Lineáris algebra mérnököknek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Lineáris algebra mérnököknek"

Átírás

1 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Sajátérték, sajátvektor, sajátaltér Kf Wettl Ferenc ALGEBRA TANSZÉK 1

2 Célok E lecke befejezése után a hallgató meg tudja határozni mátrix vagy lineáris leképezés sajátértékeit, sajátvektorait, sajátaltereit, sajátértékeinek algebrai és geometriai multiplicitását, jellemezni tudja speciális mátrixok sajátértékeit (szimmetrikus, ferdén szimmetrikus, ortogonális, nilpotens), diagonális alakra tudja hozni az egyszerűbb diagonalizálható mátrixokat, ill. fel tudja írni sajátfelbontásukat, R 2 2 és R 3 3 szimmetrikus mátrixaihoz olyan ortonormált bázist tud adni, melyben annak alakja diagonális. 2

3 Sajátérték, sajátvektor, sajátaltér

4 Jó bázis választása P Tükrözzük a 3-dimenziós tér vektorait a tér egy megadott síkjára! Válasszunk e lineáris leképezés leírásához egy megfelelő bázist, majd írjuk fel a tükrözés e bázisra vonatkozó mátrixát! M A sík egy bázisa {a, b}, a rá merőleges altér egy bázisa {c}. A T leképezés hatása e vektorokon: Ta = a, Tb = b és Tc = c. Az {a, b, c} bázisban T mátrixa E bázisban egy tetszőleges (x, y, z) vektor tükörképe (x, y, z). 3

5 Lineáris transzformációk sajátvektorai D L! V F vektortér, L : V V lineáris transzformáció. Amh az x V, x 0 vektor az L trafó sajátvektora, ha Lx x, azaz ha van olyan λ F szám, melyre Lx = λx. Az ilyen λ számot az L lineáris transzformáció sajátértékének nevezzük. m Ha x sajátvektor, akkor minden cx (c 0) is: L(cx) = clx = cλx = λ(cx), azaz L(cx) = λ(cx). Á A sajátvektorok alterei: Ha az L lin.trafónak λ egy sajátértéke, akkor a λ-hoz tartozó sajátvektorok a nullvektorral együtt alteret alkotnak, mely megegyezik a Ker(L λi) altérrel. B x 0 sv. Lx = λx Lx λx = 0 (L λi)x = 0 x Ker(L λi). 4

6 Sajátaltér D Az L lin.trafó λ sajátértékhez tartozó sajátvektorai és a 0 alkotta alteret a λ s.é.-hez tartozó sajátaltérnek nevezzük. P 1. L! V F vektortér, I az identikus leképezés. Ekkor a tetszőleges c F számra a ci leképezésnek a V tér minden nemnulla vektora a c számhoz tartozó sajátvektora. 2. L! V R a valósok halmazán akárhányszor diffható valós függvények tere és D : V V; f f. D sajátvektora e λx, ami épp a λ sajátértékhez tartozik, mert (e λx ) = λe λx. 3. A sík α kπ szöggel való elforgatásának nincs sajátvektora. F Sajátérték, sajátvektor, sajátaltér? 1. a sík vektorainak tükrözése egy egyenesre; 2. a sík vektorainak merőleges vetítése egy egyenesre; 3. a tér vektorainak forgatása egyenes körül α kπ szöggel; 4. a tér vektorainak merőleges vetítése egy síkra; 5. a tér vektorainak tükrözése egy síkra. 5

7 Mátrixleképezés sajátértéke, sajátvektora, sajátaltere D L! F test. Amh a λ F szám az A F n n mátrix sajátértéke, ha létezik olyan x 0 vektor, melyre Ax = λx. Az ilyen x vektorokat az A mátrix λ sajátértékhez tartozó sajátvektorainak, az általuk a 0 vektorral alkotott alteret az A sajátalterének, a (λ, x) párokat az A sajátpárjainak nevezzük. y 0 bal sajátvektor, ha y T A = λy T, azaz ha y az A T sajátvektora. P ( 1, (2, 1)) és (2, (1, 2)) egy-egy sajátpárja a [ ] mátrixnak, mert [ ] [ ] 2 = 1 [ ] 2, 1 [ ] [ ] = [ ] 2, 4 6

8 Egy híres alkalmazás: a $-os sajátvektor *? Rangsoroljuk a dokumentumokat a hivatkozások gráfja alapján aszerint, hogy ha véletlenül bolyongunk a dokumentumok közt, akkor az legyen rangosabb, ahol többször járunk. 0 1 /3 1 /3 1 / /3 0 1 /3 1 / /2 1 / /2 1/2 1/4 1/4 A = /4 4 1/ / /4 1 /4 1 / /3 0 1 /3 1 /3 1/6 0 1 /6 1 /6 1 /6 1 /6 0 1 / /3 1 /3 1 /3 0 - Módosítás, hogy minden dokumentumból kiléphessünk: 1/k, ha megy i-ből j-be él és i ki-foka k, [A] ij = 1/n, ha i ki-foka 0 és n a csúcsok száma, 0 egyébként. 7

9 - Módosítás, hogy ne ragadjunk be dokumentumok egy csoportjába: M = (1 d)a + d 1 n J, ahol J a csupa 1-esből álló mátrix, n e négyzetes mátrixok rendje, és d (0, 1). Empírikus d (0.1, 0.2) a jó választás, pl. d = 0.15, így 1 d = Ekkor kerekített jegyekkel M =

10 - Ha x a bolyongás kiindulópontjának valószínűségeloszlását megadó vektor, akkor az első lépés után a gráf i pontjában [x T M] i valószínűséggel leszünk, az m-edik lépés után [x T M m ] i valószínűséggel. lim m xt M m = v T. - (A pozitív mátrixok elmélete, Markov-láncok) v T az ún. stacionárius eloszlás, melyre v T = v T M, és amely megadja, hogy egy-egy pontban aszimptotikusan mekkora valószínűséggel vagyunk a bolyongás során. - v = (0.151, 0.157, 0.137, 0.137, 0.106, 0.100, 0.112, 0.100). - Tehát a dokumentumok sorrendje: 1, 0, 2 & 3, 6, 4, 5 & 7 (két holtversennyel). 9

11 Sajátérték és sajátaltér meghatározása

12 Hogyan találjuk meg a sajátértékeket? Á λ pontosan akkor sajátértéke A-nak, ha det(a λi) = 0. B x 0 sv. Ax = λx Ax λx = 0 x megoldása (A λi)x = 0 egyenletnek x N (A λi) det(a λi) = 0. D L! A F n n. A χ(λ) = det(a λi) polinomot az A mátrixhoz tartozó karakterisztikus polinomnak, a χ(λ) = 0 egyenletet az A mátrix karakterisztikus egyenletének nevezzük. m Néhol a kar. pol. det(λi A), ami mindig 1-főegyütthatójú, de a konstans tag nem mindig a determináns. T Racionális gyökteszt: Ha az a n x n + a n 1 x n a 1 x + a 0 egészegyütthatós polinomnak van egyszerűsített alakjában p q alakú gyöke, akkor p a 0, q a n. Ha a n = 1, akkor minden racionális gyök egész! B a n ( p q )n a 0 = 0 a n p n + a n 1 p n 1 q a 0 q n = 0 10

13 Horner-módszer (Horner-séma) a gyök ellenőrzésére T B Horner-módszer: Tekintsük az F test fölötti p(x) = a n x n + a n 1 x n a 1 x + a 0 polinomot. Legyen b n 1 = a n, b k 1 = cb k + a k (k = 1, 2,..., n 1), r = cb 0 + a 0. a n a n 1... a 1 a 0 Táblázatban: c b n 1 b n 2... b 0 r (a) Ekkor p(x) = (x c)(b n 1 x n b 1 x + b 0 ) + r, azaz leolvasható a p(x)/(x c) osztás hányadosa és maradéka. (b) r = p(c) (c) r = p(c) = 0 x c p(x) A p(x) = (x c)(b n 1 x n b 1 x + b 0 ) + r, egyenlőséget a zárójel felbontása és a b i értékek behelyettesítése igazolja. Az x = c-t helyettesítésből p(c) = r. 11

14 P Számítsuk ki p(5) értékét, ha p(x) = x 5 3x 4 6x 3 90x + 3. M Ne feledkezzünk meg a 0 együtthatókról! Kezdő lépés: a második sor első oszlopába írjuk azt az értéket, amelyben ki akarjuk számítani p értékét, esetünkben ez 5. Majd bemásoljuk a p polinom főegyütthatóját a második sor második oszlop első helyére: Ezután minden lépésben egy szorzás és egy összeadás következik a tételbeli c b k + a k képlet szerint = = 4 12

15 = = = Tehát p(5) =

16 Karakterisztikus polinom felírása P Határozzuk meg az [ ] 1 a b a b c a b A =, B = c d 0 1 c, C = mátrixok karakterisztikus polinomját! M Minden 2 2-es mátrixra: a λ b det(a λi) = = (a λ)(d λ) bc c d λ = λ 2 (a + d)λ + (ad bc) = λ 2 trace(a)λ + det A. nyom, determináns! 14

17 Karakterisztikus polinom felírása (folyt) 1 λ a b det(b λi) = 0 1 λ c = (1 λ) λ a λ b c det(c λi) = 1 λ λ = (a λ)λ 2 + bλ + c = λ 3 + aλ 2 + bλ + c. 15

18 Háromszögmátrixok sajátértékei T B A háromszögmátrixok és így a diagonális mátrixok sajátértékei megegyeznek a főátló elemeivel. A háromszögmátrix A λi is det(a λi) = (a 11 λ)(a 22 λ)... (a nn λ) = 0, aminek a gyökei a ii (i = 1,..., n). Így ezek az A sajátértékei. 16

19 Determináns, nyom és a sajátértékek T Ha az n-edrendű A mátrix sajátértékei λ 1,, λ n, akkor det(a) = λ 1 λ 2... λ n trace(a) = λ 1 + λ λ n B A determináns a konstans tag, a nyom a ( λ) n 1 együtthatója a karakterisztikus polinomban. A karakterisztikus polinom gyöktényezős alakja: det(a λi) = (λ 1 λ)(λ 2 λ)... (λ n λ) λ = 0 behelyettesítése után kapjuk, hogy det(a) = λ 1 λ 2... λ n. - ( λ) n 1 szorzat a determináns kígyók determinánsainak összegére bontása alapján csak az (a 11 λ)(a 22 λ)... (a nn λ) szorzatból kapható, onnan pedig az épp i a ii = trace(a). 17

20 Sajátaltér meghatározása P Adjuk meg az A = mátrix 2-höz és a 10-hez tartozó sajátalterét. M a 2 sajátérték (A 2I)x = 0 egyenletrendszernek van nemtriviális megoldása A 2I = = s t 6 1 x = s = s 1 + t 0. t 0 1 A sajátaltér egy bázisa {( 6, 1, 0), ( 1, 0, 1)}. 18

21 Sajátaltér meghatározása (folyt) A 10 is sajátérték: A 10I = = 0 1 1, t 1 x = t = t 1. A sajátalteret az (1, 1, 1) vektor feszíti ki. t 1 ( 6, 0, 1) ( 1, 0, 1) (1, 1, 1) 19

22 2 2-es mátrixok sajátvektorainak szemléltetése P M Határozzuk meg a következő mátrixok sajátértékeit és sajátvektorait. [ ] [ ] [ ] [ A = , B = , C = , D = D λi = 4 λ λ = λ2 + 1 [ 3 4 i ] [ i ] λ 1 = i : λ 2 = i : i [ i i = ] = 0 0 [ i 0 0 ] [ 3 amiből x 1 = i ], 1 ] [ 3 amiből x 2 = i ]

23 [ ] [ ] χ A (λ) = λ λ + 1, λ 1 = 2, λ 2 = 1 2, x =, x 2 =. 1 1 [ ] [ ] χ B (λ) = λ λ 1, λ 1 = 2, λ 2 = 1 2, x =, x 2 =. 1 1 [ ] [ ] χ C (λ) = λ , λ 1 = 1, λ 2 = 1, x 1 =, x 2 =. 3 1 [ ] [ ] 3 χ D (λ) = λ 2 + 1, λ 1 = i, λ 2 = i, x 1 = i 3, x 2 = i. 1 1 λ = 2 λ = 2 λ = 1 λ = 1 λ = 0.5 λ =

24 Sajátértékek és sajátvektorok meghatározása m Tankönyvi módszer: 1. det(a λi) = 0 gyökeinek meghatározása (sajátértékek) 2. λ: N (A λi) bázisának meghatározása (a nulltér nemzérus vektorai a sajátvektorok) P M 1. felső háromszögmátrix: λ 1 = 0, λ 2 = λ 3 = 2 2. λ = 0: x 1 2 = 0 x = 0 t

25 λ 2 = λ 3 = 2: x 1 x 2 x 3 = (s + t)/2 1/2 1/2 s = s 1 + t 0. t 0 1 Tehát a két sajátaltér span((1, 0, 0)) és span((1/2, 1, 0), (1/2, 0, 1)). 23

26 Karakterisztikus polinom és a racionálisgyök-tétel P A = λ 2 2 M A λi = 2 1 λ 2 = (λ3 4λ 2 11λ 6) λ racionálisgyök-tétellel: λ 1 = λ 2 = 1 és λ 3 = 6. λ 1 = λ 2 = 1: A + I = x 1 + x 2 + x 3 = s t 1 1 s = s 1 + t 0, t

27 λ 3 = 6: A 6I = /3 x / x 3= 0 x x 3= 0. x 3 = 3t paraméterválasztással 2t 2 2t = t 2. 3t 3 25

28 A karakterisztikus egyenlet komplex gyökei P Határozzuk meg a sajátértékeit és sajátvektorait [ ] 1 A = C M A karakterisztikus egyenlet 1 2 λ 3 ( ) ( ) λ = 2 λ + = λ 2 λ+1 λ = ± 2 i i: ( 1 A 2 + [ ] x y = ) 3 2 i I = ] [ it t = t 1 2 [ 3 2 i ] i [ ] i. 1 [ ] 1 i 0 0 x iy = 0. 26

29 i: A ( ) i I = [ ] x = y [ 3 [ ] [ ] it i = t t 1 2 i ] i [ ] 1 i 0 0 x + iy = 0. 27

30 Többszörös gyökök: algebrai és a geometriai multiplicitás D Algebrai multiplicitás: a λ sajátérték multiplicitása a karakterisztikus polinomban. D Geometriai multiplicitás: a λ sajátértékhez tartozó sajátaltér dimenziója P A = M (4 λ) 3, a 4 algebrai multiplicitása x t 1 A 4I = y = 0 = t z 0 0 A λ = 4 sajátérték geometriai multiplicitása tehát 1. 28

31 Többszörös gyökök: algebrai és a geometriai multiplicitás P B = , (1 λ)2 (2 λ) 2, gyökei 1 és x s λ = 1: B λi = y z = t 0 = s t w geometriai multiplicitás = algebrai multiplicitás = x y 0 0 λ = 2: B λi = z = t = t w 0 geometriai multiplicitás = 1, algebrai multiplicitás =

32 Algebrai és geometriai multiplicitás kapcsolata T Egy mátrix minden λ sajátértékére: 1 λ geometriai multiplicitása λ algebrai multiplicitása 30

33 Speciális mátrixok

34 Mátrix hatványainak sajátértékei T A invertálható a 0 nem sajátértéke. B A invertálható det(a) 0 det(a 0I) 0 0 nem sajátértéke A-nak. T B Ha (λ, x) az A sajátpárja, n Z, akkor (λ n, x) az A n sajátpárja, amennyiben λ n és A n is értelmezve van. n = 0: λ 0 = 1 és A 0 = I minden vektor sv. n > 0: A 2 x = A(A) = A(λx) = λax = λ 2 x. és így tovább: A k x = A(A k 1 x) = A(λ k 1 x) = λ k 1 (Ax) = λ k 1 (λx) = λ k x. A invertálható: Ax = λx 1 λ x = A 1 x, azaz λ 1 x = A 1 x. n < 0: A k x = λ k x λ k x = A k x. 31

35 Mátrix hatványainak hatása T B Ha (λ i, x i ) (i = 1, 2,..., k) az A sajátpárjai, v = k i=1 c i x i, akkor A m v = k i=1 c i λ m i x i. trivi A m v = A m (c 1 x 1 + c 2 x c k x k ) = c 1 A m x 1 + c 2 A m x c k A m x k = c 1 λ m 1 x 1 + c 2 λ m 2 x c k λ m k x k. K Találunk-e mindig sajátvektorokból álló bázist? 32

36 Speciális valós mátrixok sajátértékei T Szimmetrikus, ferdén szimmetrikus, ortogonális, nilpotens A R n n, λ egy tetszőleges sajátértéke 1. A szimmetrikus λ valós, 2. A ferdén szimmetrikus λ imaginárius, 3. A ortogonális λ = 1, 4. A nilpotens minden λ = 0 (azaz χ A (x) = x n ). B 1., 2.: x H Ax = x H λx = λ x 2 mindkét oldal adjungáltját véve: x H A T x = λ x 2. L! λ = a + ib. A T = A λ = λ, azaz a + ib = a ib I(λ) = 0. A T = A a + ib = a + ib, azaz R(λ) = 0. 3.: A ortogonális x = Ax = λx = λ x λ = 1 33

37 Hasonlóság, diagonalizálhatóság

38 Hasonló mátrixok sajátértékei T Sajátérékhez kapcsolódó invariánsok Ha A B, akkor χ A = χ B, így sajátértékei, azok algebrai és geometriai multiplicitásai is megegyeznek. 1B A lineáris leképezés sajátértékének definíciójából világos. 2B A = C 1 BC: A λi = C 1 BC λc 1 IC = C 1 (BC λic) = C 1 (B λi)c A λi B λi det(a λi) = det(b λi) megegyeznek sajátértékeik, és azok (algebrai) multiplicitásai A λi B λi dim(n (A λi)) = dim(n (B λi)) a geometriai multiplicitások is megegyeznek. m Van értelme lineáris transzformáció karakterisztikus polinomjáról beszélni (véges dimenziós esetben). 34

39 Mátrixok diagonalizálhatósága D Amh az n n-es A mátrix diagonalizálható, ha hasonló egy diagonális mátrixhoz, azaz ha létezik egy olyan diagonális Λ és egy invertálható C mátrix, hogy D A Λ = C 1 AC átírható Λ = C 1 AC. (1) A = CΛC 1 alakba, amit az A mátrix sajátfelbontásának nevezünk. 35

40 Mátrixok diagonalizálhatósága T B Diagonalizálhatóság szükséges és elégséges feltétele Az n n-es A mátrix pontosan akkor diagonalizálható, ha A-nak van n lineárisan független sajátvektora. Ekkor Λ az A sajátértékeiből, C a sajátvektoraiból áll. Λ = C 1 AC CΛ = AC és C invertálható L! C = [x 1 x 2... x n ], Λ = diag(λ 1, λ 2,..., λ n ). λ λ [x 1 x 2... x n ]. = A[x x 2... x n ]. (2) λ n Ax i = λ i x i de C invertálható, így oszlopvektorai lineárisan függetlenek. 36

41 P Diagonalizálható-e a következő mátrix? A = M λ 1 = 0, λ 2 = λ 3 = 2, a sajátvektorok (1, 0, 0), (1/2, 1, 0) és (1/2, 0, 1), és ezek függetlenek A Λ, ahol Λ = 0 2 0, és C = Ellenőrzés: CΛ = AC = =

42 Bal sajátvektorok D Az y T A = λy T egyenlet y T 0 T feltételnek megfelelő sorvektorait az A mátrix bal sajátvektorainak nevezzük. m ezek a transzponált sajátvektorai: A T y = λy. m det(a λi) = det((a λi) T ) = det(a T λi) A és A T karakterisztikus polinomja azonos bal és jobb sajátértékek közt nincs különbség m Λ = C 1 AC ΛC 1 = C 1 A C 1 sorvektorai A bal sajátvektorai, ugyanis λ y T 1 y T 1 0 λ y T 2 y T 2. = A λ n tehát λ i y T i = y T i A (i = 1, 2,..., n). 38 y T n y T n

43 A sajátfelbontás diadikus alakja m D λ y T 1 A = CΛC 1 0 λ y T 2 = [x 1 x 2... x n ] λ n = λ 1 x 1 y T 1 + λ 2 x 2 y T λ n x n y T n (3) Ezt nevezzük a sajátfelbontás diadikus alakjának. y T n 39

44 A sajátfelbontás diadikus alakja P A = bal sajátvektorai, sajátfelbontása, diadikus alakja? M Bal sajátvektor: a transzponált sajátvektorainak transzponáltjai, vagy a C 1 sorvektorai. A sajátfelbontás: A = CΛC = [ ] A = [ ] 2 [ ] =

45 Különböző sajátértékek sajátalterei T K K K B Ha λ 1, λ 2, λ k különböző sajátértékei az A F n n mátrixnak, akkor a hozzájuk tartozó x 1, x 2, x k sajátvektorok lineárisan függetlenek. Ha különböző sajátértékekhez tartozó sajátalterek mindegyikéből lineárisan független vektorokat választunk, akkor még ezek egyesítése is lineárisan független lesz. Különböző sajátértékekhez tartozó sajátalterek mindegyikéből egy bázist választva, azok egyesítése is lineárisan független vektorrendszert ad. Ha az n-edrendű A mátrixnak n darab különböző sajátértéke van, akkor diagonalizálható. n különböző sajátértékhez n független sajátvektor tartozik diagonalizálható. 41

46 Diagonalizálhatóság és a geometriai multiplicitás T B T Egy n-edrendű négyzetes mátrix pontosan akkor diagonalizálható, ha a sajátértékeihez tartozó geometriai multiplicitások összege n. ( ) Ha a mátrix diagonalizálható, akkor a sajátvektoraiból álló bázis elemszáma épp a geometriai multiplicitások összege, hisz egyetlen sajátvektor sem lehet két sajátaltérben. ( ) Ha a geometriai multiplicitások összege n, akkor minden sajátaltérből kiválasztva egy bázist, és véve ezek egyesítését, egy n sajátvektorból álló független vektorrendszert kapunk. Ha az A F n n minden sajátértéke F-beli (pl. mert F algebrailag zárt test), akkor A pontosan akkor diagonalizálható, ha minden sajátértékének algebrai és geometriai multiplicitása megegyezik. 42

47 Alterek direkt összege D L! V F véges dimenziós vt., V 1, V 2,..., V k V. Amh a V tér a V 1, V 2,, V k alterek direkt összege, jelölése k V = V 1... V k = V i, ha V minden vektora egyértelműen T i=1 felbomlik egy V 1 -, egy V 2 - és egy V k -beli vektor összegére. L! V 1,..., V k V, dim V = n. Ekkor ekvivalensek: 1. V = V 1 V 2... V k 2. V = V 1 (V 2 (V 3... V k )) 3. Mindegyik altér metszete a többi összegével csak a nullvektorból áll, és az alterek összege az egész tér, azaz ( ki=1 V i = V és V i j i j) V = {0}, és 4. V 1,, V k egy-egy bázisának egyesítése a V bázisát adja. 43

48 m 3.-ban nem elég kikötni, hogy V i V j = {0} bármely i j-re! L! a, b R 2 fggtln, V 1 = span(a), V 2 = span(b), V 3 = span(a + b) V i V j = {0}, de R 2 V 1 V 2 V 3, ( (a + b) = a + b + 0). 44

49 Sajátalterek direkt összege T K L! V F vektortér és λ 1,..., λ k az L : V V lin. leképezés különböző sajátértékei. Jelölje V λi a λ i -hez tartozó sajátalteret. Ekkor V λ V λk = V λ1... V λk. Ha V véges dimenziós, akkor az L : V V lineáris leképezésekre a következők ekvivalensek: 1. L diagonalizálható 2. V = i V λ i 3. dim V = i dim V λ i 45

50 Ortogonális diagonalizálhatóság D T B Ortogonális diagonalizálhatóság Azt mondjuk, hogy a négyzetes, valós A mátrix ortogonálisan diagonalizálható, ha van olyan diagonális Λ és ortogonális Q mátrix, hogy A = QΛQ T (azaz A = QΛQ 1, mivel Q ortogonális). Valós főtengelytétel Az A R n n mátrix pontosan akkor diagonalizálható ortogonálisan, ha szimmetrikus. ( ) ha A ortogonálisan diagonalizálható, akkor A = QΛQ T, Λ diagonális tehát Λ = Λ T, így A T = QΛ T Q T = QΛQ T = A. ( ) ha A szimmetrikus és (λ, x), (µ, y) két sajátpár, ahol λ µ, akkor λx y = (λx) T y = (Ax) T y = x T A T y = x T Ay = x T µy = µx y, azaz (λ µ)x y = 0, így λ µ miatt x y = 0, azaz x y. Így a sajátvektorokból kiválasztható egy ortonormált bázis! 46

51 Ortogonális diagonalizálhatóság P Adjunk meg a következő mátrixhoz egy olyan ortonormált bázist, melyben diagonális alakú M A mátrix szimmetrikus, így ortogonálisan diagonalizálható. Karakterisztikus polinomja és sajátértékei: 2 λ 2 1 χ(λ) = 2 1 λ 2 = λ 3 3λ 2 9λ λ Ha e polinomnak van racionális gyöke, akkor a racionális gyökteszt miatt az csak ±1, ±3, ±9 vagy ±27 lehet. 47

52 - A Horner-módszerrel számolva Tehát λ 3 3λ 2 9λ + 27 = (λ 3) 2 (λ + 3), azaz a sajátértékek λ 1,2 = 3, λ 3 = 3. - A sajátvektorok: ] λ = 3: [ t s 2 1 ahonnan x = t = 1 t + 0 s, tehát a λ = 3-hoz s 0 1 tartozó sajátalteret a (2, 1, 0) és a ( 1, 0, 1) vektorok feszítik ki. 48

53 5 2 1 [ ] λ = 3: t 1 ahonnan x = 2t = 2 t, tehát a λ = 3-hoz tartozó t 1 sajátalteret az (1, 2, 1) vektor feszítik ki. E vektor merőleges az előző két sajátvektorra, azok azonban egymásra nem. - A (1, 2, 1) sv. mellé válasszuk a ( 1, 0, 1) vektort, így a harmadik lehet az (1, 2, 1) ( 1, 0, 1) = ( 2, 2, 2). - Osztva a vektorokat a hosszukkal kapjuk a következő ortonormált rendszert: , 1 2 0,

54 A diagonalizálás alkalmazásai

55 Diagonalizálható mátrixok polinomjai D Mátrix polinomja p(x) = c n x n + c n 1 x n c 1 x + c 0 polinomra és négyzetes A mátrixra értelmezhető p-nek A-ban fölvett értéke: p(a) = c n A n + c n 1 A n c 1 A + c 0 I. m A = CΛC 1 A 2 = CΛC 1 CΛC 1 = CΛ 2 C 1, általában tetszőleges nemnegatív k egészre A k = CΛ k C 1. bármely p(x) polinomra p(a) = Cp(Λ)C 1, ahol p (diag(λ 1, λ 2,..., λ n )) = diag (p(λ 1 ), p(λ 2 ),..., p(λ n )). Á Diagonalizálható mátrix polinomja Legyen A = CΛC 1, ahol Λ = diag(λ 1, λ 2,..., λ n ), és p(x) egy tetszőleges polinom. Ekkor p(λ 1 ) p(λ 2 )... 0 p(a) = C C p(λ n ) 50

56 Példa P Számítsuk ki az A 10 mátrixot! A = [ [ ] [ ] [ ] M Sajátfelbontása A = [ ] [ ] 10 [ ] Így A = = [ 2 ( 1) ( 1) ] [ ] ( 1) ( 1) = ] 51

57 Fibonacci-sorozat explicit alakja * T B A Fibonacci-sorozatra (F 0 = 0, F 1 = 1, F n+1 = F n + F n 1, első néhány tagja: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ) igaz a következő: [ ] n F n = ,2 = 1 (( ) n ( ) n ) 1 5 Az első egyenlőség teljes indukcióval bizonyítható. Jelölés: [ ] 0 1 F =. 1 1 n = 1-re trivi, n n + 1: [ ] [ ] [ ] [ ] F n+1 Fn 1 F n 0 1 Fn F n 1 + F n Fn F n+1 = = =. F n F n F n+1 F n + F n+1 F n+1 F n

58 Fibonacci-sorozat (1. bizonyítás) * B χ F (λ) = λ 2 λ 1, F sajátértékei λ 1,2 = 1 2 (1 ± 5), a hozzájuk tartozó sajátvektorok x 1,2 = (1, 1 2 (1 ± 5)). F n sajátfelbontásával: F n = ahonnan [ [ ] [ ] 1 = 1 [ F n = 1 (( ) n ] n [ ] ( ) n ) ] 1 53

59 Fibonacci-sorozat (2. bizonyítás) * B Vegyük észre [ Fn F n+1 ] = F n [ 0 1 Az x 1 és x 2 sajátvektorok bázist alkotnak R 2 -ben, így a [ 0 1 ] előáll azok lineáris kombinációjaként: [ 0 1 ] = c 1x 1 + c 2 x 2 = 1/ 5x 1 1/ 5x 2. F n [ 0 1 ] = c 1λ n 1 x 1 + c 2 λ n 2 x 2, behelyettesítés után ezt kapjuk: F n [ 0 1 ] = 1 ( ) n [ ] ( ) n [ ] Itt csak az első koordinátát kiszámolva, a tételbeli állítást igazoltuk. ]. 54

60 A sajátérték kiszámítása

61 Hatványmódszer * D Egy sajátérték szigorúan domináns, ha egyszeres multiplicitású, és abszolút értékben nagyobb az összes többinél. (szigorúan domináns sajátvektor, sajátaltér, sajátpár) M A R n n, λ 1 szigorúan domináns sajátérték, (λ i, v i ) sajátpár, λ 1 > λ 2 λ m, (λ 1 valós, egyébként λ 1 is sé. lenne). L! x = c 1 v 1 + c 2 v c m v m, k > 0 egész: A k x = c 1 A k v 1 + c 2 A k v c m A k v m = c 1 λ k 1 v 1 + c 2 λ k 2v c m λ k mv m. Ekkor λ k 1 -val való osztás után k esetén ( ) 1 k ( ) k A k λ2 λm x = c 1 v 1 + c 2 v c m v m c 1 v 1, λ 1 λ 1 λ k 1 Ha c 1 0, akkor A k x iránya tart a domináns sajátvektor irányához. 55

62 T Hatványmódszer: Ha λ 1 az A R n n mátrix szigorúan domináns sajátértéke, akkor létezik olyan x 0 vektor, hogy az x k = A k x 0 vektorok által kifeszített alterek sorozata a domináns sajátaltérhez konvergál, míg xt k Ax k x T k x k hányadosok). [ ] P Legyen A = λ (ún. Rayleigh k [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] A k x x 0 x 2 4 x x 3 x 1 56

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Sajátérték, sajátvektor, sajátaltér Kf87 2017-11-21

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Mátrixfüggvények H607 2018-05-02 Wettl Ferenc

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E

Részletesebben

Mátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22

Mátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22 Mátrixfüggvények Wettl Ferenc 2016. április 28. Wettl Ferenc Mátrixfüggvények 2016. április 28. 1 / 22 Tartalom 1 Diagonalizálható mátrixok függvényei 2 Mátrixfüggvény a Jordan-alakból 3 Mátrixfüggvény

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

1. Bázistranszformáció

1. Bázistranszformáció 1. Bázistranszformáció Transzformáció mátrixa új bázisban A bázistranszformáció képlete (Freud, 5.8.1. Tétel) Legyenek b és d bázisok V -ben, ] v V és A Hom(V). Jelölje S = [[d 1 ] b,...,[d n ] b T n n

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

Haladó lineáris algebra

Haladó lineáris algebra B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc

Részletesebben

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek 10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Differencia- és differenciálegy.-rsz. H607 2017-04-05

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35 9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen

Részletesebben

i=1 λ iv i = 0 előállítása, melynél valamelyik λ i

i=1 λ iv i = 0 előállítása, melynél valamelyik λ i Az informatikus lineáris algebra dolgozat C részének lehetséges kérdései Az alábbi listában azok az állítások, tételek szerepelnek, melyeket a vizsgadolgozat C részében kérdezhetünk. Azok érnek 6 pontot,

Részletesebben

1. Mit jelent az, hogy egy W R n részhalmaz altér?

1. Mit jelent az, hogy egy W R n részhalmaz altér? Az informatikus lineáris algebra dolgozat B részének lehetséges kérdései Az alábbi listában azok a definíciók és állítások, tételek szerepelnek, melyeket a vizsgadolgozat B részében kérdezhetünk. A válaszoknál

Részletesebben

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és

Részletesebben

1. Az euklideszi terek geometriája

1. Az euklideszi terek geometriája 1. Az euklideszi terek geometriája Bázishoz tartozó skaláris szorzat Emékeztető Az R n vektortérbeli v = λ 2... és w = λ 1 λ n µ 1 µ 2... µ n λ 1 µ 1 +λ 2 µ 2 +...+λ n µ n. Jele v,w. v,w = v T u, azaz

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2.

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2. Vektorok. Melyek egyenlőek az alábbi vektorok közül? (a) (, 2, 0), (b) az (, 0, ) pontból a (2, 2, ) pontba mutató vektor, (c) ( 2,, ) ( 2,, 2), (d) [ 2 0 ], (e) 2. 0 2. Írjuk fel az x + y + 2z = 0 és

Részletesebben

Tartalomjegyzék. Bevezetés 17. I. A lineáris algebra forrásai Vektorok 29. A könyvben követett elvek 18 A könyv felépítése 21 Szoftverek 23

Tartalomjegyzék. Bevezetés 17. I. A lineáris algebra forrásai Vektorok 29. A könyvben követett elvek 18 A könyv felépítése 21 Szoftverek 23 Tartalomjegyzék Bevezetés 17 A könyvben követett elvek 18 A könyv felépítése 21 Szoftverek 23 I. A lineáris algebra forrásai 25 1 Vektorok 29 Vektorok a 2- és 3-dimenziós térben 29 Irányított szakasz,

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y

Részletesebben

6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján

6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei

Részletesebben

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 ) Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor

Részletesebben

10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak

10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak 10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

és n oszlopból áll, akkor m n-es mátrixról beszélünk. (Az oszlopok száma a mátrix vízszintes mérete, a sorok 2 3-as, a ij..

és n oszlopból áll, akkor m n-es mátrixról beszélünk. (Az oszlopok száma a mátrix vízszintes mérete, a sorok 2 3-as, a ij.. Biológia alapszak Matematika I A GY 6/7 félév III MÁTRIXOK SAJÁTÉRTÉK-FELADAT III Mátrixok Definíció Számok téglalap alakú táblázatban való elrendezését mátrix nak nevezzük Ha a táblázat m sorból és n

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?

Részletesebben

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35

Szinguláris értékek. Wettl Ferenc április 12. Wettl Ferenc Szinguláris értékek április / 35 Szinguláris értékek Wettl Ferenc 2016. április 12. Wettl Ferenc Szinguláris értékek 2016. április 12. 1 / 35 Tartalom 1 Szinguláris érték 2 Norma 3 Mátrixnorma 4 Alkalmazások Wettl Ferenc Szinguláris értékek

Részletesebben

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis. 1 Diagonalizálás Diagonalizálható mátrixok Ismétlés Legyen M,N T n n Az M és N hasonló, ha van olyan A lineáris transzformáció, hogy M is és N is az A mátrixa egy-egy alkalmas bázisban Az M és N pontosan

Részletesebben

1. feladatsor Komplex számok

1. feladatsor Komplex számok . feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4

Részletesebben

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41 Ortogonalizáció Wettl Ferenc 2016-03-22 Wettl Ferenc Ortogonalizáció 2016-03-22 1 / 41 Tartalom 1 Ortonormált bázis 2 Ortogonális mátrix 3 Ortogonalizáció 4 QR-felbontás 5 Komplex skaláris szorzás 6 Diszkrét

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

Saj at ert ek-probl em ak febru ar 26.

Saj at ert ek-probl em ak febru ar 26. Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Alkalmazott algebra. Lineáris leképezések EIC. Wettl Ferenc ALGEBRA TANSZÉK BMETE90MX57 (FELSŐBB MATEMATIKA INFORMATIKUSOKNAK )

Alkalmazott algebra. Lineáris leképezések EIC. Wettl Ferenc ALGEBRA TANSZÉK BMETE90MX57 (FELSŐBB MATEMATIKA INFORMATIKUSOKNAK ) B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Alkalmazott algebra BMETE90MX57 (FELSŐBB MATEMATIKA INFORMATIKUSOKNAK ) Lineáris leképezések

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Alkalmazások H607 2018-05-14 Wettl Ferenc ALGEBRA

Részletesebben

Lineáris algebra. =0 iє{1,,n}

Lineáris algebra. =0 iє{1,,n} Matek A2 (Lineáris algebra) Felhasználtam a Szilágyi Brigittás órai jegyzeteket, néhol a Thomas féle Kalkulus III könyvet. A hibákért felelosséget nem vállalok. Hiányosságok vannak(1. órai lin algebrai

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális

Részletesebben

Lineáris algebra numerikus módszerei

Lineáris algebra numerikus módszerei Bevezetés Szükségünk van a komplex elemű mátrixok és vektorok bevezetésére. A komplex elemű n-dimenziós oszlopvektorok halmazát C n -el jelöljük. Hasonlóképpen az m n méretű komplex elemű mátrixok halmazát

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18 Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök

Részletesebben

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28

Szinguláris értékek. Wettl Ferenc április 3. Wettl Ferenc Szinguláris értékek április 3. 1 / 28 Szinguláris értékek Wettl Ferenc 2015. április 3. Wettl Ferenc Szinguláris értékek 2015. április 3. 1 / 28 Tartalom 1 Szinguláris érték 2 Alkalmazások 3 Norma 4 Mátrixnorma Wettl Ferenc Szinguláris értékek

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Rang, sajátérték. Dr. Takách Géza NyME FMK Informatikai Intézet takach/ február 15

Rang, sajátérték. Dr. Takách Géza NyME FMK Informatikai Intézet   takach/ február 15 Diszkrét matematika II, 2 el adás Rang, sajátérték Dr Takách Géza NyME FMK Informatikai Intézet takachinfnymehu http://infnymehu/ takach/ 25 február 5 Gyakorlati célok Ezen el adáson, és a hozzá kapcsolódó

Részletesebben

Szinguláris érték felbontás Singular Value Decomposition

Szinguláris érték felbontás Singular Value Decomposition Szinguláris érték felbontás Singular Value Decomposition Borbély Gábor 7. április... Tétel (teljes SVD. Legyen A C m n mátrix (valósra is jó, ekkor léteznek U C m m és V C n n unitér mátrixok (valósban

Részletesebben

Diszkrét Matematika II.

Diszkrét Matematika II. Orosz Ágota Kaiser Zoltán Diszkrét Matematika II. példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika II. példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser

Részletesebben

3. el adás: Determinánsok

3. el adás: Determinánsok 3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns

Részletesebben

Lineáris leképezések, mátrixuk, bázistranszformáció. Képtér, magtér, dimenziótétel, rang, invertálhatóság

Lineáris leképezések, mátrixuk, bázistranszformáció. Képtér, magtér, dimenziótétel, rang, invertálhatóság 1. Bevezetés A félév anyaga: lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció

Részletesebben

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3

Részletesebben

Lineáris algebra. Wettl Ferenc, BME , 0.2 változat. Tartalomjegyzék. Geometriai szemléltetés. (tömör bevezetés) Az egyenletek szemléltetése

Lineáris algebra. Wettl Ferenc, BME , 0.2 változat. Tartalomjegyzék. Geometriai szemléltetés. (tömör bevezetés) Az egyenletek szemléltetése Lineáris algebra (tömör bevezetés) Wettl Ferenc, BME 2007-03-24, 02 változat Tartalomjegyzék Geometriai szemléltetés 1 Az egyenletek szemléltetése 1 Az egyenletrendszer vektoregyenlet alakja 2 Egyenletrendszerek

Részletesebben

Lineáris Algebra. Tartalomjegyzék. Pejó Balázs. 1. Peano-axiomák

Lineáris Algebra. Tartalomjegyzék. Pejó Balázs. 1. Peano-axiomák Lineáris Algebra Pejó Balázs Tartalomjegyzék 1. Peano-axiomák 2 1.1. 1.................................................... 2 1.2. 2.................................................... 2 1.3. 3....................................................

Részletesebben

3. előadás Stabilitás

3. előadás Stabilitás Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

1. Bevezetés A félév anyaga. Lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció

Részletesebben

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága

Részletesebben

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák: 1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R n vektortér Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. R n vektortér/1 Vektorok Rendezett szám n-esek: a = (a 1, a 2,, a n ) sorvektor a1 a = a2 oszlopvektor... a n a 1, a 2,,

Részletesebben

Matematika MSc Építőmérnököknek. Szerző: Simon Károly

Matematika MSc Építőmérnököknek. Szerző: Simon Károly Matematika MSc Építőmérnököknek Szerző: Simon Károly Matematika MSc Építőmérnököknek A jegyzet nagyobb részét Dr. Simon Bakos Erzsébet gépelte Latex szövegszerkesztőben. Tartalomjegyzék 1. Az A-ben tanult

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós

Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós Lineáris algebra és a rang fogalma (el adásvázlat, 2010. szeptember 29.) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: (1) A mátrixalgebrával kapcsolatban: számtest

Részletesebben

Előadásvázlat a Lineáris algebra II. tárgyhoz

Előadásvázlat a Lineáris algebra II. tárgyhoz Előadásvázlat a Lineáris algebra II. tárgyhoz Kovács Zoltán 2005. január 4. Tartalomjegyzék 1. Euklideszi vektorterek 3 1.1. Bilineáris és kvadratikus formák, skaláris szorzatok................ 3 1.2.

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

Bevezetés az algebrába 1

Bevezetés az algebrába 1 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Determinánsok H406 2017-11-27 Wettl Ferenc ALGEBRA

Részletesebben

1. Sajátérték és sajátvektor

1. Sajátérték és sajátvektor 1. Sajátérték és sajátvektor Leképezés diagoális mátrixa. Kérdés Mely bázisba lesz egy traszformáció mátrixa diagoális? A Hom(V) és b 1,...,b ilye bázis. Ha [A] b,b főátlójába λ 1,...,λ áll, akkor A(b

Részletesebben

A gyakorlati jegy

A gyakorlati jegy . Bevezetés A félév anyaga: lineáris algebra Vektorterek, alterek Függés, függetlenség, bázis, dimenzió Skaláris szorzat R n -ben, vektorok hossza és szöge Lineáris leképezések, mátrixuk, bázistranszformáció

Részletesebben

7. gyakorlat megoldásai

7. gyakorlat megoldásai 7. gyakorlat megoldásai Komple számok, sajátértékek, sajátvektorok F1. Legyen z 1 = + i és z = 1 i. Számoljuk ki az alábbiakat: z 1 z 1 + z, z 1 z, z 1 z,, z 1, z 1. z M1. A szorzásnál használjuk, hogy

Részletesebben

(1) Vektorok koordinátavektora. 1/3. R A {b 1,b 2,b 3 } vektorhalmaz bázis a V R n altérben.

(1) Vektorok koordinátavektora. 1/3. R A {b 1,b 2,b 3 } vektorhalmaz bázis a V R n altérben. Az informatikus lineáris algebra dolgozat A részének főbb témái, pár mintafeladata Az alábbiakban tájékoztató jelleggel fölsoroljuk a vizsgadolgozat A részében szereplő főbb témaköröket néhány mintafeladattal,

Részletesebben

Mat. A2 3. gyakorlat 2016/17, második félév

Mat. A2 3. gyakorlat 2016/17, második félév Mat. A2 3. gyakorlat 2016/17, második félév 1. Hány megoldása lehet az alábbi lineáris egyenletrendszereknek a valós számok körében, ha a -ok tetszőleges (nem feltétlenül egyenlő) számokat jelölnek? 0

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

MATEMATIKA MSC ÉPÍTŐMÉRNÖKÖKNEK

MATEMATIKA MSC ÉPÍTŐMÉRNÖKÖKNEK SIMON KÁROLY MATEMATIKA MSC ÉPÍTŐMÉRNÖKÖKNEK Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright ... (A jegyzet a BME Gépészmérnöki MSc szak hallgatói

Részletesebben

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Lineáris leképezések H607 2018-02-05, 07, 09 Wettl

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 0. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 23. Sajátérték, sajátvektor, sajátaltér Tartalom Sajátérték, sajátvektor, sajátaltér 2 Gyakorló feladatok a zh-ra (rutinfeladatok)

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

1. A vektor és a vektortér fogalma

1. A vektor és a vektortér fogalma 1. A vektor és a vektortér fogalma Célunk: a vektor és a vektortér fogalmának minél tágabb értelmezése. Ez azért hasznos, mert így a síkvektorok körében használatos egyes fogalmak és tételek átvihet k

Részletesebben

Diszkrét matematika II., 8. előadás. Vektorterek

Diszkrét matematika II., 8. előadás. Vektorterek 1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.

Részletesebben

1.1. Vektorok és operátorok mátrix formában

1.1. Vektorok és operátorok mátrix formában 1. Reprezentáció elmélet 1.1. Vektorok és operátorok mátrix formában A vektorok és az operátorok mátrixok formájában is felírhatók. A végtelen dimenziós ket vektoroknak végtelen sok sort tartalmazó oszlopmátrix

Részletesebben

Bevezetés az algebrába 1

Bevezetés az algebrába 1 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Egyenletrendszerek H406 2016-10-03 Wettl Ferenc

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2

Részletesebben

Tartalom. Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás

Tartalom. Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás Tartalom Állapottér reprezentációk tulajdonságai stabilitás irányíthatóság megfigyelhetőség minimalitás 2018 1 Állapottér reprezentációk tulajdonságai Általánosan egy lineáris, SISO dinamikus rendszer

Részletesebben

Polinomok maradékos osztása

Polinomok maradékos osztása 14. előadás: Racionális törtfüggvények integrálása Szabó Szilárd Polinomok maradékos osztása Legyenek P, Q valós együtthatós polinomok valamely x határozatlanban. Feltesszük, hogy deg(q) > 0. Tétel Létezik

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem Debrecen, 2007/8 tanév, II. félév Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2007/8 tanév, II. félév 1 / 186 Félévközi

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika

Részletesebben

1. Polinomfüggvények. Állítás Ha f, g C[x] és b C, akkor ( f + g) (b) = f (b) + g (b) és ( f g) (b) = f (b)g (b).

1. Polinomfüggvények. Állítás Ha f, g C[x] és b C, akkor ( f + g) (b) = f (b) + g (b) és ( f g) (b) = f (b)g (b). 1. Polinomfüggvények Behelyettesés polinomba. Definíció Legyen b komplex szám. Az f (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n polinom b helyen felvett helyettesítési értéke f (b) = a 0 + a 1 b + a 2 b

Részletesebben

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36 Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás

Részletesebben