... Egyenes szíjhatás esetén milyen hosszú szíj szükséges 50 cmes és 6 cm-es sugarú tárcsák összekapcsolásához, ha a tárcsák tengelyeinek távolsága 335 cm? 3... Csónakkal akarunk a folyó túlsó partjára jutni. A cél iránya a folyó partjával os szöget alkot víz mentén. Hogy a víz sodra ellenére is egyenesen a célhoz jussunk, a cél irányától egy bizonyos szöggel eltérő irányban kell eveznünk. Mekkora az a szög, ha a csónak sebessége állóvízben 3 m ; a víz sodráé sec m?,8 sec Egy általános háromszög oldalai: x +x+; x+; x -. Bizonyítsuk be, hogy a legnagyobb szöge 0 0 -os! Bizonyítsuk be: sin sin5 = Bizonyítsuk be: tg 45 0 cos x α =. + sin x Egy háromszög két oldala 0 cm és 5 cm, az általuk közbezárt szög kétszerese a rövidebbik oldallal szemben fekvő szögnek. Mekkorák a háromszög szögei? Egy háromszög oldalai számtani sorozatot alkotnak, amelynek különbsége. A legkisebb szöge fele a legnagyobbnak. Mekkorák a háromszög oldalai és szögei? Irjuk fel azt a másodfokú egyenletet, amelyet cosx elégít ki, ha x a 4cos + cos x = 0 egyenlet gyöke! IV. NAP Geometria - Koordinátageometria Koordinátarendszer - pontok, alakzatok jellemzése (sík, tér)

2 36. A koordináta-rendszer origójából egy négyszög csúcsaihoz vezető vektorok rendre a(; 3), b(3, 8), c(8; 6), d(6; ). Mutassa meg, hogy a négyszög négyzet, és számítsa ki az oldalhosszát! 354. Egy rombusz hosszabbik átlója kétszerese a rövidebbik átlónak. A rövidebbik átló végpontjainak koordinátái (-3; 7) és (5; ). Határozza meg a másik két csúcs koordinátáit! 356. Döntse el, paralelogramma csúcsai-e a következő pontok! A(-; 0), B(3; -4), C(5, ), D(;-7) Döntse el, egy egyenesen van-e a következő három pont! A(-; 3), B(-4; 7), C(, 9), Szakaszt adott arányban osztó pont koordinátái. Háromszög súlypontjának koordinátái Egy háromszög oldalfelező pontjainak a koordinátái: (-; 3), (4; 6), (5, ). Határozza meg a háromszög csúcsainak a koordinátáit! 3. Irja fel az AB szakasz harmadoló pontjainak koordinátáit, ha a végpontok: A(-7; 8), és B(-; )! 346. Egy háromszög két csúcspontjának koordinátái: A(-5; -), és B(3; ). Súlypontja, 4 3; S. Irja fel a C csúcs koordinátáit!

3 Két pont távolsága. Javasolt feladat: 390. Mekkorák a háromszög szögei, ha a csúcsok koordinátái: (; ), (4; -3); (5; 0)? I. Síkbeli problémák tárgyalása: a. Egyenes Egyenes helyzetét jellemző adatok: - irányvektor, - normálvektor - irányszög - iránytangens 30. Adja meg az egyenes egy irányvektorát, ha meredeksége a. 0,6 b a. Adjuk meg a P (3; 5) és a P (3; -4) ponton áthaladó egyenes irányvektorát, normál vektorát, iránytangensét, irányszögét! b. Az e egyenes a P 0 (-; ) pontjával és a v ( 3; 4) irányvektorával adott. Illeszkedik-e az A ( 4; 8) pont az e egyenesre? (A feladatot az egyenes egyenletének felírása nélkül oldjuk meg!) a. Az egyenes egy irányvektora P P Most v ( 0; 9), de irányvektora a (0; -); (0; ) vektor is! v =. 3

4 Mivel az egyenes normálvektora az irányvektorának os elforgatottja, így n ( 9;0), de n lehet ( ;0) és a ( ;0 ) vektor is. Az egyenes iránytangense v m =, ha v 0 v Most v =0, így ezen egyenesnek nincsen iránytangense! A v ( 0; ) koordinátáiból látszik, hogy az egyenes párhuzamos az y tengellyel, így irányszöge b. Az A pont akkor és csak akkor illeszkedik az e egyenesre, ha P 0 A párhuzamos v irányvektorral. P 0 A akkor párhuzamos v ral, ha létezik olyan c valós szám, hogy Most P A = a p 6i 9 j 0 0 v=3i-4 P 0 A = cv. Létezik-e olyan c valós szám, melyre fennáll 6i 9 j = c( 3i 4 j)? Ha létezne, akkor 3c=6 és 4c=9 lenne, ilyen c valós szám nem létezik, ezért az A pont nem illeszkedik az egyenesre..3.. Adjuk meg az A(-; 3) és a B(5; 7) pontokon átmenő egyenesre merőleges e egyenes irányvektorát, normálvektorát, iránytangensét! Az AB ( 6;4) vektor merőleges az e egyenesre, így az e egyenes egy normálvektora n(6; 4), de normálvektor a (3; ) vektor is. e egyenes egy v irányvektora n os elforgatottja, azaz v (- 4; 6), de irányvektor a (;-3) vektor is. e egyenes iránytangense: v 6 3 m = = =. v 4 Egyenes egyenletei: - vektoregyenlet - egyenletrendszer - irányvektor ismeretében felírt egyenlet - normálvektor ismeretében felírt egyenlet - iránytényezős egyenlet 4

5 30. Irja fel annak az egyenesnek az egyenletét, amelynek normálvektora n(-4; 6) és átmegy a P(9; 7) ponton! ; 33. Irja fel az A ; és B pontokon átmenő egyenes egyenletét! 36. Irja fel a (4; -) ponton átmenő, x tengellyel párhuzamos egyenes egyenletét! 37. Irja fel a (; 3) ponton átmenő, y tengellyel párhuzamos egyenes egyenletét! 38. Irja fel a (6; -3) ponton átmenő, és a P(-; 4), Q(; 5) pontokat összekötő egyenesre merőleges egyenes egyenletét! 39. Irja fel a (6; -3) ponton átmenő, és a P(-; 4), Q(; 5) pontokat összekötő egyenessel párhuzamos egyenes egyenletét! 3. Irja fel azoknak az egyeneseknek az egyenletét, amelyek átmennek a (; -3) ponton, és irányszögük: a b c d. 0 0! Az egyenes és az elsőfokú kétismeretlenes egyenlet kapcsolata. Két egyenes (két görbe) közös pontja. 34. Számítsa ki az y = x + 3 és 4 x y + 9 = 0 egyenletű egyenesek metszéspontjának koordinátáit! 36. Egy háromszög csúcspontjainak koordinátái: A(-; -), B(4; -3) C(4; 5). Számítsa ki a B csúcsból induló magasságvonal és az AC oldal metszéspontjának koordinátáit! 5

6 37. Egy háromszög csúcspontjainak koordinátái: A(3; -), B(; 0) C(-4; -3). Lehet-e a x-7y=4 egyenletű egyenes a háromszög egyik oldalegyenese? 35. Egy szabályos háromszög két csúcsa ( 5;3 3) A, B(; 0). Határozza meg a háromszög harmadik csúcspontjának koordinátáit! 353. Egy derékszögű háromszög két csúcspontjának koordinátái: (-; ) és (7; -). Az egyik befogó egyenlete x-y=-3. Számítsa ki a harmadik csúcspont koordinátáit!.9.. A k mely értékére lesz egymással párhuzamos a következő két egyenes? x+ky=5 és kx+4y=7.9.. Két egymással párhuzamos egyenes egyenlete: 3x+4y=-4 és 3x+4y=. Számítsa ki a két egyenes távolságát!.9.3. Egy háromszög csúcspontjainak koordinátái: A(5; ), B(8; 6), C(-3; 8) Számítsa ki annak a pontnak a koordinátáit, amelyben az A csúcsból induló szögfelező metszi a szemközti oldalt!.9.4. Adott két pont: A(4; 6), B(6; -). Keresse meg az ordinátatengelyen a P pontot úgy, hogy az APB törtvonal hossza a lehető legrövidebb legyen!.9.5. Egy háromszög csúcspontjainak koordinátái: (4; 0), (-3; -) és (-5; 6). Irja fel az oldalfelező merőlegesek egyenletét, és határozza meg a merőlegesek közös pontját!.9.6. Egy derékszögű háromszög egyik befogójának egyenlete: y=-x+5 és az ezzel szemközti csúcspont ordinátája 7. Az átfogó egyenlete 3x-y=5. Határozza meg az átfogóhoz tartozó magasságvonal egyenletét! 6

7 b. Kör (def.) A kör egyenlete.... Irjuk fel a kör egyenletét, ha egyik átmérőjének végpontjai: A(3; -4), B(7; 9)! A kör egyenletét akkor tudjuk felírni, ha ismerjük a középpontját C(u; v) t és sugarát r-et: (x-u) +(y-v) =r A kör középpontja az AB átmérő C felezőpontja: 5 r ; A kör sugara: = AC = ( 5 3) = 46, 5 5 ; ; A kör egyenlete: ( 5) + ( y,5) = 46, x.... Irjuk fel annak a körnek az egyenletét, amely átmegy az A(; -) és a B(4; 5) ponton, és középpontja rajta van az x-3y =- egyenesen! Az AB szakasz a kör egy húrja, ezért a keresett kör C középpontja rajta van az AB szakasz felezőmerőlegesén. C pont az AB felezőmerőlegesének az adott egyenesnek a metszéspontja. F(3; ) pont az AB szakasz felezőpontja. AB ( ;6) vektor az AB szakasz felezőmerőlegesének normálvektora. A felezőmerőleges egyenlete: x + 6y = ; azaz x+3y=9. A C középpontot, az x+3y=9 x-3y=- 7 = ; y = 6 7 C = ; 6 x egyenletrendszer megoldása adja: 7

8 r = AC = = 8 8 A keresett kör egyenlete: 7 8 x + y =. 6 8 A kör és a másodfokú kétismeretlenes egyenlet kapcsolata. Javasolt feladat:..3. Lehet-e kör egyenlete az a. x +y -x-8=0 b. 3x +3y +5xy+=0 egyenlet? Ha igen, adja meg a kör adatait! a. Nem tartalmaz xy-os tagot, az x és y -es tagok együtthatója egyenlő, ezért nem zárható ki, hogy kör egyenlete. Alakítsuk teljes négyzetté: ( x ) + y = 9 ; tehát kör egyenlete. C(; 0), r=3. b. Nem kör egyenlete, mert tartalmaz xy-os tagot. Kör és egyenes kölcsönös helyzete.... Számítsuk ki annak a húrnak a hosszát, amelyet az x +y -4x-6y-=0 egyenletű kör metsz ki az y=x egyenesből! Az x +y -4x-6y-=0 egyenletű kör (x-) +(y-3) =5 alakra hozható, ahonnan C(; 3); r=5. Az egyenes és a kör egyenletéből álló egyenletrendszer megoldása adja a keresett húr két végpontjának koordinátáit. 8

9 Ezekkel: = 6; x x y y = ; y=x + y 4x 6y = 0 + x 4x 6y = 0 A metszéspontok: P (6, 6) és P (-; -) A húr hossza: P = = 7 P. x 5x 6 = 0 x = 6; x =... Irjuk fel az ( x + ) + ( y ) = 5 egyenletű kör x= abszcisszájú I. negyedbeli pontjához tartozó érintő egyenletét! A kör x= abszcisszához tartozó pontjainak ordinátái: ( + ) + ( y ) = 5 amelyből: y =5 y =-3 Az I. negyedben a P (; 5) pont van. A kör középpontja: C(-; ). A P ponthoz tartozó érintő egy normálvektora: n = CP( 3;4) A P pontbeli érintő egyenlete: 3x + 4y = azaz 3x+4y= Számítsa ki az ( x + 6) + ( y 5) = 00 egyenletű kör x=0 abszcisszájú pontjaiba húzható érintők metszéspontjának koordinátáit! Az x+y=c egyenletű egyenes érinti az x +y =4 egyenletű kört. Mekkora területű háromszöget zár be az egyenes a koordinátatengelyekkel? 338. Húzzon az ( x 3) + ( y + ) = 4 egyenletű körhöz érintőket a P(;-3) pontból! Mi lesz az érintési pontokon átmenő egyenes egyenlete? Milyen távolságra van az egyenes a kör középpontjától? 339. Egy kör áthalad a (-4; ) koordinátájú ponton és az abszcisszatengely a (; 0) koordinátájú pontban érinti. Határozza meg a kör 8 abszcisszájú pontjaiba húzható érintői metszéspontjának koordinátáit! 9

10 3346. Egy szakasz végpontjainak koordinátái A(-3; -); B(8; ). Keressen az ordinátatengelyen olyan pontokat, amelyekből a szakasz derékszögben látszik! Két kör kölcsönöz helyzete közös érintők fajtái, száma Irja fel annak a körnek az egyenletét, amely az (x-) +(y+0) =00 egyenletű kört kívülről, az (x+4) +(y-) =00 egyenletű kört belülről érinti, valamint érinti az ordinátatengelyt! 335. Határozza meg annak a körnek az egyenletét, amely koncentrikus a 4x +4y -8x+44y-86=0 egyenletű körrel és sugara fele akkora! Határozza meg annak a körnek az egyenletét, amely az x +y =5 egyenletű kört belülről érinti a (4; 3) pontban, és érinti az abszcisszatengelyt! c. Parabola (Def.) Javasolt feladat: A parabola fontosabb tulajdonságai, jellemzői (tengely, fókuszpont, paraméter, vezéregyenes, csúcspont) Koordinátatengelyekkel párhuzamos tengelyű parabolák egyenlete..3.. a. Irja fel annak a parabolának az egyenletét, amelynek tengelye az y tengely, tengelypontja az origó és fókusza a (0; 3) pont! Az adott helyzetű parabola fókusza az y = x. p tengelyponti egyenlete: 0; p F pont, y = x. Most F(0; 3); amiből p=6, így a parabola egyenlete: b. Az a. pontban szereplő parabolát x tengelyre tükrözve az x p y = egyenletű parabolához jutunk. 0

11 c. Az a. pontban szereplő parabolát az y=x egyenesre tükrözve a kapott parabola tengelye az x tengely lesz. A tükrözésnél a két tengely és az x; y koordináta felcserélődik. Ennek a parabolának y p az egyenlete tehát: x = ; rendezve: y =px. d. Irjuk fel annak a parabolának az egyenletét, amely átmegy a P (6; -4) ponton, tengelypontja az origó, tengelypontjában érintője az y tengely! A parabola meghatározása mutatja, hogy egyenlete: y =px alakú. A P (6; -4) pont kielégíti a parabola egyenletét, tehát: ( 4) = 6 p ; A parabola egyenlete: Fókuszpontja: 6 4 P = = y = x ; 3 P F ;0 = F ; 3;0 x = 3 Vezéregyenesének egyenlete: e. A c-ben szereplő parabolát y tengelyre tükrözve, a transzformáció miatt a kapott parabola egyenlete y =-px. f. Az a.; - e. pontokban tárgyalt parabolákat toljuk el a koordinátasíkon (u; v) vektorral! A tengelypontjuk ekkor T(u; v) lesz. Ha ezeket az új helyzetűeket a (-u; -v) vektorral toljuk el, visszajutunk az eredeti helyzetű parabolához. Ennél a visszatolásnál minden P(x; y) pontból P (x-u; y-v) pont lesz. Ennek a P -nek a koordinátáiban szereplő x, y az eltolt új helyzetű parabolák koordinátái.

12 A P kielégíti az eredeti helyzetű parabolák egyenletét, tehát az (u; v) vektorral eltolt parabolák egyenlete rendre: y p p v = ( x u) ; y v = ( x u) ( y v) = p( x u) ; ( y v) = p( x u). A parabola és a másodfokú függvény. Javasolt feladat:.4.. Határozzuk meg az x + 8x + y 0 = 0 egyenletű parabola paraméterét, fókuszpontjának koordinátáit, vezéregyenesének egyenletét! Alakítsuk teljes négyzetté, majd rendezzük az egyenletet, ekkor y = x + ( + 4) 8 p Ezt összehasonlítva az y = ( x u) + v u=-4; v=8; p=-. Tehát a parabola tengelypontja: T(-4; 8) pont. általános alakkal, Mivel p<0; így a parabola lefelé nyitott, a fókuszpont a tengelypont alatt van, 35 F 4; ; a vezéregyenes a tengelypont fölött, 37 y =. A parabola és az egyenes kölcsönös helyzete Irja fel az y =6x egyenletű parabola azon érintőjének egyenletét, amely átmegy az 5x-y=7 és a x+y=4 egyenletű egyenesek metszéspontján!

13 340. Melyik az a pontja az ordinátatengelynek, ahonnan az y = egyenletű parabolához húzott érintők a csúcsérintővel egyenlő oldalú háromszöget zárnak be? 349. Húzzon érintőket az y = egyenletű parabolához az x ordinátatengely és a vezéregyenes metszéspontjából! Mekkora szöget zárnak be ezek egymással? 340. Határozza meg, hogy az y=(x-3) - egyenletű parabola mely pontja 3 van legközelebb az y = x 6 egyenletű egyeneshez? Mekkora a minimális távolság? 344. Mekkora az y=x egyenletű parabola és az x +(y-) =4 egyenletű kör közös pontjai által meghatározott háromszög kerülete?.7.. Irja fel annak a körnek az egyenletét, amely áthalad a P 0 (; 9) pontos, és mindkét koordinátatengelyt érinti!.7.. Adja meg az a és b paraméter értékét úgy, hogy az x +y +ax+by=0 egyenletű kör áthaladjon az A(4; 3) és a B(-; 3) ponton!.7.3. Egy rombusz egyik átlója a másik átlójának a kétszerese. A rövidebbik átló végpontjai: A(6; -4) és a C(-; 6). Határozza meg a hiányzó csúcsok koordinátáit?.7.4. Irja fel a P (7; -4) pontból az (x+) +(y-) =0 körhöz húzható érintők egyenletét!.7.5. Egy húrnégyszög három csúcspontjának koordinátái: A(6; ); B(-; 3); C(-; ). A negyedik csúcspont az ordinátatengely negatív felén van. Melyek ennek a koordinátái?.7.6. Határozza meg a következő egyenletű parabolák fókuszpontját és vezéregyenesét! a. x -6y=0 b. x +y=0 c. x +4x-4y+8=0 x 3

14 .7.7. Irja fel a parabola egyenletét, ha a a. fókusza a (-7; 0) pont és vezéregyenesének egyenlete: x=7; b. fókusza a (0; -4) pont és vezéregyenesének egyenlete: y=4! x Határozza meg a P 0 (9; ) pontból az y = egyenletű parabolához húzható érintő egyenletét!.7.9. Az ABCD négyzet C csúcsa a y=x -5x+8,5 egyenletű parabola csúcsában, B és D szintén e parabolán van. Adjuk meg a négyzet csúcsainak koordinátáit! d. Ellipszis (def.) Az ellipszis fontosabb tulajdonságai, jellemzői (szimmetria, vezérsugarak, fókuszpontok, kis-nagy tengely) Ellipszis egyenlete Egy ellipszis nagytengelye 9, kistengelye 4 egység. Irja fel az egyenletét, ha az ellipszis tengelyei a koordinátatengelyekre esnek! x + y Hány közös pontja van az = az y 3 3 x = egyenletű egyenesnek? x + y 5 6 egyenletű ellipszisnek és Egy ellipszis egyenlete: =. Milyen hosszúságú vezérsugarak tartoznak azokhoz az ellipszispontokhoz, amelyeknek akkora az abszcisszájuk, mint a gyújtópontoknak? x + y Az = vezérsugarak merőlegesek egymásra? egyenletű ellipszis melyik pontjához tartozó 4

15 x 9 + y Irja fel az = húzható érintők egyenletét? 345. Határozza meg az = egyenletű ellipszishez a P(; 4) pontból x + y 6 érintőjének egyenletét, amelynek meredeksége: egyenletű ellipszis azon 3 m =! 4 e. Hiperbola (def.) A hiperbola fontosabb tulajdonságai, jellemzői (szimmetria, vezérsugarak, valós-képzetes tengely, fókuszpontok, aszimptoták) Hiperbola egyenlete Egy hiperbola valós tengelye 8, képzetes tengelye 5 egység. Irja fel a hiperbola tengelyponti egyenletét? Mi az egyenlete: x + y 5 9 a. Annak a hiperbolának, amelynek csúcsai az = egyenletű ellipszis fókuszpontjaira, fókuszpontjai pedig az ellipszis nagytengelyének végpontjaiba esnek; x y 5 9 b. Annak az ellipszisnek, amelynek csúcspontjai = egyenletű hiperbola fókuszpontjaira, fókuszpontjai pedig a hiperbola valós tengelyének végpontjaiba esnek? x y Egy hiperbola egyenlete =. Határozza meg az y=x egyenletű egyenessel párhuzamos, illetve arra merőleges érintőinek az egyenletét! 346. Bizonyítsa be, hogy az y x = egyenletű hiperbolát két pontban metsző egyeneseknek a koordinátatengelyek és a hiperbolaágak közé eső szakaszai egyenlő hosszúságúak! 5

16 x y Az = vezérsugarak merőlegesek egymásra? egyenletű hiperbola mely pontjaihoz tartozó II. Térbeli problémák tárgyalása Pontok jellemzése... A két egységnyi élhosszúságú kockát úgy helyezzük el a koordináta rendszerben, hogy az origó a kocka egyik csúcsára illeszkedik, a tengelyek pozitív fele pedig egy-egy élt tartalmaz. Adja meg a kocka csúcsainak a koordinátáit!.5. Az ABCD paralelogramma csúcsai A(3; -; 5); B(0; ; 0); C(-5; ; 7). Számítsa ki a D csúcs koordinátáit!.6. Egy paralelepipedon egyik csúcsa az origó, az ebből kiinduló élek végpontjai az A(3; 6; -4); B(-4; 7; 0); C(9; ; -3) pontok. Számítsa ki a többi négy csúcs koordinátáit!.3. Az ABC háromszög két csúcspontja A(; -; ); B(6; -3; ), súlypontja: S(3; -; ). Határozza meg a C csúcspont koordinátáit! a. Egyenes Az egyenes vektoregyenlete, paraméteres egyenletrendszer, egyenletrendszer..85.a. Irja fel a P ponton áthaladó, v irányvektorú egyenes egyenletrendszerét, ha: P(-; 3; 7); v(-4; ; 6).87.a. Egy egyenesre illeszkednek-e a következő pontok? A(-; 5; 3); B(; ; 4) C(3; -7; 7). 6

17 .88. Irja fel annak az egyenesnek a vektoregyenletét, amely illeszkedik a P(-3; ; -) pontra és párhuzamos az x=3+t; y=8+t; z=-7t egyenessel!.89. Adja meg annak az egyenesnek az egyenletrendszerét, amely illeszkedik a P(-; ; 0) pontra és merőleges az x=-+3t; y=5+t; és az x=8-+t ; y=-t; y=3t egyenesekre!.9. Határozza meg annak az egyenesnek az egyenletrendszerét, amely illeszkedik a P(0; 5; ) pontra és az x=-3t; y=-+t; z=t egyenest merőlegesen metszi!.94. Adja meg a p paraméter értékét úgy, hogy az alábbi két egyenes x + y z 3 4 messe egymást: = = ; b. Sík A sík egyenlete. x 3 y z 7 = =. p 4.06.a. Adott a sík n normálvektora és P pontja. Irja fel a sík egyenletét! n(-3; ; ).07. Irja fel annak a síknak az egyenletét, amely illeszkedik a P(; -; 3) pontra és párhuzamos a 3x-4y+5z-3=0 síkkal!.08. Irja fel annak a síknak az egyenletét, amely illeszkedik az alábbi ponthármasokra: A(; 3; ); B(-;;5); C(; -; 0)..09. Egy síkra illeszkedik-e a következő négy pont? A(; 3; 4); B(0;;-); C(-; ; -6) D(; 5; 4). Egyenes és sík kölcsönös helyzete..45. Mely pontokban metszi az x=4-t; y=3+3t; z=-t egyenes a koordinátasíkokat? 7

18 .46. Adja meg a P(-6; 6; -5); és Q(; -6; ); pontokat összekötő egyeneseknek a koordinátasíkokkal való metszéspontját!.47. Mely pontokban döfi az x=+t; y=3t; z=-+t egyenes a x+3y+z=0 síkot?.48. Határozza meg a P ( ;3; 3) ; P ( 3;; ) ; P ( 4;5; 6) pontokra illeszkedő sík és a döféspontjának a koordinátáit! 4 x y + 3 4z + 6 = = egyenes.50. Határozza meg az origót P ( 8; ; 6) ponttal összekötő egyenesnek és a 3x-y+6z+4=0 síknak az M metszéspontját!.53. Mekkora térfogatú derékszögű tetraédert metsz ki a 3x-4y+6z-=0 sík a koordinátasíkokból?.55. Tükrözze a P ( ;3;3 ) pontot az x=3+4t; y=+5t; z=-+3t egyenesre! Határozza meg a tükörkép koordinátáit!.68. Számítsa ki az alábbi egyenesek hajlásszögét: a. x 6 = ( y + ) = z és x + 4 = y 6 = ( z + 5) b. x=-+3t; y=0; z=3-t és x=-+t; y=0; z=-3+t c. x=4+t; y=5t; z=3-t és x=7+t; y=3t; z=9+7t d. x=+3t; y=,5;z=--3t és x=t; y=-3+t; z= Határozza meg a következő sík és egyenes hajlásszögét: a. x-y-z=; és x=--4t; y=3; z=-t; b. x-9y+4z=-7; és x=-3+4t; y=6; z=9t; c. x+y+z=3; és x=5-3t; y=4+6t; z=-; d. x+y-z=3; és x=5-t; -y=t; z=3-t;.70. Határozza meg a következő két-két sík hajlásszögét: a. 7x-3y+z-9=0; x+y-z+4=0; b. x-y-z-=0; x+y-z-5=0; c. x+y+z-3=0; 6x+y-5z-=0 d. x-y+z-8=0; x+z-6=0; D 8

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

15. Koordinátageometria

15. Koordinátageometria I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria ) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria A szürkített hátterű feladatrzek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika Hasonlóság kísérleti feladatgyűjtemény 10. osztályos matematika POKG 2015. Hasonló háromszögek oldalaránya 0. Keressük meg az alábbi háromszögek összetartozó oldalpárjait és arányossággal számítsuk ki

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

Gyakorló feladatsor 11. osztály

Gyakorló feladatsor 11. osztály Htvány, gyök, logritmus Gykorló feldtsor 11. osztály 1. Számológép hsznált nélkül dd meg z lábbi kifejezések pontos értékét! ) b) 1 e) c) d) 1 0, 9 = f) g) 7 9 =. Számológép hsznált nélkül döntsd el, hogy

Részletesebben

3 2 x 1 = 5. (9 pont) 2. Mekkora a szabályos kilencszög kerülete és területe, ha a legrövidebb átlója 85? (11 pont)

3 2 x 1 = 5. (9 pont) 2. Mekkora a szabályos kilencszög kerülete és területe, ha a legrövidebb átlója 85? (11 pont) 1997 Írásbeli érettségi-felvételi feladatok 1. Oldja meg a következő egyenletet a valós számok halmazán: 3 2 x 1 2 2 x 1 + 2 2x 1 3 2 x 1 = 5. (9 pont) 2 2. Mekkora a szabályos kilencszög kerülete és területe,

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

54. Mit nevezünk rombusznak? A rombusz olyan négyszög, 52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24 OKTATÁSI MINISZTÉRIUM M/D/13 Dolgozók gimnáziuma Dolgozók szakközépiskolája Szakmunkások szakközépiskolája intenzív tagozat) 003. május ) Határozza meg a következő egyenlet racionális gyökét! 1 3 4 + 5

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Gyaorló feladato Eponenciális és logaritmusos ifejezése, egyenlete. Hatványozási azonosságo. Számítsd i a övetező hatványo pontos értéét! g) b) c) d) 7 e) f) 9 0, 9 h) 0, 6 i) 0,7 j), 6 ), l). A övetező

Részletesebben

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a GOMTRI ndrea Philippou, Marios ntoniades Szakaszok és félegyenesek gy szakasz felezőmerőlegese egy olyan egyenes, félegyenes vagy szakasz, ami áthalad a szakasz középpontján és merőleges a szakaszra. Tétel:

Részletesebben

Feladatok MATEMATIKÁBÓL II.

Feladatok MATEMATIKÁBÓL II. Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.

Részletesebben

Matematika Gyakorló feladatok vizsgára 12. évf. emelt szint

Matematika Gyakorló feladatok vizsgára 12. évf. emelt szint Matematika Gyakorló feladatok vizsgára. évf. emelt szint Egyenletek, egyenlőtlenségek, paraméteres egyenletek. Oldd meg az alábbi egyenleteket! 4 c) d) e) 4. Oldd meg az alábbi egyenleteket! = c) =8 d)

Részletesebben

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok 10. Síkgeometria I. Elméleti összefoglaló Szögek, nevezetes szögpárok Egy adott pontból kiinduló két félegyenes a síkot két részre bontja. Egy-egy ilyen rész neve szögtartomány, vagy szög. A két félegyenest

Részletesebben

Végeredmények, feladatok részletes megoldása

Végeredmények, feladatok részletes megoldása Végeredmények, feladatok részletes megoldása I. Kombinatorika, gráfok Sorba rendezési problémák (Ismétlés). Részhalmaz-kiválasztási problémák, vegyes összeszámlálási feladatok (Ismétlés). Binomiális együtthatók,

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

12. Trigonometria I.

12. Trigonometria I. Trigonometria I I Elméleti összefoglaló Szögmérés A szög mérésének két gyakran használt módja van: fokban, illetve radiánban (ívmértékben) mérünk A teljesszög 0, ennek a 0-ad része az A szög nagyságát

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I. PRÓBAÉRETTSÉGI FELADATSOR

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I. PRÓBAÉRETTSÉGI FELADATSOR MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I PRÓBAÉRETTSÉGI FELADATSOR EGYENES ÚT AZ EGYETEMRE 11 FELADATSOR 11 FELADATSOR I rész Felhasználható idő: 45 perc 6x 1 111) Melyik állítás igaz az alábbi egyenlet

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Vektoralgebra. 1.) Mekkora a pillanatnyi sebesség 3 s elteltével, ha a kezdősebesség (15;9;7) m/s, a gravitációs gyorsulás pedig (0;0;-10) m/s 2?

Vektoralgebra. 1.) Mekkora a pillanatnyi sebesség 3 s elteltével, ha a kezdősebesség (15;9;7) m/s, a gravitációs gyorsulás pedig (0;0;-10) m/s 2? Vektoralgebra Elmélet: http://digitus.itk.ppke.hu/~b_novak/dmat/vektorfolcop.pdf Mikor érdemes más, nem ortonormált bázist alkalmazni? Fizikában a ferde hajításoknál megéri úgynevezett ferdeszögű koordináta-rendszert

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT MATMATIKA ÉRTTSÉGI 011. május 3. KÖZÉPSZINT 1) gyszerűsítse a következő törtet, ahol b 6 b b 36 6 I. Az egyszerűsítés utáni alak: b 6 Összesen: pont ) A, 4 és 5 számjegyek mindegyikének felhasználásával

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Nagy Ilona 2013.06.01.

Nagy Ilona 2013.06.01. Bevezető matematika példatár Kádasné Dr. V. Nagy Éva Nagy Ilona 0.06.0. Tartalomjegyzék Bevezető. Gyakorlatok.. Műveletek törtekkel, hatványokkal, gyökökkel................. A logaritmus fogalma; arány-

Részletesebben

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek 2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

Telepítő programok. Euklides 2.4 (Geometriai szerkesztőprogram) (A makrók megnyitásához szükséges!) Wingeom (Geometriai szerkesztőprogram)

Telepítő programok. Euklides 2.4 (Geometriai szerkesztőprogram) (A makrók megnyitásához szükséges!) Wingeom (Geometriai szerkesztőprogram) Telepítő programok Euklides 2.4 (Geometriai szerkesztőprogram) (A makrók megnyitásához szükséges!) Wingeom (Geometriai szerkesztőprogram) Súgó Menü Súgó Visszalépés a főmenübe Visszalépés a kiválasztott

Részletesebben

Szerzői ajánlás a vektorok és a koordináta- geometria elemei c. projekthez

Szerzői ajánlás a vektorok és a koordináta- geometria elemei c. projekthez 1 Szerzői ajánlás a vektorok és a koordináta- geometria elemei c. projekthez A Témakörhöz kapcsolódó történelmi áttekintés A geometria történetének nagy alakjai közül Apollóniaergaiosz (Kr.e. 3. sz.) a

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

Geometria. 9 10. évfolyam. Szerkesztette: Hraskó András, Surányi László. 2015. augusztus 4.

Geometria. 9 10. évfolyam. Szerkesztette: Hraskó András, Surányi László. 2015. augusztus 4. Geometria 9 10. évfolyam Szerkesztette: Hraskó András, Surányi László 2015. augusztus 4. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó

Részletesebben

Miért van az, hogy a legtöbben. a szöveges feladatokkal nem boldogulnak? Részletek a szövegértést fejleszt, kidolgozott feladatlapokból

Miért van az, hogy a legtöbben. a szöveges feladatokkal nem boldogulnak? Részletek a szövegértést fejleszt, kidolgozott feladatlapokból Miért van az, hogy a legtöbben a szöveges feladatokkal nem boldogulnak? Részletek a szövegértést fejleszt, kidolgozott feladatlapokból Elszó 0 éves személyes tapasztalataim azt mutatják, hogy a tanulóknak

Részletesebben

Osztályozó és Javító vizsga témakörei matematikából 9. osztály

Osztályozó és Javító vizsga témakörei matematikából 9. osztály Osztályozó és Javító vizsga témakörei matematikából 9. osztály 1. félév 1. Kombinatorika, halmazok Számoljuk össze! Összeszámlálási feladatok Matematikai logika Halmazok Halmazműveletek Halmazok elemszáma,

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2010. Június 4.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2010. Június 4. EURÓPAI ÉRETTSÉGI 2010 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2010. Június 4. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

Matematika a műszaki főiskolák számára. Matematikai feladatok

Matematika a műszaki főiskolák számára. Matematikai feladatok Matematika a műszaki főiskolák számára Matematikai feladatok Matematika a műszaki főiskolák számára Matematikai feladatok Szerkesztette Scharnitzky Viktor Nemzeti Tknkönyvkiadó, Budapest FŐISKOLAI SEGÉDKÖNYV

Részletesebben

Az osztályozó- és javítóvizsga témakörei matematika tantárgyból. 9. évfolyam

Az osztályozó- és javítóvizsga témakörei matematika tantárgyból. 9. évfolyam Az osztályozó- és javítóvizsga témakörei matematika tantárgyból Minden évfolyamra vonatkozóan általános irányelv, hogy a matematikai ismeretek alkalmazásán (feladatok, problémák megoldása) van a hangsúly,

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT:

1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: 1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: a) ( 7) + ( 12) = 19 b) ( 24) + (+15) = 9 c) ( 5) + ( 27) = 32 d) (+19) + (+11) = +30 e) ( 7) ( 25) = +175 f) ( 5) (+14) = 70 g) ( 36) (+6)

Részletesebben

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Próbaérettségi feladatsor_a NÉV: osztály Elért pont: Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a

Részletesebben

Matek szóbeli érettségi tételek

Matek szóbeli érettségi tételek Matek szóbeli érettségi tételek 1. Halmazok, halmazműveletek Halmazok, részhalmazok A halmazt alapfogalomnak tekintjük. Képezhetünk halmazt a kétjegyű pozitív számokból, személyekből stb. Ezeket a halmaz

Részletesebben

NT-17312 Az érthető matematika 11. Tanmenetjavaslat

NT-17312 Az érthető matematika 11. Tanmenetjavaslat NT-17312 Az érthető matematika 11. Tanmenetjavaslat Idézet a 3.2.04. kerettantervből (11 12. évfolyam, bevezetés): Ez a szakasz az érettségire felkészítés időszaka is, ezért a fejlesztésnek kiemelten fontos

Részletesebben

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I. ) Mely valós számokra igaz, hogy 7 7 MATEMATIKA ÉRETTSÉGI 005. május 8. KÖZÉPSZINT I. 7? Összesen: pont ) Egy 40 000 Ft-os télikabátot a tavaszi árleszállításkor 0%-kal olcsóbban lehet megvenni. Mennyi

Részletesebben

Szóbeli érettségi gyakorló feladatok

Szóbeli érettségi gyakorló feladatok Szóbeli érettségi gyakorló feladatok Elméleti kérdések. Definiálja egy szám n-edik gyökét! Mondja ki az n-edik gyökre vonatkozó azonosságokat!. Definiálja a logaritmus fogalmát! Mondja ki a logaritmusra

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

MATEMATIKA ÉRETTSÉGI 2010. október 19. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2010. október 19. EMELT SZINT 1) MATEMATIKA ÉRETTSÉGI 010. október 19. EMELT SZINT a) Mely valós számok elégítik ki az alábbi egyenlőtlenséget? 3 3 1 1 8 b) Az alábbi f és g függvényt is a f 3 és g 0,5,5 I. 3;6. intervallumon értelmezzük.

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Az osztályozóvizsgák követelményrendszere MATEMATIKA Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 091 ÉRETTSÉGI VIZSGA 011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT Matematika PRÉ megoldókulcs 0. január 8. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS EMELT SZINT. Egy atlétika csapat alapozást tart. Robbanékonyságukat és állóképességüket 0 méteres síkfutással fejlesztik.

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. május 7. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2013. május 7. EMELT SZINT 1) Jelölje A az pedig az x 4 0 x 3 x 3 4 MATEMATIKA ÉRETTSÉGI 013. május 7. EMELT SZINT Elemei felsorolásával adja meg az A B I. egyenlőtlenség egész megoldásainak a halmazát, B egyenlőtlenség egész megoldásainak

Részletesebben

14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük:

14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük: 14. Vektorok I. Elméleti összefoglaló Vektor Az irányított szakaszokat vektoroknak nevezzük: Jelölés: a kezdő és a végpont megadásával: AB ; egy kisbetűvel: v, írásban aláhúzás is szokásos: a; nyomtatásban

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT

PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT 1. FELADATSOR Felhasználható idő: 40 perc I. rész 1.1.) Oldja meg grafikusan az alábbi egyenlőtlenséget! x + 1 + 1 x + x + 11 1..) Mekkora legyen az x valós szám értéke, hogy az alábbi három mennyiség

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

Az elmúlt évekbeli, illetve a jelenlegi matematika érettségi folyamatának jellemzése

Az elmúlt évekbeli, illetve a jelenlegi matematika érettségi folyamatának jellemzése Tompa Klára A matematika érettségi eredményeinek elemzése Az Iskolakultúra 1999/6 7. és 8. számában módunkban állt beszámolni arról, milyen irányban halad az OKI-ban a matematika érettségivel kapcsolatos

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 01. május 7. KÖZÉPSZINT 1) Az A és B halmazokról tudjuk, hogy B\ A 1; ; 4; 7. Elemeinek felsorolásával adja meg az A halmazt! A ; 5; 6; 8; 9 I. AB 1; ; ; 4; 5; 6; 7; 8; 9 és ) Egy

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások: 1.

Részletesebben

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója SZAKKÖZÉPISKOLA A 006-007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója. Feladat: Egy számtani sorozat három egymást követő tagjához rendre 3-at, -et, 3-at adva

Részletesebben

Az írásbeli eredménye 75%-ban, a szóbeli eredménye 25%-ban számít a végső értékelésnél.

Az írásbeli eredménye 75%-ban, a szóbeli eredménye 25%-ban számít a végső értékelésnél. Matematika A vizsga leírása: írásbeli és szóbeli vizsgarészből áll. A matematika írásbeli vizsga egy 45 perces feladatlap írásbeli megoldásából áll. Az írásbeli feladatlap tartalmi jellemzői az alábbiak:

Részletesebben

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 111 É RETTSÉGI VIZSGA 011. október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

11. Geometriai transzformációk

11. Geometriai transzformációk 11. Geometriai transzformációk I. Elméleti összefoglaló Geometriai transzformációknak nevezzük azokat a függvényeket, amelyeknek az értelmezési tartománya és értékkészlete is ponthalmaz. Ha a transzformáció

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 131 ÉRETTSÉGI VIZSGA 013. október 15. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 9 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Az osztályozó vizsgák tematikája matematikából 7-12. évfolyam

Az osztályozó vizsgák tematikája matematikából 7-12. évfolyam Az osztályozó vizsgák tematikája matematikából 7-12. évfolyam Matematikából a tanulónak írásbeli és szóbeli osztályozó vizsgán kell részt vennie. Az írásbeli vizsga időtartama 60 perc, a szóbelié 20 perc.

Részletesebben

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M)

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M) Matematika PRÉ megoldókulcs 04. január 8. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi feladat megoldása kötelező volt! ) Adja meg az x+ y = 3 és az y = egyenletű egyenesek metszéspontjának

Részletesebben

VERSENYFELADATOK 5 12. évfolyam részére I. FELADATSOR

VERSENYFELADATOK 5 12. évfolyam részére I. FELADATSOR VERSENYFELADATOK 5 12. évfolyam részére I. FELADATSOR 5. osztály 1. Az ötödik osztályban 13 fiúból négy szemüveges. A lányok harmada visel szemüveget. Összesen nyolc szemüveges van az osztályban. Mennyi

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 101 ÉRETTSÉGI VIZSGA 010. október 19. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

Egyenletek, egyenlőtlenségek VIII.

Egyenletek, egyenlőtlenségek VIII. Egyenletek, egyenlőtlenségek VIII. 1. Melyik az a szám, amelynek a felét és az ötödét összeszorozva, a szám hétszeresét kapjuk? Legyen a keresett szám:. A szöveg alapján felírhatjuk a következő egyenletet:

Részletesebben

MATEMATIKA ÉRETTSÉGI 2012. október 16. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2012. október 16. KÖZÉPSZINT I. ) Az a n sorozat tagját! MATEMATIKA ÉRETTSÉGI 0 október KÖZÉPSZINT I számtani sorozat első tagja és differenciája is 4 Adja meg a a 04 ) Az A és B halmazokról tudjuk, hogy AB ; ; ; 4; ;, A\ ; AB ; A ;

Részletesebben