Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit"

Átírás

1 Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

2 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik, amelyik átmegy a P ponton és párhuzamos a v vektorral. Ennek az egyenesnek a paraméteres vektoregyenlete r = OP + t v, t R, (1) ahol az r = (x, y, z) az egyenes futópontjának helyvektora, a t valós szám a paraméter, a v vektor az egyenes irányvektora. Ez azt jelenti, hogy ha megadjuk a t paraméter értékét, akkor a kapott r helyvektorú pont rajta van az egyenesen, és fordítva, az egyenes minden pontjának r helyvektora megkapható úgy, hogy a paraméter helyére alkalmas számot helyettesítünk. Az (1) vektoregyenletben az egyenlőség az jelenti, hogy a bal és a jobb oldalon álló vektorok megfelelő koordinátái egyenlők. Ha felírjuk ezeket a koordinátákra vonatkozó egyenleteket, akkor az egyenes paraméteres egyenletrendszerét kapjuk. x = p 1 + v 1 t y = p 2 + v 2 t z = p 3 + v 3 t, t R. (2) Szinte minden esetben a paraméteres egyenletrendszert fogjuk használni. First Prev Next Last Go Back Full Screen Close Quit

3 Feladat 1 Írjuk fel a P (1, 2, 3) és Q(2, 1, 1) pontokon átmenő egyenes paraméteres egyenletrendszerét. Megoldás: A paraméteres egyenletrendszer felírásához kell egy pont, amin biztosan átmegy a szóban forgó egyenes, és kell egy vektor, amivel biztosan párhuzamos. A pontnak választhatjuk a P pontot, az irányvektornak pedig a v = P Q = (1, 1, 2) vektort. Ezekkel az egyenes paraméteres egyenletrendszere x = 1 + t y = 2 t z = 3 2t, t R. Például, ha t paraméter helyére 0-t helyettesítünk, akkor megkapjuk az egyenes P pontját, ha 1-et, akkor a Q pontot, ha 3-at, akkor az egyenes egy további R(4, 1, 3) pontját. Az A(0, 3, 5) pont rajta van az egyenesünkön, mert a t = 1 válsztással ezt a pontot kapjuk a paraméteres egyenletrendszerből, de a B( 1, 3, 7) pont nincs az egyenesen, mert az első koordinátája miatt csak a t = 2 paraméterhez tartozhatna, de akkor a második koordinátának 4-nek kéne lenni.

4 Ha a paraméteres egyenletrendszer felírásához a Q pontot és a w = 2v = ( 2, 2, 4) irányvektort használtuk volna, akkor azt kapjuk, hogy x = 2 2u y = 1 + 2u, u R. z = 1 + 4u Ez a két paraméteres egyenletrendszer nyilván ugyanahhoz az egyeneshez tartozik. Ha egy vektor jó irányvektornak, akkor minden számszorosa is jó. Két különböző paraméteres egyenletrendszerről a következő módon lehet eldönteni, hogy ugyanannak az egyenesnek a paraméteres egyenletrendszerei. Először is a két irányvektornak, amelyek koordinátái rendre a paraméterek együtthatói, párhuzamosaknak, azaz egymás számszorosainak kell lenniük. Ezentúl bárhogy megválasztva ez egyik egyenletrendszer paraméterének értékét, a kapot pontot meg kell tudni kapni a másik egyenletrendszerből is egy alakalmas ottani paraméterértékkel.

5 Feladat 2 Határozzuk meg az alábbi egyenesek metszéspontját. e : x = 2 + t y = 1 t z = 1 2t, t R, f : x = 4 + u y = 1 + 3u z = u, u R. Megoldás: A M metszéspont rajta van mindkét egyenesen, azaz van olyan t és u paraméterérték, hogy 2 + t = 4 + u 1 t = 1 + 3u 1 2t = u Ezt a t -ot és u -ot úgy lehet megtalálni, hogy megoldjuk a 2 + t = 4 + u 1 t = 1 + 3u 1 2t = u kétismeretlenes, de három egyenletből álló lineáris egyenletrendszert.

6 Ezt úgy érdemes csinálni, hogy kiválasztjuk bármelyik két egyenletet, azokat megoldjuk, majd leellenőrizzük, hogy a kapott megoldás a harmadik egyenletet is kielégíti-e. Ha igen, akkor megvan a megoldás, ha nem, akkor nincs megoldás, és így nincs metszéspont sem. Ha az első két egyenletet összeadjuk, kapjuk, hogy 1 = 5 + 4u, amiből u = 1. Ezt az első egyenletbe beírva 2 + t = 3, amiből t = 1. Ezek az értékek a harmadik egyenleteket is kielégítik. Tehát a metszéspont az első paraméteres egyenletrendszerből a t = 1 helyettesítéssel M(3, 2, 1). Természetesen ugyanezt kapjuk, ha a második paraméteres egyenletrendszerbe helyettesítünk u = 1-et.

7 2. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy n = (n 1, n 2, n 3 ) = 0 vektort. Ekkor pontosan egy sík létezik, amelyik átmegy a P ponton és merőleges az n vektorra. Ennek a síknak a normálegyenlete r OP, n = 0, (3) ahol az r = (x, y, z) a sík futópontjának helyvektora. Ha ezt a skalárzorzatot felírjuk a benne szereplő vektorok koordinátáival, akkor a sík egyenletét kapjuk Ez rendezés után n 1 (x p 1 ) + n 2 (y p 2 ) + n 3 (z p 3 ) = 0. (4) n 1 x + n 2 y + n 3 z + D = 0 (5) alakú. Minden pontnak a koordinátái, amelyik illeszkedik a síkra, kielégítik ezt az egyenletet, és minden pont, amelynek a koordinátái kielégítik ezt az egyenletet a szóbanforgó sík egy pontja. Ha egy sík egyenletét megszorozzuk egy tetszőleges, nullától különböző számmal, attól az még ugyanannak a síknak az egyenlete marad, a sík egyenlete csak egy konstans szorzó erejéig egyértelmű. Egy sík két egyenlete nem is különbözhet másban, csak abban, hogy egyik a másiknak számszorosa. Ha egy vektor jó normálvektornak, akkor minden számszorosa is jó. First Prev Next Last Go Back Full Screen Close Quit

8 Feladat 3 Írjuk fel a P (1, 2, 3) és Q(2, 1, 1), R( 1, 1, 2) pontokon átmenő sík egyenletét. Megoldás: Egy sík egyenletének felírásához kell egy pont, ami biztosan a síkon van. Ez lehet most pl. a P pont. Ezenkívül szükségünk van egy olyan n normálvektorra, ami merőleges a síkra. Ilyen vektort a legtöbbször nekünk kell készíteni. Ha egy vektor merőleges a síkra, akkor merőleges minden, a síkban benne fekvő vektorra is. Ezért, ha találunk két nem párhuzamos vektort, amelyek biztosan a síkban fekszenek, akkor ezek vektoriális szorzata jó lesz normálvektornak. Most a P Q = (1, 1, 2) és a P R = ( 2, 1, 5) vektorok biztosan a síkban vannak és nem párhuzamosak, tehát a normálvektor lehet n = P Q P R = Ezekkel a sík egyenlete i j k = (3, 9, 3). 3(x 1) + 9(y 2) 3(z 3) = 0, 3x + 9y 3z 12 = 0.

9 Feladat 4 Tekintsük az alábbi e egyenest és S síkot. x = 2 t e : y = 1 + t, t R, S : x + y 2z 5 = 0. z = 1 2t Igazoljuk, hogy az egyenes döfi a síkot és számoljuk ki a döféspont koordinátáit. Megoldás: Az egyenes akkor nem döfi a síkot, ha párhuzamos vele. Ez akkor következik be, ha az egyenes irányvektora párhuzamos a síkkal, azaz merőleges a sík normálvektorára. Az egyenes paraméteres egyenletrendszeréből és a sík egyenletéből leolvasható a v irányvektor és az n normálvektor. Most v = ( 1, 1, 2), n = (1, 1, 2). Ez a két vektor akkor merőleges, ha a skaláris szorzatuk nulla. Mivel v, n = 4 = 0, az egyenes nem párhuzamos a síkkal, tehát van döféspont.

10 A döféspont rajta van az egyenesen és a síkon is. Ezt a pontot úgy lehet meghatározni, hogy megkeressük azt a paraméterértéket, amelyhez tartozó pont az egyenesről kielégíti a sík egyenletét is. Ezt a paraméterértéket persze úgy lehet megtalálni, hogy az egyenes futópontjának a paraméterrel kifejezett x, y, z koordinátáját beírjuk a sík egyenletébe és megoldjuk a paraméterre kapott egyenletet. Azaz most megoldjuk a (2 t) + (1 + t) 2(1 2t) 5 = 0 egyismeretlenes lineáris egyenletet. Az adódik, hogy t = 1. Az M döféspont koordinátái tehát M(1, 2, 1). 3. Tudjuk, hogy a P (p 1, p 2, p 3 ) és a Q(q 1, q 2, q 3 ) pontok távolsága d P Q = (p 1 q 1 ) 2 + (p 2 q 2 ) 2 + (p 3 q 3 ) 2. A P pont és egy rá nem illeszkedő e egyenes d P e távolságát úgy kapjuk, hogy a P pontot merőlegesen levetítjük az e egyenesre, majd kiszámoljuk a P pont és a Q vetületpont távolságát. Ha R az egyenes egy tetszőleges pontja, v az irányvektora, akkor d P e = RP v. (6) v First Prev Next Last Go Back Full Screen Close Quit

11 4. A P pont és egy rá nem illeszkedő S sík d P S távolságát úgy kapjuk, hogy a P pontot merőlegesen levetítjük az S síkra, majd kiszámoljuk a P pont és a Q vetületpont távolságát. Ha R a sík egy tetszőleges pontja, n a normálvektora, akkor d P S = RP, n. (7) n 5. Két párhuzamos egyenes távolsága az egyik egyenes egy tetszőleges pontjának és a másik egyenesnek a távolsága. Két párhuzamos sík távolsága az egyik sík egy tetszőleges pontjának és a másik síknak a távolsága. Egy egyenes és egy vele párhuzamos sík távolsága az egyenes egy tetszőleges pontjának és a síknak a távolsága. Két kitérő egyenes távolsága az egyeneseket tartalmazó párhuzamos síkok távolsága.

12 6. Tudjuk, hogy a v és a w vektorok α szöge a cos α = v, w v w formulából határozható meg. Két egymást metsző egyenes szöge az irányvektoraik szöge, ha az hegyes szög, ha az tompaszög, akkor 180 -ból kivonva őt kapjuk az egyenesek szögét. 7. Két sík szöge a normálvektoraik szöge, ha az hegyes szög, ha az tompaszög, akkor 180 -ból kivonva őt kapjuk a síkok szögét. 8. Egy egyenes és egy sík szögét úgy kapjuk, hogy 90 -ból kivonjuk az egyenes irányvektorának és a sík normálvektorának a szögét, ha az hegyes szög. Ha az tompaszög, akkor belőle kivonva 90 -ot kapjuk az egyenes és a sík szögét.

13 Feladat 5 Az x 2y + z 10 = 0 síktól milyen messze van az origó és hány fokos szögben metszi őt az x tengely? Megoldás: A sík normálvektora n = (1, 2, 1). Választunk egy pontot a síkról. Például az R(10, 0, 0) pont koordinátái kielégítik a sík egyenletét, ez a pont tehát a síkon van. Most az origó fogja játszani a (7) képletben a P szerepét. Ekkor RO = ( 10, 0, 0), tehát d OS = RO, n n = 10 6 = Az x tengelynek, mint egyenesnek az irányvektora persze lehet v = (1, 0, 0). Jelöljük α-val a v és az n vektorok szögét. Ekkor cos α = v, n v n = α = Mivel α hegyesszög, az x tengely és a sík hajlásszöge 90 α = 24.1.

14 Feladat 6 Tekintsük az alábbi e egyenest és S síkot. x = 2 e : y = 1 5t, t R, S : x y z 2 = 0. z = 1 t Határozzuk meg e S-re vett vetületének paraméteres egyenletrendszerét. Megoldás: Az e egyenes irányvektora v = (0, 5, 1), a sík normálvektora n = (1, 1, 1). Mivel v, n = 6 = 0, az egyenes döfi a síkot. (Ha párhuzamos lenne vele, akkor nem úgy kellene számolni, mint ahogy a következőkben tesszük. Minden feladatban érdemes először tisztázni a térelemek viszonyát. Speciális esetekben - párhuzamosság, merőlegesség megléte - nem mindig lehet úgy számolni, mint az általános esetben.) Egy egyenes a kérdés, a paraméteres egyenletrendszerének felírásához egy pontját biztosan meg kell határozni. Az M döféspont nyilván rajta van az eredeti egyenes vetületén is, célszerűnek tűnik őt kiszámolni. 2 (1 5t) ( 1 t) 2 = 0 t = 0 M(2, 1, 1). A vetület irányvektorát kell még kiszámolnuk.

15 Ha az egyenes egy, a döfésponttól különböző P pontját levetítjük a síkra, akkor a kapott Q vetületi pont és az M pont által meghatározott M Q jó lesz irányvektornak. Például az egyenes egy pontja a t = 1 paraméterérték mellett P (2, 4, 2). Ennek Q vetületét az S síkon úgy kapjuk, hogy meghatározzuk a P -n átmenő, S-re merőleges g egyenest és vesszük ennek és S-nek a döféspontját. A g egyenes irányvektora lehet a w = n vektor. Tehát g : x = 2 + u y = 4 u z = 2 u, u R. (2+u) ( 4 u) ( 2 u) 2 = 0 u = 2, Q(0, 2, 0). A keresett egyenes irányvektora tehát lehet az MQ = ( 2, 3, 1) vektor. Így a vetület paraméteres egyenletrendszere x = 2 2t y = 1 3t z = 1 + t, t R.

16 Feladat 7 Számítsuk ki az alábbi egyenesek távolságát. e : x = 3 + 2t y = 2t z = 2 t, t R, f : x = 2 3u y = 2 + u z = 4 + u, u R Megoldás: Két egyenes távolságát két esetben értelmeztük: ha párhuzamosak, (ekkor egy síkban is vannak), vagy ha kitérők. Az e egyenes irányvektora v = (2, 2, 1), az f egyenes irányvektora w = ( 3, 1, 1). Ezek a vektorok nem párhuzamosak. Azt, hogy kitérők úgy tudjuk leellenőrizni, hogy megmutatjuk, hogy nem is metszik egymást. A 3 + 2t = 2 3u 2t = 2 + u 2 t = 4 + u egyenletrendszer harmadik egyenletéből kivonva a másodikat 2+t = 2, azaz t = 4, a második egyenletből u = 10. Ezek az értékek azonban nem elégítik ki az első egyenletet, tehát az egyenesek kitérők.

17 Van tehát két párhuzamos S 1 és S 2 sík, amelyek közül S 1 -ben fekszik az e egyenes, és S 2 -ben az f. Ennek a két síknak közös lehet az n normálvektora. Erre az n vektorra egyedül annak kell teljesülni, hogy merőleges legyen v-re és w-re is. Tehát az n = v w választás jó lesz. i j k n = v w = = ( 1, 1, 4) Tudjuk, hogy ennek a két síknak a távolsága az egyenesek távolsága, ami az S 1 sík egy pontjának és az S 2 síknak a távolsága. Ahhoz, hogy alkalmazni tudjuk a (7) képletet legyen az S 1 sík egy P pontja az e egyenesről a t = 0 választással kapott P (3, 0, 2), az S 2 sík egy R pontja az f egyenesről az u = 0 választással kapott R( 2, 2, 4) pont. Ekkor RP = (5, 2, 6) és a keresett távolság d P S2 = RP, n n =

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

15. Koordinátageometria

15. Koordinátageometria I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 111 É RETTSÉGI VIZSGA 011. október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Definíció: A tér irányított szakaszait vektoroknak nevezzük. Egy vektort akkor tekintünk adottna, ha ismerjük a nagyságát és az irányát.

Definíció: A tér irányított szakaszait vektoroknak nevezzük. Egy vektort akkor tekintünk adottna, ha ismerjük a nagyságát és az irányát. 1. Vektorok 1.1. Alapfogalmak, alapműveletek 1.1.1. Elméleti összefoglaló Definíció: A tér irányított szakaszait vektoroknak nevezzük. Egy vektort akkor tekintünk adottna, ha ismerjük a nagyságát és az

Részletesebben

A hiperbolikus síkgeometria Poincaré-féle körmodellje

A hiperbolikus síkgeometria Poincaré-féle körmodellje A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 131 ÉRETTSÉGI VIZSGA 013. október 15. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT MATMATIKA ÉRTTSÉGI 011. május 3. KÖZÉPSZINT 1) gyszerűsítse a következő törtet, ahol b 6 b b 36 6 I. Az egyszerűsítés utáni alak: b 6 Összesen: pont ) A, 4 és 5 számjegyek mindegyikének felhasználásával

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Az osztályozó vizsgák tematikája matematikából

Az osztályozó vizsgák tematikája matematikából Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

Állandó együtthatós lineáris rekurziók

Állandó együtthatós lineáris rekurziók 1. fejezet Állandó együtthatós lineáris rekurziók 1.1. A megoldás menete. Mese. Idézzük fel a Fibonacci-számokat! Az F n sorozatot a következő módon definiáltuk: legyen F 0 = 0, F 1 = 1, és F n+2 = F n+1

Részletesebben

LINEÁRIS EGYENLETRENDSZEREK MEGOLDÁSA BÁZISTRANSZFORMÁCIÓVAL. 1. Paramétert nem tartalmazó eset

LINEÁRIS EGYENLETRENDSZEREK MEGOLDÁSA BÁZISTRANSZFORMÁCIÓVAL. 1. Paramétert nem tartalmazó eset LINEÁRIS EGYENLETRENDSZEREK MEGOLDÁSA BÁZISTRANSZFORMÁCIÓVAL 1.Példa: Oldjuk meg a következő lineáris egyenletrendszert: 1. Paramétert nem tartalmazó eset x 1 + 3x 2-2x 3 = 2-2x 1-5x 2 + 4x 3 = 0 3x 1

Részletesebben

Koordináta-rendszerek

Koordináta-rendszerek Koordináta-rendszerek Térkép: a Föld felszín (részletének) ábrázolása síkban Hogyan határozható meg egy pont helyzete egy síkon? Derékszögű koordináta-rendszer: a síkban két, egymást merőlegesen metsző

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

54. Mit nevezünk rombusznak? A rombusz olyan négyszög, 52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a fizika tanításához Ismétlés Erőhatás a testek mechanikai kölcsönhatásának mértékét és irányát megadó vektormennyiség. jele: mértékegysége: 1 newton: erőhatás következménye: 1N 1kg

Részletesebben

Az osztályozó vizsgák tematikája matematikából 7-12. évfolyam

Az osztályozó vizsgák tematikája matematikából 7-12. évfolyam Az osztályozó vizsgák tematikája matematikából 7-12. évfolyam Matematikából a tanulónak írásbeli és szóbeli osztályozó vizsgán kell részt vennie. Az írásbeli vizsga időtartama 60 perc, a szóbelié 20 perc.

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

Matematika Gyakorló feladatok vizsgára 12. évf. emelt szint

Matematika Gyakorló feladatok vizsgára 12. évf. emelt szint Matematika Gyakorló feladatok vizsgára. évf. emelt szint Egyenletek, egyenlőtlenségek, paraméteres egyenletek. Oldd meg az alábbi egyenleteket! 4 c) d) e) 4. Oldd meg az alábbi egyenleteket! = c) =8 d)

Részletesebben

12. Trigonometria I.

12. Trigonometria I. Trigonometria I I Elméleti összefoglaló Szögmérés A szög mérésének két gyakran használt módja van: fokban, illetve radiánban (ívmértékben) mérünk A teljesszög 0, ennek a 0-ad része az A szög nagyságát

Részletesebben

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I. ) Mely valós számokra igaz, hogy 7 7 MATEMATIKA ÉRETTSÉGI 005. május 8. KÖZÉPSZINT I. 7? Összesen: pont ) Egy 40 000 Ft-os télikabátot a tavaszi árleszállításkor 0%-kal olcsóbban lehet megvenni. Mennyi

Részletesebben

14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük:

14. Vektorok. I. Elméleti összefoglaló. Vektor. Az irányított szakaszokat vektoroknak nevezzük: 14. Vektorok I. Elméleti összefoglaló Vektor Az irányított szakaszokat vektoroknak nevezzük: Jelölés: a kezdő és a végpont megadásával: AB ; egy kisbetűvel: v, írásban aláhúzás is szokásos: a; nyomtatásban

Részletesebben

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok 10. Síkgeometria I. Elméleti összefoglaló Szögek, nevezetes szögpárok Egy adott pontból kiinduló két félegyenes a síkot két részre bontja. Egy-egy ilyen rész neve szögtartomány, vagy szög. A két félegyenest

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 061 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

A kvadratrixról. Ez azt jelenti, hogy itt a görbe egy mozgástani származtatását vesszük elő 1. ábra. 1. ábra

A kvadratrixról. Ez azt jelenti, hogy itt a görbe egy mozgástani származtatását vesszük elő 1. ábra. 1. ábra 1 A kvadratrixról A kvadratrix más néven triszektrix nevű síkgörbéről az [ 1 ] és [ 2 ] munkákban is olvashatunk. A keletkezéséről készített animáció itt tekinthető meg: http://hu.wikipedia.org/wiki/kvadratrix#mediaviewer/file:quadratrix_animation.gif

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 091 ÉRETTSÉGI VIZSGA 011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Játékgeometria. * Hat lecke játékfejlesztőknek oktatási segédanyag, mely a

Játékgeometria. * Hat lecke játékfejlesztőknek oktatási segédanyag, mely a * Hat lecke játékfejlesztőknek oktatási segédanyag, mely a Társadalmi Megújulás Operatív Program Határon átnyúló együttműködés a szakképzés és a felnőttképzés területén c. pályázati felhívás keretében

Részletesebben

Mikróökonómia feladatok

Mikróökonómia feladatok kidolgozva A feladatok még hiányosak, folyamatosan frissítem őket! Utolsó frissítés: 007-04-04 19:13:47 1. oldal, összesen 44 oldal Konzultáció 006-10-6 1. feladat (Cobb-Douglas függvény) Józsi bácsi 100

Részletesebben

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba

Részletesebben

Dr`avni izpitni center MATEMATIKA

Dr`avni izpitni center MATEMATIKA Dr`avni izpitni center *P05C10113M* ŐSZI IDŐSZAK MATEMATIKA ÉRTÉKELÉSI ÚTMUTATÓ 005. augusztus 9., hétfő SZAKMAI ÉRETTSÉGI VIZSGA RIC 005 P05-C101-1-3M ÚTMUTATÓ a szakmai írásbeli érettségi vizsga feladatainak

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

SZÁMÍTÓGÉPI GRAFIKA VÁGÁS

SZÁMÍTÓGÉPI GRAFIKA VÁGÁS SZÁMÍTÓGÉPI GRAFIKA VÁGÁS FELADAT: Ha az alakzat nagyobb, mint a képtartomány, amelyben megjelenítendő, akkor a kívül eső részeket el kell hagyni, azaz az alakzatról le kell vágni, röviden szólva: az alakzatot

Részletesebben

Szakdolgozat. Focibajnokságok és véges geometriák. Készítette: Mahler Attila (Matematika BSc) Témavezetı: Kiss György (Egyetemi docens)

Szakdolgozat. Focibajnokságok és véges geometriák. Készítette: Mahler Attila (Matematika BSc) Témavezetı: Kiss György (Egyetemi docens) Szakdolgozat Focibajnokságok és véges geometriák Készítette: Mahler Attila (Matematika BSc) Témavezetı: Kiss György (Egyetemi docens) Eötvös Loránd Tudományegyetem Természettudományi Kar Geometriai Tanszék

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 005. május 0. MATEMATIKA EMELT SZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 40 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0711 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 01. május 7. KÖZÉPSZINT 1) Az A és B halmazokról tudjuk, hogy B\ A 1; ; 4; 7. Elemeinek felsorolásával adja meg az A halmazt! A ; 5; 6; 8; 9 I. AB 1; ; ; 4; 5; 6; 7; 8; 9 és ) Egy

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások: 1.

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.

Részletesebben

Azonosító jel: MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2005. október 25., 8:00. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2005. október 25., 8:00. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2005. október 25., 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0801 ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka

Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka MAGYARÁZAT Az ajánlott Mértan 0 osztály feladatgyűjtemény a középiskolák 0-es tanulóinak általános iskolai tudásszintjének felmérését szolgálja. A felmérés célja a tízedikes tanulók általános iskolában

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 ÉRETTSÉGI VIZSGA 005. május 9. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Geometriai alapok Felületek

Geometriai alapok Felületek Geometriai alapok Felületek Geometriai alapok Felületek matematikai definíciója A háromdimenziós tér egy altere Függvénnyel rögzítjük a pontok helyét Parabolavezérgörbéjű donga 4 f z x + a C Elliptikus

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja) Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja

Részletesebben

Vizsga Lineáris algebra tárgyból. 2012/13 akadémiai év, I. félév

Vizsga Lineáris algebra tárgyból. 2012/13 akadémiai év, I. félév 1 Vizsga Lineáris algebra tárgyból 2012/13 akadémiai év, I. félév TARTALOM: 1. Elméleti anyag (melyet a vizsgára meg kell tanulni)...2. old. 2. A vizsga lebonyolítása, osztályozás...3. old. 2.1 Vizsga

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:

Részletesebben

Átszámítások különböző alapfelületek koordinátái között

Átszámítások különböző alapfelületek koordinátái között Átszámítások különböző alapfelületek koordinátái között A különböző időpontokban, különböző körülmények között rögzített pontok földi koordinátái különböző alapfelületekre (ellipszoidokra geodéziai dátumokra)

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Formai előírások: Fontos tudnivalók A dolgozatot

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

Nagy Ilona 2013.06.01.

Nagy Ilona 2013.06.01. Bevezető matematika példatár Kádasné Dr. V. Nagy Éva Nagy Ilona 0.06.0. Tartalomjegyzék Bevezető. Gyakorlatok.. Műveletek törtekkel, hatványokkal, gyökökkel................. A logaritmus fogalma; arány-

Részletesebben

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a GOMTRI ndrea Philippou, Marios ntoniades Szakaszok és félegyenesek gy szakasz felezőmerőlegese egy olyan egyenes, félegyenes vagy szakasz, ami áthalad a szakasz középpontján és merőleges a szakaszra. Tétel:

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

Keresleti és kínálati függvény. Minden piacnak van egy keresleti és egy kínálati oldala, amelyeket a normatív közgazdaságtanban

Keresleti és kínálati függvény. Minden piacnak van egy keresleti és egy kínálati oldala, amelyeket a normatív közgazdaságtanban tehát attól függ, hogy x milyen értéket vesz fel. A függvényeket a közgazdaságtanban is a jól ismert derékszögû koordináta-rendszerben ábrázoljuk, ahol a változók nevének megfelelõen általában a vízszintes

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Célok, feladatok Fejlesztési terület Ismeretanyag. A kilencedik osztályos tananyagra támaszkodva egy nyílt végű feladat megoldása, megbeszélése.

Célok, feladatok Fejlesztési terület Ismeretanyag. A kilencedik osztályos tananyagra támaszkodva egy nyílt végű feladat megoldása, megbeszélése. Matematika 10. első kötet Témák Az óra témája (tankönyvi 1. Bevezető óra (101. Ismerkedés a tankönyvvel 2. Nyílt végű feladat: Szálloda tervezése (102. 3. Matematikai logika: Igaz vagy hamis (103. 4. Matematikai

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0631 É RETTSÉGI VIZSGA 006. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

Komplex számok algebrai alakja

Komplex számok algebrai alakja Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben