Klár Gergely 2010/2011. tavaszi félév

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Klár Gergely 2010/2011. tavaszi félév"

Átírás

1 Számítógépes Grafika Klár Gergely Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév

2 Tartalom Pont 1 Pont

3 Tartalom Pont Descartes-koordináták Homogén koordináták 1 Pont Descartes-koordináták Homogén koordináták

4 Descartes-koordináták Pont Descartes-koordináták Homogén koordináták A legegyszerűbb és legelterjedtebb megadási módja a tér pontjainak. A tér minden p pontját egy-egyértelműen hozzárendeljük R 3 egy eleméhez. Mivel R 3 a skaláris szorzással vektorteret alkot, tekinthetjük úgy, hogy minden ponthoz a helyvektorát rendeljük hozzá. Így a tér pontjait koordinátáik segítségével egyértelműen megadhatjuk, p = p = (x, y, z) alakban.

5 Descartes-koordináták Pont Descartes-koordináták Homogén koordináták A legegyszerűbb és legelterjedtebb megadási módja a tér pontjainak. A tér minden p pontját egy-egyértelműen hozzárendeljük R 3 egy eleméhez. Mivel R 3 a skaláris szorzással vektorteret alkot, tekinthetjük úgy, hogy minden ponthoz a helyvektorát rendeljük hozzá. Így a tér pontjait koordinátáik segítségével egyértelműen megadhatjuk, p = p = (x, y, z) alakban.

6 Descartes-koordináták Pont Descartes-koordináták Homogén koordináták A legegyszerűbb és legelterjedtebb megadási módja a tér pontjainak. A tér minden p pontját egy-egyértelműen hozzárendeljük R 3 egy eleméhez. Mivel R 3 a skaláris szorzással vektorteret alkot, tekinthetjük úgy, hogy minden ponthoz a helyvektorát rendeljük hozzá. Így a tér pontjait koordinátáik segítségével egyértelműen megadhatjuk, p = p = (x, y, z) alakban.

7 Descartes-koordináták Pont Descartes-koordináták Homogén koordináták A legegyszerűbb és legelterjedtebb megadási módja a tér pontjainak. A tér minden p pontját egy-egyértelműen hozzárendeljük R 3 egy eleméhez. Mivel R 3 a skaláris szorzással vektorteret alkot, tekinthetjük úgy, hogy minden ponthoz a helyvektorát rendeljük hozzá. Így a tér pontjait koordinátáik segítségével egyértelműen megadhatjuk, p = p = (x, y, z) alakban.

8 Geometriai értelmezés Pont Descartes-koordináták Homogén koordináták Adottak x, y, z tengelyek, rajtuk az egységnyi hosszúsággal. Egy p = (a, b, c) koordinátájú pont értelmezése ekkor: Az a pont, amit az origóból az x tengely mentén a egységet lépve, majd az y tengely mentén b egységet lépve, végül a z tengely mentén c egységet lépve kapunk.

9 Sodrás irány Pont Descartes-koordináták Homogén koordináták

10 Descartes-koordináták Homogén koordináták Az affin tér egy olyan vektortér, ami elfelejtette, hogy hol is van a közepe. John Baez Rendbe teszi a pont és a vektor fogalmát: skalár, vektor műveletek mint eddig vektor, vektor műveletek mint eddig pont+vektor pont pont-pont vektor pont+pont nincs értelmezve skalár, pont műveletek nincsenek értelmezve

11 Descartes-koordináták Homogén koordináták Az affin tér egy olyan vektortér, ami elfelejtette, hogy hol is van a közepe. John Baez Rendbe teszi a pont és a vektor fogalmát: skalár, vektor műveletek mint eddig vektor, vektor műveletek mint eddig pont+vektor pont pont-pont vektor pont+pont nincs értelmezve skalár, pont műveletek nincsenek értelmezve

12 Descartes-koordináták Homogén koordináták Az affin tér egy olyan vektortér, ami elfelejtette, hogy hol is van a közepe. John Baez Rendbe teszi a pont és a vektor fogalmát: skalár, vektor műveletek mint eddig vektor, vektor műveletek mint eddig pont+vektor pont pont-pont vektor pont+pont nincs értelmezve skalár, pont műveletek nincsenek értelmezve

13 Descartes-koordináták Homogén koordináták Az affin tér egy olyan vektortér, ami elfelejtette, hogy hol is van a közepe. John Baez Rendbe teszi a pont és a vektor fogalmát: skalár, vektor műveletek mint eddig vektor, vektor műveletek mint eddig pont+vektor pont pont-pont vektor pont+pont nincs értelmezve skalár, pont műveletek nincsenek értelmezve

14 Descartes-koordináták Homogén koordináták Az affin tér egy olyan vektortér, ami elfelejtette, hogy hol is van a közepe. John Baez Rendbe teszi a pont és a vektor fogalmát: skalár, vektor műveletek mint eddig vektor, vektor műveletek mint eddig pont+vektor pont pont-pont vektor pont+pont nincs értelmezve skalár, pont műveletek nincsenek értelmezve

15 Descartes-koordináták Homogén koordináták Az affin tér egy olyan vektortér, ami elfelejtette, hogy hol is van a közepe. John Baez Rendbe teszi a pont és a vektor fogalmát: skalár, vektor műveletek mint eddig vektor, vektor műveletek mint eddig pont+vektor pont pont-pont vektor pont+pont nincs értelmezve skalár, pont műveletek nincsenek értelmezve

16 Descartes-koordináták Homogén koordináták Az affin tér egy olyan vektortér, ami elfelejtette, hogy hol is van a közepe. John Baez Rendbe teszi a pont és a vektor fogalmát: skalár, vektor műveletek mint eddig vektor, vektor műveletek mint eddig pont+vektor pont pont-pont vektor pont+pont nincs értelmezve skalár, pont műveletek nincsenek értelmezve

17 Descartes-koordináták Homogén koordináták Az affin tér egy olyan vektortér, ami elfelejtette, hogy hol is van a közepe. John Baez Rendbe teszi a pont és a vektor fogalmát: skalár, vektor műveletek mint eddig vektor, vektor műveletek mint eddig pont+vektor pont pont-pont vektor pont+pont nincs értelmezve skalár, pont műveletek nincsenek értelmezve

18 Descartes-koordináták Homogén koordináták

19 Descartes-koordináták Homogén koordináták August Ferdinand Möbius [1827] Legyenek adottak x 1,..., x n vektorok, és a tér egy p pontja. (a 1,..., a n ) nem mind nulla, a p pont baricentrikus koordinátái, ha (a a n )p = a 1 x a n x n Homogén baricentrikus koordinátákról vagy affin koordinátákról beszélünk, ha a a n = 1

20 Descartes-koordináták Homogén koordináták August Ferdinand Möbius [1827] Legyenek adottak x 1,..., x n vektorok, és a tér egy p pontja. (a 1,..., a n ) nem mind nulla, a p pont baricentrikus koordinátái, ha (a a n )p = a 1 x a n x n Homogén baricentrikus koordinátákról vagy affin koordinátákról beszélünk, ha a a n = 1

21 Descartes-koordináták Homogén koordináták August Ferdinand Möbius [1827] Legyenek adottak x 1,..., x n vektorok, és a tér egy p pontja. (a 1,..., a n ) nem mind nulla, a p pont baricentrikus koordinátái, ha (a a n )p = a 1 x a n x n Homogén baricentrikus koordinátákról vagy affin koordinátákról beszélünk, ha a a n = 1

22 Descartes-koordináták Homogén koordináták August Ferdinand Möbius [1827] Legyenek adottak x 1,..., x n vektorok, és a tér egy p pontja. (a 1,..., a n ) nem mind nulla, a p pont baricentrikus koordinátái, ha (a a n )p = a 1 x a n x n Homogén baricentrikus koordinátákról vagy affin koordinátákról beszélünk, ha a a n = 1

23 Érelmezése Pont Descartes-koordináták Homogén koordináták Vegyünk egy háromszöget, x 1, x 2, x 3 csúcsokkal! Helyezzünk a csúcsokba λ 1, λ 2, λ 3 súlyokat! Ekkor a rendszer súlypontja pontosan a λ 1 x 1 + λ 2 x 2 + λ 3 x 3 pont, azaz a (λ 1, λ 2, λ 3 ) (baricentikus) koordinátájú pont. Ha negatív súlyokat is megengedünk, akkor a háromszög síkjának tetszőleges pontja megadható! Ha λ 1 + λ 2 + λ 3 = 1 és 0 λ 1, λ 2, λ 3 1, akkor a koordinátákkal adott pont a -ön lesz!

24 Érelmezése Pont Descartes-koordináták Homogén koordináták Vegyünk egy háromszöget, x 1, x 2, x 3 csúcsokkal! Helyezzünk a csúcsokba λ 1, λ 2, λ 3 súlyokat! Ekkor a rendszer súlypontja pontosan a λ 1 x 1 + λ 2 x 2 + λ 3 x 3 pont, azaz a (λ 1, λ 2, λ 3 ) (baricentikus) koordinátájú pont. Ha negatív súlyokat is megengedünk, akkor a háromszög síkjának tetszőleges pontja megadható! Ha λ 1 + λ 2 + λ 3 = 1 és 0 λ 1, λ 2, λ 3 1, akkor a koordinátákkal adott pont a -ön lesz!

25 Érelmezése Pont Descartes-koordináták Homogén koordináták Vegyünk egy háromszöget, x 1, x 2, x 3 csúcsokkal! Helyezzünk a csúcsokba λ 1, λ 2, λ 3 súlyokat! Ekkor a rendszer súlypontja pontosan a λ 1 x 1 + λ 2 x 2 + λ 3 x 3 pont, azaz a (λ 1, λ 2, λ 3 ) (baricentikus) koordinátájú pont. Ha negatív súlyokat is megengedünk, akkor a háromszög síkjának tetszőleges pontja megadható! Ha λ 1 + λ 2 + λ 3 = 1 és 0 λ 1, λ 2, λ 3 1, akkor a koordinátákkal adott pont a -ön lesz!

26 Érelmezése Pont Descartes-koordináták Homogén koordináták Vegyünk egy háromszöget, x 1, x 2, x 3 csúcsokkal! Helyezzünk a csúcsokba λ 1, λ 2, λ 3 súlyokat! Ekkor a rendszer súlypontja pontosan a λ 1 x 1 + λ 2 x 2 + λ 3 x 3 pont, azaz a (λ 1, λ 2, λ 3 ) (baricentikus) koordinátájú pont. Ha negatív súlyokat is megengedünk, akkor a háromszög síkjának tetszőleges pontja megadható! Ha λ 1 + λ 2 + λ 3 = 1 és 0 λ 1, λ 2, λ 3 1, akkor a koordinátákkal adott pont a -ön lesz!

27 Érelmezése Pont Descartes-koordináták Homogén koordináták Vegyünk egy háromszöget, x 1, x 2, x 3 csúcsokkal! Helyezzünk a csúcsokba λ 1, λ 2, λ 3 súlyokat! Ekkor a rendszer súlypontja pontosan a λ 1 x 1 + λ 2 x 2 + λ 3 x 3 pont, azaz a (λ 1, λ 2, λ 3 ) (baricentikus) koordinátájú pont. Ha negatív súlyokat is megengedünk, akkor a háromszög síkjának tetszőleges pontja megadható! Ha λ 1 + λ 2 + λ 3 = 1 és 0 λ 1, λ 2, λ 3 1, akkor a koordinátákkal adott pont a -ön lesz!

28 Következmények Pont Descartes-koordináták Homogén koordináták A háromszög mintájára beszélhetünk 3D-s baricentrikus koordinátákról tetraéder segítségével. n dimenzóban n + 1 koordinátára van szükségünk baricentrikus alakban. Ha (a 1,..., a n ) egy pont baricentrikus koordinátái, akkor (ra 1,..., ra n ), r 0 is azok, ezért mindig használhatunk homogén baricentrikus koordinátákat.

29 Következmények Pont Descartes-koordináták Homogén koordináták A háromszög mintájára beszélhetünk 3D-s baricentrikus koordinátákról tetraéder segítségével. n dimenzóban n + 1 koordinátára van szükségünk baricentrikus alakban. Ha (a 1,..., a n ) egy pont baricentrikus koordinátái, akkor (ra 1,..., ra n ), r 0 is azok, ezért mindig használhatunk homogén baricentrikus koordinátákat.

30 Következmények Pont Descartes-koordináták Homogén koordináták A háromszög mintájára beszélhetünk 3D-s baricentrikus koordinátákról tetraéder segítségével. n dimenzóban n + 1 koordinátára van szükségünk baricentrikus alakban. Ha (a 1,..., a n ) egy pont baricentrikus koordinátái, akkor (ra 1,..., ra n ), r 0 is azok, ezért mindig használhatunk homogén baricentrikus koordinátákat.

31 Homogén koordináták Pont Descartes-koordináták Homogén koordináták Ismét August Ferdinand Möbius [1827] Lehetővé teszik végtelen pontok kezelését véges koordináták segítségével. A projektív tér pontjai írhatók le vele, ami magában foglalja az eukleidészi tér (a sima 3D tér) pontjait.

32 Homogén koordináták Pont Descartes-koordináták Homogén koordináták Ismét August Ferdinand Möbius [1827] Lehetővé teszik végtelen pontok kezelését véges koordináták segítségével. A projektív tér pontjai írhatók le vele, ami magában foglalja az eukleidészi tér (a sima 3D tér) pontjait.

33 Homogén koordináták Pont Descartes-koordináták Homogén koordináták Ismét August Ferdinand Möbius [1827] Lehetővé teszik végtelen pontok kezelését véges koordináták segítségével. A projektív tér pontjai írhatók le vele, ami magában foglalja az eukleidészi tér (a sima 3D tér) pontjait.

34 Homogén koordináták Pont Descartes-koordináták Homogén koordináták Definició 3D-ben: Legyen (x, y, z) R 3 a háromdimenziós eukleidészi tér egy pontja. Az ennek megfelelő projektív tér beli pont[ok], homogén koordinátá[k]val: [wx, wy, wz, w], w 0 Az origó (0, 0, 0) képe a [0, 0, 0, 1] pont. A projektív tér [x, y, z, 0] pontjait ideális pontoknak nevezzük, és nincs megfelelőjük az eukleidészi térben A [0, 0, 0, 0] pontot nem értelezzük.

35 Homogén koordináták Pont Descartes-koordináták Homogén koordináták Definició 3D-ben: Legyen (x, y, z) R 3 a háromdimenziós eukleidészi tér egy pontja. Az ennek megfelelő projektív tér beli pont[ok], homogén koordinátá[k]val: [wx, wy, wz, w], w 0 Az origó (0, 0, 0) képe a [0, 0, 0, 1] pont. A projektív tér [x, y, z, 0] pontjait ideális pontoknak nevezzük, és nincs megfelelőjük az eukleidészi térben A [0, 0, 0, 0] pontot nem értelezzük.

36 Homogén koordináták Pont Descartes-koordináták Homogén koordináták Definició 3D-ben: Legyen (x, y, z) R 3 a háromdimenziós eukleidészi tér egy pontja. Az ennek megfelelő projektív tér beli pont[ok], homogén koordinátá[k]val: [wx, wy, wz, w], w 0 Az origó (0, 0, 0) képe a [0, 0, 0, 1] pont. A projektív tér [x, y, z, 0] pontjait ideális pontoknak nevezzük, és nincs megfelelőjük az eukleidészi térben A [0, 0, 0, 0] pontot nem értelezzük.

37 Homogén koordináták Pont Descartes-koordináták Homogén koordináták Definició 3D-ben: Legyen (x, y, z) R 3 a háromdimenziós eukleidészi tér egy pontja. Az ennek megfelelő projektív tér beli pont[ok], homogén koordinátá[k]val: [wx, wy, wz, w], w 0 Az origó (0, 0, 0) képe a [0, 0, 0, 1] pont. A projektív tér [x, y, z, 0] pontjait ideális pontoknak nevezzük, és nincs megfelelőjük az eukleidészi térben A [0, 0, 0, 0] pontot nem értelezzük.

38 Homogén koordináták Pont Descartes-koordináták Homogén koordináták Definició 3D-ben: Legyen (x, y, z) R 3 a háromdimenziós eukleidészi tér egy pontja. Az ennek megfelelő projektív tér beli pont[ok], homogén koordinátá[k]val: [wx, wy, wz, w], w 0 Az origó (0, 0, 0) képe a [0, 0, 0, 1] pont. A projektív tér [x, y, z, 0] pontjait ideális pontoknak nevezzük, és nincs megfelelőjük az eukleidészi térben A [0, 0, 0, 0] pontot nem értelezzük.

39 Homogén koordináták Pont Descartes-koordináták Homogén koordináták Definició 3D-ben: Legyen (x, y, z) R 3 a háromdimenziós eukleidészi tér egy pontja. Az ennek megfelelő projektív tér beli pont[ok], homogén koordinátá[k]val: [wx, wy, wz, w], w 0 Az origó (0, 0, 0) képe a [0, 0, 0, 1] pont. A projektív tér [x, y, z, 0] pontjait ideális pontoknak nevezzük, és nincs megfelelőjük az eukleidészi térben A [0, 0, 0, 0] pontot nem értelezzük.

40 Tulajdonságok Pont Descartes-koordináták Homogén koordináták Egy nem ideális [x, y, z, w] pont koordinátái az eukleidészi térben ( x w, y w, z w ), mivel a pont nem ideális, ezért w 0. Minden homogén koordinátás pontra teljesül, hogy [x, y, z, w] = λ[x, y, z, w] = [λx, λy, λz, λw], λ 0 Az előző tulajdonság miatt [x, y, z, 0] = [ x, y, z, 0], azaz végtelen messze menve, a pontosan ellenkező irányba haladva is ugyan oda jutnánk.

41 Tulajdonságok Pont Descartes-koordináták Homogén koordináták Egy nem ideális [x, y, z, w] pont koordinátái az eukleidészi térben ( x w, y w, z w ), mivel a pont nem ideális, ezért w 0. Minden homogén koordinátás pontra teljesül, hogy [x, y, z, w] = λ[x, y, z, w] = [λx, λy, λz, λw], λ 0 Az előző tulajdonság miatt [x, y, z, 0] = [ x, y, z, 0], azaz végtelen messze menve, a pontosan ellenkező irányba haladva is ugyan oda jutnánk.

42 Tulajdonságok Pont Descartes-koordináták Homogén koordináták Egy nem ideális [x, y, z, w] pont koordinátái az eukleidészi térben ( x w, y w, z w ), mivel a pont nem ideális, ezért w 0. Minden homogén koordinátás pontra teljesül, hogy [x, y, z, w] = λ[x, y, z, w] = [λx, λy, λz, λw], λ 0 Az előző tulajdonság miatt [x, y, z, 0] = [ x, y, z, 0], azaz végtelen messze menve, a pontosan ellenkező irányba haladva is ugyan oda jutnánk.

43 Tartalom Pont Klasszikus egyenlete Parametrikus egyenlete Sugár 1 Pont 2 Klasszikus egyenlete Parametrikus egyenlete Sugár 3 4 5

44 Klasszikus egyenlete Pont Klasszikus egyenlete Parametrikus egyenlete Sugár A vonal szélesség nélküli hosszúság, Eukleidész kb. i.sz. 300 y = mx + b Jó, de nem jó, mert hogyan ábrázoljuk a függőleges, y tengellyel párhuzamos egyeneseket? hogyan használjuk 3D-ben?

45 Klasszikus egyenlete Pont Klasszikus egyenlete Parametrikus egyenlete Sugár A vonal szélesség nélküli hosszúság, Eukleidész kb. i.sz. 300 y = mx + b Jó, de nem jó, mert hogyan ábrázoljuk a függőleges, y tengellyel párhuzamos egyeneseket? hogyan használjuk 3D-ben?

46 Klasszikus egyenlete Pont Klasszikus egyenlete Parametrikus egyenlete Sugár A vonal szélesség nélküli hosszúság, Eukleidész kb. i.sz. 300 y = mx + b Jó, de nem jó, mert hogyan ábrázoljuk a függőleges, y tengellyel párhuzamos egyeneseket? hogyan használjuk 3D-ben?

47 Klasszikus egyenlete Pont Klasszikus egyenlete Parametrikus egyenlete Sugár A vonal szélesség nélküli hosszúság, Eukleidész kb. i.sz. 300 y = mx + b Jó, de nem jó, mert hogyan ábrázoljuk a függőleges, y tengellyel párhuzamos egyeneseket? hogyan használjuk 3D-ben?

48 Klasszikus egyenlete Pont Klasszikus egyenlete Parametrikus egyenlete Sugár A vonal szélesség nélküli hosszúság, Eukleidész kb. i.sz. 300 y = mx + b Jó, de nem jó, mert hogyan ábrázoljuk a függőleges, y tengellyel párhuzamos egyeneseket? hogyan használjuk 3D-ben?

49 Klasszikus egyenlete Pont Klasszikus egyenlete Parametrikus egyenlete Sugár A vonal szélesség nélküli hosszúság, Eukleidész kb. i.sz. 300 y = mx + b Jó, de nem jó, mert hogyan ábrázoljuk a függőleges, y tengellyel párhuzamos egyeneseket? hogyan használjuk 3D-ben?

50 Parametrikus egyenlete Klasszikus egyenlete Parametrikus egyenlete Sugár Legyen p 0 az egyenes egy pontja, v pedig az irányvektora, ekkor p = p 0 + t v t R megadja az egyenes összes pontját. Ha csak az egyenes két p 0, p 1 pontját ismerjük, akkor v = p 1 p 0 után az eredeti egyenlet használható. Az egyenlet a dimenziók számától független.

51 Parametrikus egyenlete Klasszikus egyenlete Parametrikus egyenlete Sugár Legyen p 0 az egyenes egy pontja, v pedig az irányvektora, ekkor p = p 0 + t v t R megadja az egyenes összes pontját. Ha csak az egyenes két p 0, p 1 pontját ismerjük, akkor v = p 1 p 0 után az eredeti egyenlet használható. Az egyenlet a dimenziók számától független.

52 Parametrikus egyenlete Klasszikus egyenlete Parametrikus egyenlete Sugár Legyen p 0 az egyenes egy pontja, v pedig az irányvektora, ekkor p = p 0 + t v t R megadja az egyenes összes pontját. Ha csak az egyenes két p 0, p 1 pontját ismerjük, akkor v = p 1 p 0 után az eredeti egyenlet használható. Az egyenlet a dimenziók számától független.

53 A sugár egyenlete Pont Klasszikus egyenlete Parametrikus egyenlete Sugár A sugár egy félegyenes, amit kezdőpontjával és irányvektorával adhatunk meg. Legyen p 0 a sugár kezdőpontja, v pedig az irányvektora, ekkor p = p 0 + t v t 0 megadja a sugár összes pontját.

54 A sugár egyenlete Pont Klasszikus egyenlete Parametrikus egyenlete Sugár A sugár egy félegyenes, amit kezdőpontjával és irányvektorával adhatunk meg. Legyen p 0 a sugár kezdőpontja, v pedig az irányvektora, ekkor p = p 0 + t v t 0 megadja a sugár összes pontját.

55 Tartalom Pont Normálvektoros egyenlete és sík metszéspontja 1 Pont 2 3 Normálvektoros egyenlete és sík metszéspontja 4 5

56 Normálvektoros egyenlete Normálvektoros egyenlete és sík metszéspontja Legyen p 0 a sík egy pontja, n pedig a normálvektora, ekkor n, p p 0 = 0 akkor és csak akkor teljesül, ha p a síkon fekszik.

57 és sík metszéspontja Normálvektoros egyenlete és sík metszéspontja Legyen p 0 a sík egy pontja, n a normálvektora, Legyen q 0 ez egyenes egy pontja, v az irányvektora. Az egyenes egynlete: p = q 0 + t v A sík egyenlete: n, p p 0 = 0

58 és sík metszéspontja Normálvektoros egyenlete és sík metszéspontja Legyen p 0 a sík egy pontja, n a normálvektora, Legyen q 0 ez egyenes egy pontja, v az irányvektora. Az egyenes egynlete: p = q 0 + t v A sík egyenlete: n, p p 0 = 0

59 és sík metszéspontja Normálvektoros egyenlete és sík metszéspontja Legyen p 0 a sík egy pontja, n a normálvektora, Legyen q 0 ez egyenes egy pontja, v az irányvektora. Az egyenes egynlete: p = q 0 + t v A sík egyenlete: n, p p 0 = 0

60 és sík metszéspontja Normálvektoros egyenlete és sík metszéspontja Legyen p 0 a sík egy pontja, n a normálvektora, Legyen q 0 ez egyenes egy pontja, v az irányvektora. Az egyenes egynlete: p = q 0 + t v A sík egyenlete: n, p p 0 = 0

61 és sík metszéspontja Normálvektoros egyenlete és sík metszéspontja Behelyettesítve p-t: n, q 0 + t v p 0 = 0, ha n, v 0. n, q 0 + t n, v n, p 0 = 0, t = n, p 0 n, q 0 n, v = n, p 0 q 0, n, v Ha n, v = 0, akkor az egyenes párhuzamos a síkkal, és így vagy nincs metszéspontjuk, vagy az egyenes a síkon fut.

62 és sík metszéspontja Normálvektoros egyenlete és sík metszéspontja Behelyettesítve p-t: n, q 0 + t v p 0 = 0, ha n, v 0. n, q 0 + t n, v n, p 0 = 0, t = n, p 0 n, q 0 n, v = n, p 0 q 0, n, v Ha n, v = 0, akkor az egyenes párhuzamos a síkkal, és így vagy nincs metszéspontjuk, vagy az egyenes a síkon fut.

63 és sík metszéspontja Normálvektoros egyenlete és sík metszéspontja Behelyettesítve p-t: n, q 0 + t v p 0 = 0, ha n, v 0. n, q 0 + t n, v n, p 0 = 0, t = n, p 0 n, q 0 n, v = n, p 0 q 0, n, v Ha n, v = 0, akkor az egyenes párhuzamos a síkkal, és így vagy nincs metszéspontjuk, vagy az egyenes a síkon fut.

64 és sík metszéspontja Normálvektoros egyenlete és sík metszéspontja Behelyettesítve p-t: n, q 0 + t v p 0 = 0, ha n, v 0. n, q 0 + t n, v n, p 0 = 0, t = n, p 0 n, q 0 n, v = n, p 0 q 0, n, v Ha n, v = 0, akkor az egyenes párhuzamos a síkkal, és így vagy nincs metszéspontjuk, vagy az egyenes a síkon fut.

65 Tartalom Pont Megadása és egyenes metszéspontja 1 Pont Megadása és egyenes metszéspontja 5

66 Megadása Pont Megadása és egyenes metszéspontja Egyértelműen megadható három csúcsával. Ha A, B, C a háromszög csúcsai, akkor a hozzátartozó sík egy pontja A, B, C bármelyike normálvektora n = (C A) (B A) (C A) (B A), ahol a vektoriális szorzást jelöli, és ekkor n egységnyi hosszúságú.

67 Megadása Pont Megadása és egyenes metszéspontja Egyértelműen megadható három csúcsával. Ha A, B, C a háromszög csúcsai, akkor a hozzátartozó sík egy pontja A, B, C bármelyike normálvektora n = (C A) (B A) (C A) (B A), ahol a vektoriális szorzást jelöli, és ekkor n egységnyi hosszúságú.

68 Megadása és egyenes metszéspontja és egyenes metszéspontja Először számítsuk ki az egyenes és a háromszög síkjának metszéspontját, ez legyen p (már ha létezik). Legyenek λ 1, λ 2, λ 3 a p pont háromszögön belüli baricentikus koordinátái, úgy hogy p = λ 1 A + λ 2 B + λ 3 C. p akkor, és csak akkor van a -ön belül, ha 0 λ 1, λ 2, λ 3 1.

69 Megadása és egyenes metszéspontja és egyenes metszéspontja Először számítsuk ki az egyenes és a háromszög síkjának metszéspontját, ez legyen p (már ha létezik). Legyenek λ 1, λ 2, λ 3 a p pont háromszögön belüli baricentikus koordinátái, úgy hogy p = λ 1 A + λ 2 B + λ 3 C. p akkor, és csak akkor van a -ön belül, ha 0 λ 1, λ 2, λ 3 1.

70 Megadása és egyenes metszéspontja és egyenes metszéspontja Először számítsuk ki az egyenes és a háromszög síkjának metszéspontját, ez legyen p (már ha létezik). Legyenek λ 1, λ 2, λ 3 a p pont háromszögön belüli baricentikus koordinátái, úgy hogy p = λ 1 A + λ 2 B + λ 3 C. p akkor, és csak akkor van a -ön belül, ha 0 λ 1, λ 2, λ 3 1.

71 Pont a háromszögön vizsgálat Megadása és egyenes metszéspontja Tudjuk, hogy p = (x, y, z) = λ 1 A + λ 2 B + λ 3 C. Ekkor x =λ 1 A x + λ 2 B x + λ 3 C x y =λ 1 A y + λ 2 B y + λ 3 C y z =λ 1 A z + λ 2 B z + λ 3 C z, ill. λ 1 + λ 2 + λ 3 = 1 λ 3 = 1 λ 1 λ 2 Van három ismeretlenünk (λ-k), és négy egyenletünk. Mi legyen? Vegyük a háromszög 2D vetületét az XY, XZ vagy YZ síkra! A vetülethez egyszerűen elhagyjuk z, y vagy x egyenletét, megfelelően.

72 Pont a háromszögön vizsgálat Megadása és egyenes metszéspontja Tudjuk, hogy p = (x, y, z) = λ 1 A + λ 2 B + λ 3 C. Ekkor x =λ 1 A x + λ 2 B x + λ 3 C x y =λ 1 A y + λ 2 B y + λ 3 C y z =λ 1 A z + λ 2 B z + λ 3 C z, ill. λ 1 + λ 2 + λ 3 = 1 λ 3 = 1 λ 1 λ 2 Van három ismeretlenünk (λ-k), és négy egyenletünk. Mi legyen? Vegyük a háromszög 2D vetületét az XY, XZ vagy YZ síkra! A vetülethez egyszerűen elhagyjuk z, y vagy x egyenletét, megfelelően.

73 Pont a háromszögön vizsgálat Megadása és egyenes metszéspontja Tudjuk, hogy p = (x, y, z) = λ 1 A + λ 2 B + λ 3 C. Ekkor x =λ 1 A x + λ 2 B x + λ 3 C x y =λ 1 A y + λ 2 B y + λ 3 C y z =λ 1 A z + λ 2 B z + λ 3 C z, ill. λ 1 + λ 2 + λ 3 = 1 λ 3 = 1 λ 1 λ 2 Van három ismeretlenünk (λ-k), és négy egyenletünk. Mi legyen? Vegyük a háromszög 2D vetületét az XY, XZ vagy YZ síkra! A vetülethez egyszerűen elhagyjuk z, y vagy x egyenletét, megfelelően.

74 Pont a háromszögön vizsgálat Megadása és egyenes metszéspontja Azt tengely kell választani, amelyik mentén a legnagyobb a háromszög normálvektorának abszolút értéke. (Így biztos nem fordulhat elő, hogy a háromszög merőleges a síkra, és csak egy szakasz marad belőle!)

75 Pont a háromszögön vizsgálat Megadása és egyenes metszéspontja Pl. legyen a z a válsztott tengely. Ekkor x =λ 1 A x + λ 2 B x + λ 3 C x y =λ 1 A y + λ 2 B y + λ 3 C y Behelyettesítve λ 3 = 1 λ 1 + λ 2 -t, és rendezve: x =λ 1 (A x C x ) + λ 2 (B x C x ) + C x y =λ 1 (A y C y ) + λ 2 (B y C y ) + C y

76 Pont a háromszögön vizsgálat Megadása és egyenes metszéspontja Pl. legyen a z a válsztott tengely. Ekkor x =λ 1 A x + λ 2 B x + λ 3 C x y =λ 1 A y + λ 2 B y + λ 3 C y Behelyettesítve λ 3 = 1 λ 1 + λ 2 -t, és rendezve: x =λ 1 (A x C x ) + λ 2 (B x C x ) + C x y =λ 1 (A y C y ) + λ 2 (B y C y ) + C y

77 Pont a háromszögön vizsgálat Megadása és egyenes metszéspontja Rendezve λ 1, λ 2 -re kapjuk: λ 1 = (B y C y )(x C x ) (B x C x )(y C y ) (A x C x )(B y C y ) (B x C x )(A y C y ) λ 2 = (A y C y )(x C x ) (A x C x )(y C y ) (A x C x )(B y C y ) (B x C x )(A y C y ) A nevező csak degenerált hárömszög esetén lehet nulla. p akkor, és csak akkor van a -ön belül, ha 0 λ 1, λ 2, λ 3 1.

78 Pont a háromszögön vizsgálat Megadása és egyenes metszéspontja Rendezve λ 1, λ 2 -re kapjuk: λ 1 = (B y C y )(x C x ) (B x C x )(y C y ) (A x C x )(B y C y ) (B x C x )(A y C y ) λ 2 = (A y C y )(x C x ) (A x C x )(y C y ) (A x C x )(B y C y ) (B x C x )(A y C y ) A nevező csak degenerált hárömszög esetén lehet nulla. p akkor, és csak akkor van a -ön belül, ha 0 λ 1, λ 2, λ 3 1.

79 Pont a háromszögön vizsgálat Megadása és egyenes metszéspontja Rendezve λ 1, λ 2 -re kapjuk: λ 1 = (B y C y )(x C x ) (B x C x )(y C y ) (A x C x )(B y C y ) (B x C x )(A y C y ) λ 2 = (A y C y )(x C x ) (A x C x )(y C y ) (A x C x )(B y C y ) (B x C x )(A y C y ) A nevező csak degenerált hárömszög esetén lehet nulla. p akkor, és csak akkor van a -ön belül, ha 0 λ 1, λ 2, λ 3 1.

80 Tartalom Pont Egyenlete és egyenes metszéspontja 1 Pont Egyenlete és egyenes metszéspontja

81 Egyenlete Pont Egyenlete és egyenes metszéspontja Az r sugarú, c = (c x, c y, c z ) középpontú kör egyenlete: (x c x ) 2 + (y c y ) 2 + (z c z ) 2 r 2 = 0 Ugyanez skalárszorzattal felírva: p c, p c r 2 = 0, ahol p = (x, y, z).

82 Egyenlete Pont Egyenlete és egyenes metszéspontja Az r sugarú, c = (c x, c y, c z ) középpontú kör egyenlete: (x c x ) 2 + (y c y ) 2 + (z c z ) 2 r 2 = 0 Ugyanez skalárszorzattal felírva: p c, p c r 2 = 0, ahol p = (x, y, z).

83 és egyenes metszéspontja Egyenlete és egyenes metszéspontja Legyen q 0 ez egyenes egy pontja, v az irányvektora. Ekkor az egyenes egynlete: p = q 0 + t v Behelyettesítve a gömb egyenletébe, kapjuk: q 0 + t v c, q 0 + t v c r 2 = 0 Kifejtve: t 2 v, v + 2t v, q 0 c + q 0 c, q 0 c r 2 = 0

84 és egyenes metszéspontja Egyenlete és egyenes metszéspontja Legyen q 0 ez egyenes egy pontja, v az irányvektora. Ekkor az egyenes egynlete: p = q 0 + t v Behelyettesítve a gömb egyenletébe, kapjuk: q 0 + t v c, q 0 + t v c r 2 = 0 Kifejtve: t 2 v, v + 2t v, q 0 c + q 0 c, q 0 c r 2 = 0

85 és egyenes metszéspontja Egyenlete és egyenes metszéspontja Legyen q 0 ez egyenes egy pontja, v az irányvektora. Ekkor az egyenes egynlete: p = q 0 + t v Behelyettesítve a gömb egyenletébe, kapjuk: q 0 + t v c, q 0 + t v c r 2 = 0 Kifejtve: t 2 v, v + 2t v, q 0 c + q 0 c, q 0 c r 2 = 0

86 és egyenes metszéspontja Egyenlete és egyenes metszéspontja Legyen q 0 ez egyenes egy pontja, v az irányvektora. Ekkor az egyenes egynlete: p = q 0 + t v Behelyettesítve a gömb egyenletébe, kapjuk: q 0 + t v c, q 0 + t v c r 2 = 0 Kifejtve: t 2 v, v + 2t v, q 0 c + q 0 c, q 0 c r 2 = 0

87 Egyenlete és egyenes metszéspontja t 2 v, v + 2t v, q 0 c + q 0 c, q 0 c r 2 = 0 Ez másodfokú egyenlet t-re (minden más ismert). Legyen D = (2 v, q 0 c ) 2 4 v, v ( q 0 c, q 0 c r 2 ) Ha D > 0: két megoldás van, az egyenes metszi a gömböt. Ha D = 0: egy megoldás van, az egyenes érinti a gömböt. Ha D < 0: nincs valós megoldás, az egyenes nem metszi a gömböt.

88 Egyenlete és egyenes metszéspontja t 2 v, v + 2t v, q 0 c + q 0 c, q 0 c r 2 = 0 Ez másodfokú egyenlet t-re (minden más ismert). Legyen D = (2 v, q 0 c ) 2 4 v, v ( q 0 c, q 0 c r 2 ) Ha D > 0: két megoldás van, az egyenes metszi a gömböt. Ha D = 0: egy megoldás van, az egyenes érinti a gömböt. Ha D < 0: nincs valós megoldás, az egyenes nem metszi a gömböt.

89 Egyenlete és egyenes metszéspontja t 2 v, v + 2t v, q 0 c + q 0 c, q 0 c r 2 = 0 Ez másodfokú egyenlet t-re (minden más ismert). Legyen D = (2 v, q 0 c ) 2 4 v, v ( q 0 c, q 0 c r 2 ) Ha D > 0: két megoldás van, az egyenes metszi a gömböt. Ha D = 0: egy megoldás van, az egyenes érinti a gömböt. Ha D < 0: nincs valós megoldás, az egyenes nem metszi a gömböt.

90 Egyenlete és egyenes metszéspontja t 2 v, v + 2t v, q 0 c + q 0 c, q 0 c r 2 = 0 Ez másodfokú egyenlet t-re (minden más ismert). Legyen D = (2 v, q 0 c ) 2 4 v, v ( q 0 c, q 0 c r 2 ) Ha D > 0: két megoldás van, az egyenes metszi a gömböt. Ha D = 0: egy megoldás van, az egyenes érinti a gömböt. Ha D < 0: nincs valós megoldás, az egyenes nem metszi a gömböt.

91 Egyenlete és egyenes metszéspontja t 2 v, v + 2t v, q 0 c + q 0 c, q 0 c r 2 = 0 Ez másodfokú egyenlet t-re (minden más ismert). Legyen D = (2 v, q 0 c ) 2 4 v, v ( q 0 c, q 0 c r 2 ) Ha D > 0: két megoldás van, az egyenes metszi a gömböt. Ha D = 0: egy megoldás van, az egyenes érinti a gömböt. Ha D < 0: nincs valós megoldás, az egyenes nem metszi a gömböt.

Tartalom. Descartes-koordináták. Geometriai értelmezés. Pont. Egyenes. Klár Gergely tremere@elte.hu. 2010/2011. tavaszi félév

Tartalom. Descartes-koordináták. Geometriai értelmezés. Pont. Egyenes. Klár Gergely tremere@elte.hu. 2010/2011. tavaszi félév Tartalom Pont Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar Egyenes Sík Háromszög Gömb 2010/2011. tavaszi félév Descartes-koordináták Geometriai értelmezés

Részletesebben

Hajder Levente 2018/2019. II. félév

Hajder Levente 2018/2019. II. félév Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2018/2019. II. félév Tartalom 1 2 3 4 5 Albrecht Dürer, 1525 Motiváció Tekintsünk minden pixelre úgy, mint egy kis ablakra

Részletesebben

Hajder Levente 2014/2015. tavaszi félév

Hajder Levente 2014/2015. tavaszi félév Hajder Levente hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom 1 2 3 4 5 Albrecht Dürer, 1525 Motiváció Tekintsünk minden pixelre úgy, mint

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.

Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög. 1 Összeadás: Legyen a (7; 3) és b (- 2; 4), akkor az összegük a + b (7 + (-2); 3 + 4) = (5; 7) Kivonás: Legyen a (7; 3) és b (- 2; 4), akkor a különbségük a b (7 - (-2); 3-4)=(9; - 1) Valós számmal való

Részletesebben

Vektorok és koordinátageometria

Vektorok és koordinátageometria Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,

Részletesebben

Koordináta-geometria feladatgyűjtemény

Koordináta-geometria feladatgyűjtemény Koordináta-geometria feladatgyűjtemény A feladatok megoldásai a dokumentum végén találhatók Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két csúcs

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor

Részletesebben

Hajder Levente 2017/2018. II. félév

Hajder Levente 2017/2018. II. félév Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 Sugár és sík metszéspontja Sugár és háromszög metszéspontja Sugár és poligon metszéspontja

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010. Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre

Részletesebben

10. Koordinátageometria

10. Koordinátageometria I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember

Részletesebben

Hajder Levente 2017/2018. II. félév

Hajder Levente 2017/2018. II. félév Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 2 3 Geometriai modellezés feladata A világunkat modellezni kell a térben. Valamilyen koordinátarendszer

Részletesebben

Az egyenes és a sík analitikus geometriája

Az egyenes és a sík analitikus geometriája Az egyenes és a sík analitikus geometriája Az egyenes a kétdimenziós koordinátarendszerben A kétdimenziós koordinátarendszerben az egyenest egy n(a, B) normálvektorával és egy r 0 helyvektorú P(x 0,y 0

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor:

I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor: I. Vektorok 1. Vektorok összege Általánosan: Az ábra alapján Adott: a(4; 1) és b(; 3) a + b (4 + ; 1 + 3) = (6; ) a(a 1 ; a ) és b(b 1 ; b ) a + b(a 1 + b 1 ; a + b ). Vektorok különbsége Általánosan:

Részletesebben

= Y y 0. = Z z 0. u 1. = Z z 1 z 2 z 1. = Y y 1 y 2 y 1

= Y y 0. = Z z 0. u 1. = Z z 1 z 2 z 1. = Y y 1 y 2 y 1 Egyenes és sík a térben Elméleti áttekintés Az egyenes paraméteres egyenlete: X = u 1 λ + x 0 Y = u λ + y 0, Z = u λ + z 0 ahol a λ egy valós paraméter Az u = (u 1, u, u ) az egyenes irányvektora és P

Részletesebben

Koordinátageometriai gyakorló feladatok I ( vektorok )

Koordinátageometriai gyakorló feladatok I ( vektorok ) Koordinátageometriai gyakorló feladatok I ( vektorok./ Határozd meg az AB szakasznak azt a pontját, amely a szakaszt : ha A ( ; és a B ( ; 8!./ Adott az A ( 3 ; 5 és a ( ; 6 B pont. Számítsd ki az AB vektor

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15

Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15 Egyenes és sík Wettl Ferenc 2006. szeptember 29. Wettl Ferenc () Egyenes és sík 2006. szeptember 29. 1 / 15 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

VEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)]

VEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)] Bodó Beáta 1 VEKTOROK 1. B Legyen a( ; 2; 4), b( 2; 1; 2), c(; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(0; 10; 0)] (b) c + b 7a [(18; 15; 29)] (c) 2d c + b [ (5; ; ) = 6, 56] (d) 4a + 8b 7c [ ( 49; 44; 5) =

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

Analitikus térgeometria

Analitikus térgeometria 5. fejezet Analitikus térgeometria Kezd és végpontjuk koordinátáival adott vektorok D 5.1 A koordináta-rendszer O kezd pontjából a P pontba mutató OP kötött vektort a P pont helyvektorának nevezzük. T

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Írd fel a K (0; 2) középpontú 7 sugarú kör egyenletét! A keresett kör egyenletét felírhatjuk a képletbe való behelyettesítéssel: x 2 + (y + 2) 2 = 49. 2. Írd fel annak a körnek az egyenletét,

Részletesebben

KOORDINÁTA-GEOMETRIA

KOORDINÁTA-GEOMETRIA XIV. Témakör: feladatok 1 Huszk@ Jenő XIV.TÉMAKÖR Téma A pont koordinátageometriája A kör koordinátageometriája KOORDINÁTA-GEOMETRIA A projekt típus ú feladatok tartalmi szintézise A feladat sorszáma Oldal

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok a 2- és 3-dimenziós tér Kf87 2017-09-05

Részletesebben

Koordináta-geometria II.

Koordináta-geometria II. Koordináta-geometria II. DEFINÍCIÓ: (Alakzat egyenlete) A síkon adott egy derékszögű koordináta rendszer. A síkban levő alakzat egyenlete olyan f (x, y) = 0 egyenlet, amelyet azoknak és csak azoknak a

Részletesebben

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az

Részletesebben

Vektorok összeadása, kivonása, szorzás számmal, koordináták

Vektorok összeadása, kivonása, szorzás számmal, koordináták Vektorok összeadása, kivonása, szorzás számmal, koordináták 1. Mik lesznek a P (3, 4, 8) pont C (3, 7, 2) pontra vonatkozó tükörképének a koordinátái? 2. Egy szabályos hatszög középpontja K (4, 1, 4),

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0

λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0 Vektorok a térben Egy (v 1,v 2,v 3 ) valós számokból álló hármast vektornak nevezzünk a térben (R 3 -ban). Használni fogjuk a v = (v 1,v 2,v 3 ) jelölést. A v 1,v 2,v 3 -at a v vektor komponenseinek nevezzük.

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van

Részletesebben

Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Koordinátageometria M veletek vektorokkal grakusan 1. Az ABCD négyzet oldalvektorai közül a = AB és b = BC. Adja meg az AC és BD vektorokat a

Részletesebben

Egy sík és a koordinátasíkok metszésvonalainak meghatározása

Egy sík és a koordinátasíkok metszésvonalainak meghatározása 1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -

Részletesebben

Koordináta - geometria I.

Koordináta - geometria I. Koordináta - geometria I A koordináta geometria témaköre geometriai problémákat old meg algebrai módszerekkel úgy, hogy a geometriai fogalmaknak algebrai fogalmakat feleltet meg: a pontokat, vektorokat

Részletesebben

Koordináta geometria III.

Koordináta geometria III. Koordináta geometria III. TÉTEL: A P (x; y) pont akkor és csak akkor illeszkedik a K (u; v) középpontú r sugarú körre (körvonalra), ha (x u) 2 + (y v) 2 = r 2. Ez az összefüggés a K (u; v) középpontú r

Részletesebben

Koordinátageometria Megoldások

Koordinátageometria Megoldások 005-0XX Középszint Koordinátageometria Megoldások 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. és B 3 1; Írja fel az AB szakasz 1 3 + 4 + 1 3 F ; = F ;1 ) Egy kör sugarának

Részletesebben

Koordináta-geometria feladatok (emelt szint)

Koordináta-geometria feladatok (emelt szint) Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1 Írásban, 90 perc. 2 Személyazonosságot igazoló okmány nélkül

Részletesebben

Fizika 1i, 2018 őszi félév, 1. gyakorlat

Fizika 1i, 2018 őszi félév, 1. gyakorlat Fizika i, 08 őszi félév,. gyakorlat Szükséges előismeretek: vektorok, műveletek vektorokkal (összeadás, kivonás, skalárral való szorzás, skaláris szorzat és vektoriális szorzat, abszolút érték), vektorok

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0. Magyar Ifjúság. X. TRIGONOMETRIKUS FÜGGVÉNYEK A trigonometrikus egyenletrendszerek megoldása során kísérletezhetünk új változók bevezetésével, azonosságok alkalmazásával, helyettesítő módszerrel vagy más,

Részletesebben

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit 1. A térbeli irányított szakaszokat vektoroknak hívjuk. Két vektort egyenlőnek tekintünk, ha párhuzamos eltolással fedésbe hozhatók.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

9. előadás. Térbeli koordinátageometria

9. előadás. Térbeli koordinátageometria 9. előadás Térbeli koordinátageometria Koordinátageometria a térben Descartes-féle koordinátarendszerben dolgozunk. A legegyszerűbb alakzatokat fogjuk vizsgálni. Az ezeket leíró egyenletek első-, vagy

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11 Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4

Részletesebben

O ( 0, 0, 0 ) A ( 4, 0, 0 ) B ( 4, 3, 0 ) C ( 0, 3, 0 ) D ( 4, 0, 5 ) E ( 4, 3, 5 ) F ( 0, 3, 5 ) G ( 0, 0, 5 )

O ( 0, 0, 0 ) A ( 4, 0, 0 ) B ( 4, 3, 0 ) C ( 0, 3, 0 ) D ( 4, 0, 5 ) E ( 4, 3, 5 ) F ( 0, 3, 5 ) G ( 0, 0, 5 ) 1. feladat Írjuk föl a következő vektorokat! AC, BF, BG, DF, BD, AG, GB Írjuk föl ezen vektorok egységvektorát is! a=3 m b= 4 m c= m Írjuk föl az egyes pontok koordinátáit: O ( 0, 0, 0 ) A ( 4, 0, 0 )

Részletesebben

15. Koordinátageometria

15. Koordinátageometria I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +

Részletesebben

Geometria II gyakorlatok

Geometria II gyakorlatok Geometria II gyakorlatok Kovács Zoltán Copyright c 2011 Last Revision Date: 2011. november 29. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát technikával készült, a megjelenés

Részletesebben

3 m ; a víz sodráé sec. Bizonyítsuk be, hogy a legnagyobb szöge 120 0 -os! α =. 4cos 2

3 m ; a víz sodráé sec. Bizonyítsuk be, hogy a legnagyobb szöge 120 0 -os! α =. 4cos 2 3... Egyenes szíjhatás esetén milyen hosszú szíj szükséges 50 cmes és 6 cm-es sugarú tárcsák összekapcsolásához, ha a tárcsák tengelyeinek távolsága 335 cm? 3... Csónakkal akarunk a folyó túlsó partjára

Részletesebben

Geometriai példatár 2.

Geometriai példatár 2. Geometriai példatár 2 Metrikus feladatok Baboss, Csaba, Nyugat-magyarországi Egyetem Geoinformatikai Kar Szabó, Gábor, Nyugat-Magyarországi Egyetem Geoinformatikai Kar Geometriai példatár 2: Metrikus feladatok

Részletesebben

Analitikus térgeometria

Analitikus térgeometria Analitikus térgeometria Wettl Ferenc el adása alapján 2015.09.21. Wettl Ferenc el adása alapján Analitikus térgeometria 2015.09.21. 1 / 23 Tartalom 1 Egyenes és sík egyenlete Egyenes Sík 2 Alakzatok közös

Részletesebben

A kör. A kör egyenlete

A kör. A kör egyenlete A kör egyenlete A kör A kör egyenlete 8 a) x + y 6 b) x + y c) 6x + 6y d) x + y 9 8 a) x + y 6 + 9 b) x + y c) x + y a + b 8 a) (x - ) + (y - ) 9, rendezve x + y - 8x - y + b) x + y - 6x - 6y + c) x +

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

Geometria II gyakorlatok

Geometria II gyakorlatok Geometria II gyakorlatok Kovács Zoltán Copyright c 2011 Last Revision Date: 2012. május 8. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát technikával készült, a megjelenés

Részletesebben

15. Koordinátageometria

15. Koordinátageometria I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +

Részletesebben

Keresztmetszet másodrendű nyomatékainak meghatározása

Keresztmetszet másodrendű nyomatékainak meghatározása BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra

Részletesebben

Tartalom. Nevezetes affin transzformációk. Valasek Gábor 2016/2017. tavaszi félév

Tartalom. Nevezetes affin transzformációk. Valasek Gábor 2016/2017. tavaszi félév Tartalom Motiváció Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2016/2017. tavaszi félév Transzformációk Transzformációk általában Nevezetes affin

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;

9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel; Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

5. előadás. Skaláris szorzás

5. előadás. Skaláris szorzás 5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút

Részletesebben

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből

Részletesebben

Lengyelné Dr. Szilágyi Szilvia április 7.

Lengyelné Dr. Szilágyi Szilvia április 7. ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:

Részletesebben

NT Matematika 11. (Heuréka) Tanmenetjavaslat

NT Matematika 11. (Heuréka) Tanmenetjavaslat NT-17302 Matematika 11. (Heuréka) Tanmenetjavaslat A Dr. Gerőcs László Számadó László Matematika 11. tankönyv a Heuréka-sorozat harmadik tagja. Ebben a segédanyagban ehhez a könyvhöz a tizenegyedikes tananyag

Részletesebben

Valasek Gábor Informatikai Kar. 2016/2017. tavaszi félév

Valasek Gábor Informatikai Kar. 2016/2017. tavaszi félév Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2016/2017. tavaszi félév Tartalom 1 Motiváció 2 Transzformációk Transzformációk általában 3 Nevezetes

Részletesebben

= 7, a 3. = 7; x - 4y =-8; x + 2y = 10; x + y = 7. C-bôl induló szögfelezô: (-2; 3). PA + PB = PA 1. (8; -7), n(7; 8), 7x + 8y = 10, x = 0 & P 0;

= 7, a 3. = 7; x - 4y =-8; x + 2y = 10; x + y = 7. C-bôl induló szögfelezô: (-2; 3). PA + PB = PA 1. (8; -7), n(7; 8), 7x + 8y = 10, x = 0 & P 0; 98 Az egyenes egyenletei. a) A( 0) B(0 6) AB_ - 6i& n( ) x + y = b) x - y =- c) 6x - y = 0 d) 6x + y = e) x + y = f) x + y = a g) x - y = a.. A(a 0) B(0 b) AB_ -a bi n (b a) bx + ay = ab osszuk el a $

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok a 2- és 3-dimenziós tér Kf81 2018-09-04

Részletesebben

JAVÍTÓ VIZSGA 12. FE

JAVÍTÓ VIZSGA 12. FE JAVÍTÓ VIZSGA 12. FE TEMATIKA: Koordináta-geometria (vektorok a koordináta-rendszerben, egyenes egyenlete, két egyenes metszéspontja, kör egyenlete, kör és egyenes metszéspontjai) Sorozatok (számtani-

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?

Részletesebben

A kör. A kör egyenlete

A kör. A kör egyenlete A kör egyenlete A kör A kör egyenlete 8 a) x + y 6 b) x + y c) 6x + 6y d) x + y 9 8 a) x + y 6 + 9 b) x + y c) x + y a + b 8 a) (x - ) + (y - ) 9, rendezve x + y - 8x - 0y + 0 b) x + y - 6x - 6y + 0 c)

Részletesebben

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27. Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

5. Analitikus térgeometria (megoldások) AC = [2, 3, 6], (z + 5) 2 következik. Innen z = 5 3. A keresett BA BC = [3, 2, 8],

5. Analitikus térgeometria (megoldások) AC = [2, 3, 6], (z + 5) 2 következik. Innen z = 5 3. A keresett BA BC = [3, 2, 8], (megoldások) 1. Alkalmazzuk a T 5. tételt: AB = [ 1, +, 0+] = [1, 1, ], AC = [,, 6], AD = [,, 9].. A P pontnak az origótól mért távolsága az OP helyvektor hosszával egyenl. OA = 4 + ( ) + ( 4) = 6, OB

Részletesebben

A keresett kör középpontja Ku ( ; v, ) a sugara r = 1. Az adott kör középpontjának koordinátái: K1( 4; 2)

A keresett kör középpontja Ku ( ; v, ) a sugara r = 1. Az adott kör középpontjának koordinátái: K1( 4; 2) 55 A kör 87 8 A keresett kör középpontja Ku ( ; v, ) a sugara r = Az adott kör középpontjának koordinátái: K( ; ) és a sugara r =, az adott pont P(; ) Ekkor KP = és KK = () ( u ) + ( v ) =, () ( u ) +

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

I. VEKTOROK, MÁTRIXOK

I. VEKTOROK, MÁTRIXOK 217/18 1 félév I VEKTOROK, MÁTRIXOK I1 I2 Vektorok 1 A síkon derékszögű koordinátarendszerben minden v vektornak van vízszintes és van függőleges koordinátája, ezeket sorrendben v 1 és v 2 jelöli A v síkbeli

Részletesebben

b) Az egyenesnek és a körnek akkor és csak akkor van közös pontja, ha az egyenleteikből álló egyenletrendszernek van megoldása (1 pont)

b) Az egyenesnek és a körnek akkor és csak akkor van közös pontja, ha az egyenleteikből álló egyenletrendszernek van megoldása (1 pont) 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az

Részletesebben

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő

Részletesebben