LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40"

Átírás

1 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

2 Euklideszi tér Emlékeztető: A standard belső szorzás és standard norma az R n vektortéren: n u, v = u i v i és u = u, u. i=1 Definíció (Az R n euklideszi tér) A standard belső szorzással ellátott R n vektorteret így hívjuk: az R n euklideszi tér. A standard belső szorzás az R n vektortér minden alterén is meghatároz egy belső szorzást. Definíció (Az R n euklideszi tér altere) Ha az R n vektortér egy U alterét ezzel a belső szorzással ellátva tekintjük, akkor így hívjuk: az R n euklideszi tér U altere. A következőkben euklideszi tér: egy R n (n N) euklideszi tér valamelyik altere. Euklideszi terek LINEÁRIS ALGEBRA 2 / 40

3 Vektorok szöge Definíció (Ortogonális vektorok) Tetszőleges V euklideszi tér és u, v V vektor esetén azt mondjuk, hogy u ortogonális (merőleges) v-re, ha u, v = 0. Jele: u v. Észrevétel: ha u ortogonális v-re, akkor v is ortogonális u-ra Emlékeztető: síkban és térben a nemnulla u, v vektorok által bezárt szög koszinusza u,v u v, tehát u,v u v 1 Tétel (Bunyakovszkij Cauchy Schwarz-egyenlőtlenség) Az R n euklideszi tér tetszőleges u, v vektorára u, v u v. Euklideszi terek LINEÁRIS ALGEBRA 3 / 40

4 Vektorok által bezárt szög Következmény (Vektorok és szög) Tetszőleges u, v R n \ {0} esetén létezik pontosan egy olyan α szög, melyre 0 α π és cos α = Definíció (Vektorok által bezárt szög) u,v u v. Ezt az α szöget így hívjuk: az u és v vektorok által bezárt szög. Tétel (Háromszög-egyenlőtlenség) Tetszőleges u, v R n esetén u + v u + v. Megjegyzés: az R n euklideszi térben beszélhetünk távolságról, szögről, térfogatról,... Euklideszi terek LINEÁRIS ALGEBRA 4 / 40

5 Normálvektorok Emlékeztető: Ha a 1 x a n x n = b nemtriviális egyenlet, azaz (a 1, a 2,..., a n ) 0, akkor U = {(x 1, x 2,..., x n ) R n : a 1 x a n x n = 0} (n 1)-dimenziós altér R n -ben, és {(x 1, x 2,..., x n ) R n : a 1 x a n x n = b} = v + U valamely v R n vektorra. Észrevétel: egy R n euklideszi térbeli u vektorra pontosan akkor teljesül u U, ha (a 1, a 2,..., a n ) u Euklideszi terek LINEÁRIS ALGEBRA 5 / 40

6 Normálvektorok Állítás (Bizonyos altér összes vektorára ortogonális vektor) Legyen U (n 1)-dimenziós altér R n -ben. Ekkor 1 létezik olyan a R n \ {0} vektor, amely bármely u U vektorra ortogonális, 2 ha egy b R n \ {0} vektor bármely u U vektorra ortogonális, akkor b [a]. Megjegyzés: ha u 1, u 2,..., u n 1 bázis az U altérben, akkor egy ilyen a vektor koordinátái a i = ( 1) i D i (i = 1, 2,..., n), ahol D i annak az (n 1) (n 1)-es mátrixnak a determinánsa, amely az u 1, u 2,..., u n 1 sorvektorokból álló mátrixból az i-edik oszlop elhagyásával adódik (vö Feladat) az n = 3 esetben ez az a vektor éppen az u 1 és u 2 térbeli vektorok vektoriális szorzata Euklideszi terek LINEÁRIS ALGEBRA 6 / 40

7 Normálvektorok Definíció (Normálvektor) Azt mondjuk, hogy egy a R n \ {0} vektor normálvektora az (n 1)-dimenziós U R n altérnek és U bármely eltoltjának, ha a u minden u U esetén. Következmény (Normálvektor létezése és egyértelműsége konstans szorzó erejéig) A R n euklideszi térben minden (n 1)-dimenziós altérnek és eltoltjának van normálvektora, és bármely két normálvektor egymás konstansszorosa (egy egyenesbe esik). Euklideszi terek LINEÁRIS ALGEBRA 7 / 40

8 Normálvektorok Következmény 1 A síkban minden e egyenes és P pont esetén létezik egyetlen olyan egyenes, amely átmegy P-n és merőleges e-re. 2 A térben minden s sík és P pont esetén létezik egyetlen olyan egyenes, amely átmegy P-n és merőleges s-re. 3 Az R 2 síkban a P = (p, q) ponton átmenő, (a, b) normálvektorú egyenes egyenlete ax + by = ap + bq. 4 Az R 3 térben a P = (p, q, r) ponton átmenő, (a, b, c) normálvektorú sík egyenlete ax + by + cz = ap + bq + cr. Euklideszi terek LINEÁRIS ALGEBRA 8 / 40

9 Egyenesek és síkok által bezárt szög a térben Definíció (Egyenesek által bezárt szög a térben) Két egyenes által bezárt szög: az irányvektoraik által bezárt szög és annak kiegészítő szöge közül az, amelyik 0 és π 2 közé esik, beleértve a határokat is. Euklideszi terek LINEÁRIS ALGEBRA 9 / 40

10 Egyenesek és síkok által bezárt szög a térben Definíció (Síkok által bezárt szög a térben) Két sík által bezárt szög: a normálvektoraik által bezárt szög és annak kiegészítő szöge közül az, amelyik 0 és π 2 közé esik, beleértve a határokat is. Euklideszi terek LINEÁRIS ALGEBRA 10 / 40

11 Egyenesek és síkok által bezárt szög a térben Definíció (Egyenes és sík által bezárt szög a térben) Egyenes és sík által bezárt szög: π 2 β, ahol β az egyenes irányvektora és a sík normálvektora által bezárt szög és annak kiegészítő szöge közül az, amelyik 0 és π 2 közé esik, beleértve a határokat is. Euklideszi terek LINEÁRIS ALGEBRA 11 / 40

12 Ortogonális vektorrendszerek Definíció (Ortogonális vektorrendszer) Azt mondjuk, hogy egy euklideszi térbeli v 1, v 2,..., v n vektorrendszer ortogonális vektorrendszer, ha bármely két különböző i, j indexre v i v j, ortonormált vektorrendszer, ha ortogonális vektorrendszer, és v i = 1 minden i-re. Állítás (Ortogonális vektorrendszer és lineáris függetlenség) Euklideszi térben minden 0-t nem tartalmazó ortogonális vektorrendszer lineárisan független. Euklideszi terek LINEÁRIS ALGEBRA 12 / 40

13 Ortogonális vektorrendszerek Következmény (Ortogonális vektorrendszer és bázis) 1 Euklideszi térben minden ortonormált vektorrendszer lineárisan független. 2 Egy n-dimenziós euklideszi térben bármely n vektorból álló ortonormált vektorrendszer bázis. 3 Egy n-dimenziós euklideszi térben bármely n tagú, nemnulla vektorokból álló ortogonális vektorrendszer bázis. Definíció (Ortonormált és ortogonális bázis) Legyen V euklideszi tér. Ha egy V -beli ortonormált vektorrendszer bázis V -ben, akkor őt V ortonormált bázisának nevezzük. Ha egy V -beli ortogonális vektorrendszer bázis V -ben, akkor őt V ortogonális bázisának hívjuk. Euklideszi terek LINEÁRIS ALGEBRA 13 / 40

14 Gram Schmidt-féle ortogonalizáció Tétel (Gram Schmidt-féle ortogonalizáció) Egy euklideszi tér bármely lineárisan független v 1, v 2,..., v k vektorrendszeréhez van olyan u 1, u 2,..., u k ortogonális vektorrendszer, amelyre teljesül i = 1, 2,..., k esetén. [u 1, u 2,..., u i ] = [v 1, v 2,..., v i ] Észrevétel: A tételbeli u 1, u 2,..., u k ortogonális vektorrendszer minden tagja 0-tól különböző. Így u 1 u 1,..., u k u k ortonormált vektorrendszer. Tehát az u 1, u 2,..., u k vektorrendszer ortonormáltnak is választható. Euklideszi terek LINEÁRIS ALGEBRA 14 / 40

15 Gram Schmidt-féle ortogonalizáció A tétel bizonyítása az ún. Gram Schmidt-féle ortogonalizációs eljárás: adott egy lineárisan v 1, v 2,..., v k független vektorrendszer, a cél egy tételbeli u 1, u 2,..., u k vektorrendszer megadása. def 1 u 1 = v 1 def 2 u 2 = v 2 v 2,u 1 u u ha u 1, u 2,..., u l 1 már definiált, akkor legyen def u l = v l l 1 v l,u j u u j 2 j j=1 u 2 v 2 v 2 v 2 u 1 = v 1 : v 2 merőleges vetülete u 1 -re v 2 = v 2,u 1 u 1 2 u 1 Euklideszi terek LINEÁRIS ALGEBRA 15 / 40

16 Egy alkalmazás Amikor a számítógép háromdimenziós objektumokat (azaz R 3 -beli pontokat) ábrázol és mozgat, akkor a háttérben lineáris algebrát használ. Nézzünk egy példát: adott a térben P = (,, ) pont t = [(,, )] origón átmenő tengely α szög Határozzuk meg a P pont t körüli, α szöggel vett elforgatottját. A forgatás lineáris transzformáció, így van mátrixa, melynek segítségével P képe mátrixszorzással meghatározható. Euklideszi terek LINEÁRIS ALGEBRA 16 / 40

17 Egy alkalmazás Egy könnyű eset: t = [(0, 0, 1)] cos α sin α 0 A forgatás mátrixa: sin α cos α Euklideszi terek LINEÁRIS ALGEBRA 17 / 40

18 Egy alkalmazás Általános t esetén: olyan ortonormált bázisban, amelynek utolsó vektora t-re esik, a mátrix ugyanez Ha meg tudunk adni ilyen bázist, akkor a forgatás standard bázisbeli mátrixa a bázisáttérés mátrixával adódik. Euklideszi terek LINEÁRIS ALGEBRA 18 / 40

19 Egy alkalmazás Példa: t = [(1, 2, 1)], P = (3, 2, 1), α = 2π 3 1. lépés: adjunk meg olyan ortonormált bázist, melynek utolsó vektora t-re esik 1 egészítsük ki (1, 2, 1)-et valahogyan bázissá: pl. (1, 2, 1), (1, 0, 0), (0, 1, 0) 2 hajtsunk végre rajta Gram Schmidt-féle ortogonalizációt: u 1 = (1, 2, 1) t u 2 = (1, 0, 0) 1 6 (1, 2, 1) = ( ) 5 u 3 = (0, 1, 0) normáljuk: ( 1 6, 2 3, 1 6 ) (1, 2, 1) 1/3 5/6 ( 5, 6, 6, 1 3, 1 ( 6 5 6, 1 3, 1 6 ) 2 15, 1 30 Egy megfelelő bázis: ( ) ( ) ( 5 6, 2 15, , 0, 5 2, 5 1, 6, ( ) 1, 0, 5 2, 5 2 3, 1 ) ( = 0, 2 5, 4 ) 5 6 ) t Euklideszi terek LINEÁRIS ALGEBRA 19 / 40

20 Egy alkalmazás 2. lépés: írjuk fel a forgatás mátrixát ebben a bázisban cos α sin α A = sin α cos α = lépés: térjünk vissza a standard bázisra a bázisáttérés mátrixa erről a bázisról a standard bázisra Q = , Euklideszi terek LINEÁRIS ALGEBRA 20 / 40

21 Egy alkalmazás így a forgatás mátrixa a standard bázisban 1 Q AQ = a P = (3, 2, 1) pont képe pedig 4 1 4, (3, 2, 1)Q 1 AQ = ( 2, 2, 2 2) Megjegyzés: Később látni fogjuk, hogy ha a bázisáttérés Q mátrixa ilyen speciális, akkor Q 1 = Q T, tehát Q inverze számolás nélkül adódik. Euklideszi terek LINEÁRIS ALGEBRA 21 / 40

22 Ortonormált bázisok Következmény (Ortonormált bázis létezése) Minden euklideszi térnek van ortonormált bázisa. Következmény (Ortonormált vektorrendszer kiegészítése ortonormált bázissá) Euklideszi térben 1 minden olyan ortogonális vektorrendszer, amely nem tartalmaz nullvektort, kiegészíthető ortogonális bázissá, 2 minden ortonormált vektorrendszer kiegészíthető ortonormált bázissá. Euklideszi terek LINEÁRIS ALGEBRA 22 / 40

23 Euklideszi terek izomorfiája Definíció (Euklideszi terek közötti lineáris leképezés) Ha U, V euklideszi terek és ϕ: U V lineáris leképezés az U vektortérről a V vektortérbe, akkor azt mondjuk, hogy ϕ lineáris leképezés az U euklideszi térről a V euklideszi térbe. A vektorterekhez hasonlóan használjuk a Hom(U, V ) jelölést, valamint U = V esetén a lineáris transzformáció elnevezést. DE: Az euklideszi terek közötti izomorfizmus más, mint a vektortér-izomorfizmus! Definíció (Euklideszi terek közötti izomorfizmus) Azt mondjuk, hogy ϕ: U V izomorfizmus az U euklideszi térről a V euklideszi térre, ha vektortér-izomorfizmus, és tetszőleges u 1, u 2 U vektorokra u 1, u 2 = u 1 ϕ, u 2 ϕ. Az utóbbi tulajdonság neve: ϕ megőrzi a belső szorzatot. Euklideszi terek LINEÁRIS ALGEBRA 23 / 40

24 Euklideszi terek izomorfiája Állítás (Euklideszi terek közötti izomorfizmusok tulajdonságai) Euklideszi terek közötti izomorfizmusok szorzata és inverze is az. Definíció (Euklideszi terek izomorfiája) Azt mondjuk, hogy az U euklideszi tér izomorf a V euklideszi térrel, ha létezik izomorfizmus az U euklideszi térről a V euklideszi térre. Jelölés: U = V. Tétel (n-dimenziós euklideszi terek) Minden n-dimenziós euklideszi tér izomorf az R n euklideszi térrel. Észrevétel: ortonormált bázisban felírt koordinátasorokkal ugyanúgy számolunk belső szorzatot, mint R n -ben Euklideszi terek LINEÁRIS ALGEBRA 24 / 40

25 Ortogonális lineáris transzformációk Definíció (Ortogonális lineáris transzformáció) Legyen V euklideszi tér és ϕ Hom(V, V ). Azt mondjuk, hogy ϕ ortogonális lineáris transzformáció V -n, ha bármely v V -re v = vϕ. Az utóbbi tulajdonság neve: ϕ normatartó. Észrevétel: Ortogonális lineáris transzformációk szorzata is az. Továbbá minden ortogonális lineáris transzformáció bijektív, így van inverze, és az is ortogonális. Példák: a síkon (az R 2 euklideszi téren): origóra való türközés, origón átmenő egyenesre való tükrözés, origó körüli elforgatás a térben (az R 3 euklideszi téren): origóra való türközés, origón átmenő egyenesre/síkra való tükrözés, origón átmenő egyenes körüli elforgatás Euklideszi terek LINEÁRIS ALGEBRA 25 / 40

26 Ortogonális lineáris transzformációk Tétel (Ortogonális transzformáció ekvivalens jellemzései) Bármely V euklideszi téren értelmezett ϕ lineáris transzformáció esetén ekvivalensek a következők: 1 ϕ ortogonális, 2 tetszőleges u, v V -re u, v = uϕ, vϕ, 3 ϕ bármely ortonormált vektorrendszert ugyanilyenbe visz, 4 ϕ bármely ortonormált bázist ortonormált bázisba visz, 5 van olyan ortonormált bázis V -ben, amit ϕ ortonormált bázisba visz. Észrevétel: a normatartó lineáris transzformációk szükségképpen szögtartók is V ortogonális lineáris transzformációi éppen V önmagára való izomorfizmusai Euklideszi terek LINEÁRIS ALGEBRA 26 / 40

27 Ortogonális mátrixok Észrevétel: Ha ϕ ortogonális leképezés, és mátrixa valamely ortonormált bázisban A = a 1. a n, akkor a 1,..., a n ortonormált bázis R n -ben. Így minden i, j {1,..., n} indexre (AA T ) ij = { 1 ha i = j, a i, a j = 0 különben, azaz AA T = E. Definíció (Ortogonális mátrix) Azt mondjuk, hogy A( R n n ) ortogonális mátrix, ha AA T = E. Euklideszi terek LINEÁRIS ALGEBRA 27 / 40

28 Ortogonális mátrixok Állítás (Ortogonális mátrix ekvivalens jellemzései) Tetszőleges A R n n mátrixra ekvivalensek a következők: 1 A sorvektorai ortonormált vektorrendszert/bázist alkotnak R n -ben, 2 AA T = E, 3 A nemelfajuló és A T = A 1, 4 A T A = E, 5 A oszlopvektorai ortonormált vektorrendszert/bázist alkotnak R n -ben. Euklideszi terek LINEÁRIS ALGEBRA 28 / 40

29 Ortogonális mátrixok A korábbi, ortogonális transzformációra vonatkozó ekvivalens tulajdonságokat kiegészíthetjük a következőképpen: Tétel (Ortogonális transzformáció ekvivalens jellemzései (folyt.)) Bármely euklideszi téren értelmezett ϕ lineáris transzformáció esetén ekvivalensek a következők: 1 ϕ ortogonális, 2 ϕ mátrixa valamely ortonormált bázisban ortogonális, 3 ϕ mátrixa minden ortonormált bázisban ortogonális. Euklideszi terek LINEÁRIS ALGEBRA 29 / 40

30 Ortogonális mátrixok Állítás (Ortonormált bázisok közötti áttérés mátrixa) Minden ortonormált bázisról ortonormált bázisra való áttérés mátrixa ortogonális. Állítás (Ortogonális lineáris transzformáció, ill. mátrix sajátértékei, ortogonális mátrix determinánsa) 1 Ha egy ortogonális lineáris transzformációnak, illetve mátrixnak van sajátértéke, akkor az csak ±1 lehet. 2 Minden ortogonális mátrix determinánsa ±1. Euklideszi terek LINEÁRIS ALGEBRA 30 / 40

31 Főtengelytétel Emlékeztető: egy A R n n mátrixot diagonalizálhatónak hívunk, ha létezik olyan P R n n nemelfajuló mátrix, amelyre P 1 AP diagonális itt P bázisáttérés mátrixa a standard bázisról egy A sajátvektoraiból álló tetszőleges bázisra a P 1 AP diagonális mátrix főátlójában minden ilyen P esetén A sajátértékei állnak, mindegyik annyiszor, amennyi az adott sajátérték multiplicitása a karakterisztikus polinomban, és ez a szám egyenlő a megfelelő sajátaltér dimenziójával Euklideszi terek LINEÁRIS ALGEBRA 31 / 40

32 Főtengelytétel Tétel (Főtengelytétel (szimmetrikus mátrixokra)) Minden szimmetrikus A R n n mátrixhoz létezik olyan Q R n n ortogonális mátrix, amelyre Q 1 AQ diagonális. Kiegészítés: A Q 1 AQ diagonális mátrix főátlójában is A sajátértékei állnak, mindegyik annyiszor, amennyi az adott sajátérték multiplicitása a karakterisztikus polinomban, és ez a szám egyenlő a megfelelő sajátaltér dimenziójával. Fontos: A Q mátrix itt is bázisáttérés mátrixa a standard bázisról egy A sajátvektoraiból álló bázisra, de nem akármilyenre, hanem ortonormált bázisra! Euklideszi terek LINEÁRIS ALGEBRA 32 / 40

33 Főtengelytétel Következmény 1 Minden valós szimmetrikus mátrix diagonalizálható. 2 Két valós szimmetrikus mátrix pontosan akkor hasonló, ha karakterisztikus polinomjaik megegyeznek. Euklideszi terek LINEÁRIS ALGEBRA 33 / 40

34 Főtengelytétel Emlékeztető: az R n vektortéren értelmezett összes kvadratikus alak nemelfajuló lineáris helyettesítéssel kanonikus alakra hozható és ez ekvivalens a következővel: minden szimmetrikus A R n n mátrixhoz létezik olyan nemelfajuló S R n n mátrix, amelyre SAS T diagonális itt S a nemelfajuló lineáris helyettesítés mátrixa, SAS T pedig az A mátrixú kvadratikus alak kapott kanonikus alakjának mátrixa Észrevétel: itt A R n n szimmetrikus; a főtengelytételbeli Q R n n ortogonális mátrixra Q 1 AQ diagonális és Q 1 = Q T ; ekkor S = def Q 1 is ortogonális mátrix, S T = (Q 1 ) T = (Q T ) T = Q és SAS T (= Q 1 AQ) diagonális Euklideszi terek LINEÁRIS ALGEBRA 34 / 40

35 Főtengelytétel Definíció Az olyan lineáris helyettesítést, amelynek mátrixa ortogonális, ortogonális helyettesítésnek nevezzük. Észrevétel: minden ortogonális helyettesítés nemelfajuló Tétel (Főtengelytétel (kvadratikus alakokra)) Az R n euklideszi téren értelmezett összes kvadratikus alak ortogonális helyettesítéssel kanonikus alakra hozható. Kiegészítés: Az ortogonális helyettesítéssel kapott kanonikus alakban a négyzetes tagok együtthatói a kvadratikus alak mátrixának sajátértékei. Minden sajátérték annyi négyzetes tag együtthatója, amennyi az adott sajátérték multiplicitása a karakterisztikus polinomban, és ez a szám egyenlő a megfelelő sajátaltér dimenziójával. Euklideszi terek LINEÁRIS ALGEBRA 35 / 40

36 Főtengelytétel Következmény Egy R n -en értelmezett kvadratikus alak pontosan akkor 1 pozitív definit, ha mátrixának sajátértékei pozitívak; 2 pozitív szemidefinit, ha mátrixának sajátértékei nemnemgatívak, és 0 sajátérték; 3 negatív definit, ha mátrixának sajátértékei negatívak; 4 negatív szemidefinit, ha mátrixának sajátértékei nempozitívak, és 0 sajátérték; 5 indefinit, ha mátrixának pozitív és negatív sajátértéke is van. Euklideszi terek LINEÁRIS ALGEBRA 36 / 40

37 Főtengelytétel Megjegyzés: A főtengelytétel és következménye elvi jelentőségű: ortogonális helyettesítést nem tudunk elemi átalakításokkal keresni, meg kell határozni hozzá a kvadratikus alak mátrixának sajátértékeit és sajátaltereit a definitségi osztályt általában jóval könnyebb meghatározni a korábban tanult módon, mint a kvadratikus alak mátrixának sajátértékeit megkeresni Euklideszi terek LINEÁRIS ALGEBRA 37 / 40

38 Egy alkalmazás A főtengelytétel alkalmazása képtömörítésre: A R n n szimmetrikus mátrix Q R n n ortogonális mátrix, melyre D = Q 1 AQ diagonális ekkor A = QDQ T λ λ ha D = és Q = (u 1 u 2 u n ), λ n ahol u 1, u 2,..., u n R n 1, akkor Euklideszi terek LINEÁRIS ALGEBRA 38 / 40

39 Egy alkalmazás λ u T 1 A = QDQ T 0 λ u T 2 = (u 1 u 2 u n ) λ n un T u T 1 u T 2 = (λ 1 u 1 λ 2 u 2 λ n u n ). u T n = λ 1 (u 1 u T 1 ) + λ 2(u 2 u T 2 ) + + λ n(u n u T n ) ahol u i u T i R n n, i = 1, 2,..., n Neve: A egy spektrálfelbontása Euklideszi terek LINEÁRIS ALGEBRA 39 / 40

40 Egy alkalmazás Egy szemléletes példa: Link Euklideszi terek LINEÁRIS ALGEBRA 40 / 40

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

1. Az euklideszi terek geometriája

1. Az euklideszi terek geometriája 1. Az euklideszi terek geometriája Bázishoz tartozó skaláris szorzat Emékeztető Az R n vektortérbeli v = λ 2... és w = λ 1 λ n µ 1 µ 2... µ n λ 1 µ 1 +λ 2 µ 2 +...+λ n µ n. Jele v,w. v,w = v T u, azaz

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0 Tantárgy neve Lineáris algebra I Tantárgy kódja MTB1004 Meghirdetés féléve 2 Kreditpont 3k Összóraszám elm+gyak 2+0 Számonkérés módja kollokvium Előfeltétel tantárgyi kód MTB1003 Tantárgyfelelős neve Kurdics

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

Előadásvázlat a Lineáris algebra II. tárgyhoz

Előadásvázlat a Lineáris algebra II. tárgyhoz Előadásvázlat a Lineáris algebra II. tárgyhoz Kovács Zoltán 2005. január 4. Tartalomjegyzék 1. Euklideszi vektorterek 3 1.1. Bilineáris és kvadratikus formák, skaláris szorzatok................ 3 1.2.

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36 Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás

Részletesebben

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013 UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS

Részletesebben

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41 Ortogonalizáció Wettl Ferenc 2016-03-22 Wettl Ferenc Ortogonalizáció 2016-03-22 1 / 41 Tartalom 1 Ortonormált bázis 2 Ortogonális mátrix 3 Ortogonalizáció 4 QR-felbontás 5 Komplex skaláris szorzás 6 Diszkrét

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis. 1 Diagonalizálás Diagonalizálható mátrixok Ismétlés Legyen M,N T n n Az M és N hasonló, ha van olyan A lineáris transzformáció, hogy M is és N is az A mátrixa egy-egy alkalmas bázisban Az M és N pontosan

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

és n oszlopból áll, akkor m n-es mátrixról beszélünk. (Az oszlopok száma a mátrix vízszintes mérete, a sorok 2 3-as, a ij..

és n oszlopból áll, akkor m n-es mátrixról beszélünk. (Az oszlopok száma a mátrix vízszintes mérete, a sorok 2 3-as, a ij.. Biológia alapszak Matematika I A GY 6/7 félév III MÁTRIXOK SAJÁTÉRTÉK-FELADAT III Mátrixok Definíció Számok téglalap alakú táblázatban való elrendezését mátrix nak nevezzük Ha a táblázat m sorból és n

Részletesebben

JEGYZET Geometria 2., tanárszak

JEGYZET Geometria 2., tanárszak JEGYZET Geometria 2., tanárszak Hálás köszönet a segítségért Marosi Pollának, Kiss Györgynek, Lakos Gyulának, Tóth Árpádnak, Wintsche Gergőnek. Felhasznált fogalmak Felhasználjuk a valós vektortér és mátrix

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

1. Lineáris transzformáció

1. Lineáris transzformáció Lineáris transzformáció Lineáris transzformáció mátrixának felírása eg adott bázisban: Emlékeztető: Legen B = {u,, u n } eg tetszőleges bázisa az R n -nek, Eg tetszőleges v R n vektor egértelműen felírható

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

Diszkrét Matematika II.

Diszkrét Matematika II. Orosz Ágota Kaiser Zoltán Diszkrét Matematika II. példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika II. példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010. Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák: 1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek

Részletesebben

Matematika MSc Építőmérnököknek. Szerző: Simon Károly

Matematika MSc Építőmérnököknek. Szerző: Simon Károly Matematika MSc Építőmérnököknek Szerző: Simon Károly Matematika MSc Építőmérnököknek A jegyzet nagyobb részét Dr. Simon Bakos Erzsébet gépelte Latex szövegszerkesztőben. Tartalomjegyzék 1. Az A-ben tanult

Részletesebben

Alkalmazott algebra - skalárszorzat

Alkalmazott algebra - skalárszorzat Alkalmazott algebra - skalárszorzat Ivanyos Gábor 2011 sz Skalárszorzat Skalárszorzat Ebben a részben: a standard skalárszorzat: u T v = n µ i ν i i=1 és a kapcsolódó lineáris algebra absztrakt tárgyalással

Részletesebben

NÉVMUTATÓ. Beke Manó, 17 Bellman, R., 310, 398 Bevilacqua, R., 93 Boros Tibor, 459, 464 Boullion, T. L., 109 Bunyakovszkij, V. J.

NÉVMUTATÓ. Beke Manó, 17 Bellman, R., 310, 398 Bevilacqua, R., 93 Boros Tibor, 459, 464 Boullion, T. L., 109 Bunyakovszkij, V. J. NÉVMUTATÓ Beke Manó, 17 Bellman, R., 310, 398 Bevilacqua, R., 93 Boros Tibor, 459, 464 Boullion, T. L., 109 Bunyakovszkij, V. J., 155 157 Cauchy, A. L., 155 157 Cayley, A., 272, 327 Codenotti, B., 93 Cramer,

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

Geometria II gyakorlatok

Geometria II gyakorlatok Geometria II gyakorlatok Kovács Zoltán Copyright c 2011 Last Revision Date: 2012. május 8. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát technikával készült, a megjelenés

Részletesebben

Néhány szó a mátrixokról

Néhány szó a mátrixokról VE 1 Az Néhány szó mátrixokról A : 11 1 m1 1 : m......... 1n n : mn tábláztot, hol ij H (i1,,m, j1,,n) H elemeiből képzett m n típusú vlós mátrixnk nevezzük. Továbbá zt mondjuk, hogy A-nk m sor és n oszlop

Részletesebben

Tartalomjegyzék. Bevezetés 17. I. A lineáris algebra forrásai Vektorok 29. A könyvben követett elvek 18 A könyv felépítése 21 Szoftverek 23

Tartalomjegyzék. Bevezetés 17. I. A lineáris algebra forrásai Vektorok 29. A könyvben követett elvek 18 A könyv felépítése 21 Szoftverek 23 Tartalomjegyzék Bevezetés 17 A könyvben követett elvek 18 A könyv felépítése 21 Szoftverek 23 I. A lineáris algebra forrásai 25 1 Vektorok 29 Vektorok a 2- és 3-dimenziós térben 29 Irányított szakasz,

Részletesebben

Lineáris algebra. négyzetes mátrix: n x n-es mátrix oszlop mátrix, oszlop vektor: egyetlen oszlopból áll

Lineáris algebra. négyzetes mátrix: n x n-es mátrix oszlop mátrix, oszlop vektor: egyetlen oszlopból áll Lineáris algebra Def: Def: Mátrix: egy téglalap alakú számtáblázat, minden helyén valós, vagy komplex szám áll A = [a i j n x m n: A sorainak száma, m: A oszlopainak száma négyzetes mátrix: n x n-es mátrix

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 0. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 23. Sajátérték, sajátvektor, sajátaltér Tartalom Sajátérték, sajátvektor, sajátaltér 2 Gyakorló feladatok a zh-ra (rutinfeladatok)

Részletesebben

Transzformációk síkon, térben

Transzformációk síkon, térben Transzformációk síkon, térben Leképezés, transzformáció Leképezés: Ha egy A ponttér pontjaihoz egy másik B ponttér pontjait kölcsönösen egyértelműen rendeljük hozzá, akkor ezt a hozzárendelést leképezésnek

Részletesebben

8. előadás. Kúpszeletek

8. előadás. Kúpszeletek 8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2

Részletesebben

MATEMATIKA FELADATGYŰJTEMÉNY

MATEMATIKA FELADATGYŰJTEMÉNY Pék Johanna MATEMATIKA FELADATGYŰJTEMÉNY Nem matematika alapszakos hallgatók számára Tartalomjegyzék Előszó iii. Lineáris algebra.. Mátrixok...................................... Lineáris egyenletrendszerek..........................

Részletesebben

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0 Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 ) Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem Debrecen, 2009/2010 tanév, II. félév Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 1 / 180 Félévközi

Részletesebben

Klár Gergely 2010/2011. tavaszi félév

Klár Gergely 2010/2011. tavaszi félév Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Pont 1 Pont 2 3 4 5 Tartalom Pont Descartes-koordináták Homogén koordináták

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

1. Transzformációk mátrixa

1. Transzformációk mátrixa 1 Transzformáiók mátrixa Lineáris transzformáiók Definíió T test Az A : T n T n függvény lineáris transzformáió, ha tetszőleges v,w T n vektorra és λ skalárra teljesül, hogy A(v + w) A(v) + A(w) és A(λv)

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

Bázistranszformáció és alkalmazásai 2.

Bázistranszformáció és alkalmazásai 2. Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja

Részletesebben

9. előadás. Térbeli koordinátageometria

9. előadás. Térbeli koordinátageometria 9. előadás Térbeli koordinátageometria Koordinátageometria a térben Descartes-féle koordinátarendszerben dolgozunk. A legegyszerűbb alakzatokat fogjuk vizsgálni. Az ezeket leíró egyenletek első-, vagy

Részletesebben

Lineáris Algebra GEMAN 203-B. A három dimenziós tér vektorai, egyenesei, síkjai

Lineáris Algebra GEMAN 203-B. A három dimenziós tér vektorai, egyenesei, síkjai Matematika előadás elméleti kérdéseinél kérdezhető képletek Lineáris Algebra GEMAN 203-B A három dimenziós tér vektorai, egyenesei, síkjai a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b

Részletesebben

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés Nagyon könnyen megfigyelhetjük, hogy akármilyen két számmal elindítunk egy Fibonacci sorozatot, a sorozat egymást követő tagjainak

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

1. Szabadvektorok és analitikus geometria

1. Szabadvektorok és analitikus geometria 1. Szabadvektorok és analitikus geometria Ebben a fejezetben megismerkedünk a szabadvektorok fogalmával, amely a középiskolai vektorfogalom pontosítása. Előzetes ismeretként feltételezzük az euklideszi

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Számítógépes geometria

Számítógépes geometria 2011 sz A grakus szállítószalag terv a geometriai (matematikai) modell megalkotása modelltranszformáció (3D 3D) vetítés (3D 2D) képtranszformáció (2D 2D)... raszterizáció A grakus szállítószalag: koncepció

Részletesebben

Lineáris algebra - jegyzet. Kupán Pál

Lineáris algebra - jegyzet. Kupán Pál Lineáris algebra - jegyzet Kupán Pál Tartalomjegyzék fejezet Vektorgeometria 5 Vektorok normája Vektorok skaláris szorzata 4 3 Vektorok vektoriális szorzata 5 fejezet Vektorterek, alterek, bázis Vektorterek

Részletesebben

Absztrakt vektorterek

Absztrakt vektorterek Absztrkt vektorterek Összeállított: dr. Leitold Adrien egyetemi docens 213. 1. 8. Absztrkt vektorterek /1. Absztrkt vektortér definíciój Legyen V egy hlmz, egy test (pl. vlós vgy komplex számtest), és

Részletesebben

Analitikus térgeometria

Analitikus térgeometria 5. fejezet Analitikus térgeometria Kezd és végpontjuk koordinátáival adott vektorok D 5.1 A koordináta-rendszer O kezd pontjából a P pontba mutató OP kötött vektort a P pont helyvektorának nevezzük. T

Részletesebben

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:...

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:... 1. Feladat. Döntse el, hogy igaz vagy hamis. Név:........................................... (1) (1 3) = (3 1). (hamis) () (1 ) = ( 1). (igaz). Feladat. Döntse el, hogy igaz vagy hamis. Név:...........................................

Részletesebben

1. A komplex számok ábrázolása

1. A komplex számok ábrázolása 1. komplex számok ábrázolása Vektorok és helyvektorok. Ismétlés sík vektorai irányított szakaszok, de két vektor egyenlő, ha párhuzamosak, egyenlő hosszúak és irányúak. Így minden vektor kezdőpontja az

Részletesebben

Egybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá.

Egybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk azok a geometriai transzformációk, amelyeknél bármely

Részletesebben

Vektoralgebra. Ebben a részben a vektorokat aláhúzással jelöljük

Vektoralgebra. Ebben a részben a vektorokat aláhúzással jelöljük Vektorlger VE Vektorlger Een részen vektorokt láhúzássl jelöljük Vektorlger VE Szdvektorok Helyzetvektorok (kötött vektorok) Az irányított szkszok hlmzán z eltolás, mint ekvivlenci reláció, áltl generált

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III. Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak

Részletesebben

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek 3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1

Részletesebben

Vektorok összeadása, kivonása, szorzás számmal, koordináták

Vektorok összeadása, kivonása, szorzás számmal, koordináták Vektorok összeadása, kivonása, szorzás számmal, koordináták 1. Mik lesznek a P (3, 4, 8) pont C (3, 7, 2) pontra vonatkozó tükörképének a koordinátái? 2. Egy szabályos hatszög középpontja K (4, 1, 4),

Részletesebben

IV. LINEÁRIS ALGEBRA

IV. LINEÁRIS ALGEBRA IV. LINEÁRIS ALGEBRA 10. A szabadvektorok Az euklideszi tér két félegyeneséről azt mondjuk, hogy egyállású, ha párhuzamosak, és vagy egybeesnek, vagy kezdőpontjaik által meghatározott egyenessel párhuzamosan

Részletesebben

2. gyakorlat. A polárkoordináta-rendszer

2. gyakorlat. A polárkoordináta-rendszer . gyakorlat A polárkoordináta-rendszer Az 1. gyakorlaton megismerkedtünk a descartesi koordináta-rendszerrel. Síkvektorokat gyakran kényelmes ún. polárkoordinátákkal megadni: az r hosszúsággal és a φ irányszöggel

Részletesebben

Matematika Plus 1 építőmérnök hallgatóknak

Matematika Plus 1 építőmérnök hallgatóknak Matematika Plus építőmérnök hallgatóknak Simon Károly.5. Tartalomjegyzék. I. előadás 3.. Kiegészítés az A-ben tanultakhoz: Determináns....... 3... Elemi sor transzformációk hatása a determinánsra:. 5...

Részletesebben

1. Geometria a komplex számsíkon

1. Geometria a komplex számsíkon 1. Geometria a komplex számsíkon A háromszög-egyenlőtlenség A háromszög-egyenlőtlenség (K1.4.3) Minden z,w C-re z +w z + w. Egyenlőség pontosan akkor áll, ha z és w párhuzamosak, és egyenlő állásúak, azaz

Részletesebben

A szimplex algoritmus

A szimplex algoritmus A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 29.

Matematika szigorlat, Mérnök informatikus szak I máj. 29. Matematika szigorlat, Mérnök informatikus szak I. 2007. máj. 29. Megoldókulcs 1. Adott az S : 3x 6y + 2z = 6 sík a három dimenziós térben. (a) Írja fel egy tetszőleges, az S-re merőleges S síknak az egyenletét!

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Bevezetés a számításelméletbe I. Zárthelyi feladatok október 20.

Bevezetés a számításelméletbe I. Zárthelyi feladatok október 20. Bevezetés a számításelméletbe I. Zárthelyi feladatok 4. október.. A p paraméter milyen értékére esnek egy síkba az A(; 3; 3), B(3; 4; ), C(4; 6; ) és D(p; ; 5) pontok?. Megadható-e R 4 -ben négy darab

Részletesebben

Diszkrét matematika 1.

Diszkrét matematika 1. Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz 014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett

Részletesebben

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes 1. Algebrai alapok: DISZKRÉT MATEMATIKA: STRUKTÚRÁK Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz

Részletesebben

Lengyelné Dr. Szilágyi Szilvia április 7.

Lengyelné Dr. Szilágyi Szilvia április 7. ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:

Részletesebben

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor Bevezetés a számításelméletbe I. feladatgyűjtemény Szeszlér Dávid, Wiener Gábor Tartalomjegyzék Előszó 2 1. Feladatok 5 1.1. Térbeli koordinátageometria........................... 5 1.2. Vektortér, altér..................................

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

5. előadás. Skaláris szorzás

5. előadás. Skaláris szorzás 5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút

Részletesebben

Definíció: A tér irányított szakaszait vektoroknak nevezzük. Egy vektort akkor tekintünk adottna, ha ismerjük a nagyságát és az irányát.

Definíció: A tér irányított szakaszait vektoroknak nevezzük. Egy vektort akkor tekintünk adottna, ha ismerjük a nagyságát és az irányát. 1. Vektorok 1.1. Alapfogalmak, alapműveletek 1.1.1. Elméleti összefoglaló Definíció: A tér irányított szakaszait vektoroknak nevezzük. Egy vektort akkor tekintünk adottna, ha ismerjük a nagyságát és az

Részletesebben

Lineáris algebra (10A103)

Lineáris algebra (10A103) Lineáris algebra (10A103 Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli (beugróval, feltétele a Lineáris algebra gyakorlat

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Széchenyi István Egyetem, 2005

Széchenyi István Egyetem, 2005 Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását

Részletesebben

6. előadás. Vektoriális szorzás Vegyesszorzat

6. előadás. Vektoriális szorzás Vegyesszorzat 6. előadás Vektoriális szorzás Vegyesszorzat Bevezetés Definíció: Az a és b vektorok vektoriális szorzata egy olyan axb vektor, melynek hossza a vektorok abszolút értékének és hajlásszögük szinuszának

Részletesebben