9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell"

Átírás

1 9. Előadás Megyesi László: Lineáris algebra, oldal.

2 Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek el. Néhány elemi bázistranszformáció után kaphatjuk-e az alábbi táblázatokat? (A táblázatokat külön-külön kell vizsgálni, nem egymás utáni lépésként.) v 1 e 2 v 3 e e v , v 1 e 2 v 3 e v e , e 3 v 2 e 2 e v v

3 Gondolkodnivalók Mátrix rangja Észrevétel Mivel feltettük, hogy az elemi bázistranszformáció kezdetekor a sorés oszlopindexek sorban helyezkedtek el, így az elemi bázistranszformáció során ha a v j vektort visszük be a bázis e i vektora helyére, akkor a táblázat felső sorában az e i éppen az j. helyen van, oldalt pedig a v j az i. helyen szerepel. v 1 e 2 v 3 e e v Így ez az első táblázat nem fordulhat elő, hiszen ott e 2 szerepel v 2 helyén, azonban a v 2 az e 3 helyén van, és nem az e 2 helyén.

4 Gondolkodnivalók Mátrix rangja Második táblázat: v 1 e 2 v 3 e v e Ebben a táblázatban az indexek helyesen szerepelnek, azonban ez sem kapható meg. Mivel a v 2 vektor került be az e 2 helyére, így generáló elemnek a második sor 2. elemét kellett választani, de ez az elem nem lehet nulla az elemi bázistranszformáció után, hiszen itt a generáló elem reciprokának kell szerepelni.

5 Gondolkodnivalók Mátrix rangja Harmadik táblázat: e 3 v 2 e 2 e v v Az indexek itt is helyesen szerepelnek: e 3 szerepel v 1 helyén, és v 1 az e 3 helyén, valamint e 2 szerepel v 3 helyén, és v 3 az e 2 helyén. Melyik cserét végeztük el utoljára? Mivel az e 2 v 3 cserénél 0 szerepel, ezért ez nem lehetett az utolsó csere (lásd: előző táblázat). Így csak az e 3 v 1 csere lehetett az utolsó. Mi lehetett az előző lépésnél a táblázat? Korábbi gondolkodnivalók között szerepelt az, ha kétszer választunk ugyanazon a helyen generáló elemet, akkor az eredeti táblázatot kapjuk vissza. Ezt felhasználva kapjuk a következőt:

6 Gondolkodnivalók Mátrix rangja e 3 v 2 e 2 e v v v 1 v 2 e 2 e v e Azonban ebben a táblázatban is 0 szerepel a v 3 e 2 cserének megfelelő helyen, így a harmadik táblázatot sem kaphattuk meg elemi bázistranszformáció-sorozat folyamán.

7 Gondolkodnivalók Mátrix rangja 2. Gondolkodnivaló Egy 5 ismeretlenes, 6 egyenletből álló lineáris egyenletrendszer bővített mátrixának determinánsa nem 0. Mit tudunk mondani a megoldásáról? A bővített mátrix 6 6-os, és a determinánsa nem 0. Mivel a mátrix rangja a legnagyobb nem-0 aldeterminánsának rendjével egyezik meg, így ebben az esetben a rang 6. Mennyi lehet az egyenletrendszer együtthatómátrixának a rangja? Mivel 5 ismeretlen van, ezért a mátrixnak 5 oszlopa van, tehát a rangja nem lehet nagyobb 5-nél. Tehát az egyenletrendszer együtthatómátrixának a rangja legfeljebb 5, a bővített mátrixának a rangja pedig 6, így a Kronecker-Capelli tétel szerint az egyenletrendszernek nincs megoldása.

8 Gondolkodnivalók Mátrix rangja 3. Gondolkodnivaló Tekintsük a következő homogén lineáris egyenletrendszert. x 1 + x 3 + x 5 = 0 x 2 + x 4 = 0 Adottak a következő vektorok R 5 -ben u = (1, 1, 1, 1, 2), v = (1, 0, 2, 0, 1), w = (0, 1, 0, 1, 0), x = (1, 2, 2, 2, 1), y = (1, 0, 1, 0, 0). Döntsük el, hogy az alábbi vektorrendszerek bázist alkotnak-e a fenti egyenletrendszer megoldásainak alterében? (a) u, v, w; (b) v, w, x; (c) w, x, y.

9 Gondolkodnivalók Mátrix rangja A homogén lineáris egyenletrendszer bővített mátrixa: ( ) Ez lépcsős alakú mátrix, tehát a homogén lineáris egyenletrendszer rangja r = 2. Mivel az ismeretlenek száma n = 5, így a megoldástere n r = 3 dimenziós. Ez alapján mindhárom vektorrendszer elemszáma megfelelő. (a) u, v, w; Először ellenőrizzük le, hogy a vektorok megoldásai-e az egyenletrendszernek. Az u = (1, 1, 1, 1, 2) vektor esetén = Mivel u nem megoldás, ezért nem eleme a megoldástérnek, így a bázisának sem. Tehát az u, v, w nem bázis.

10 Gondolkodnivalók Mátrix rangja (b) v, w, x; Először ellenőrizzük le, hogy a vektorok megoldásai-e az egyenletrendszernek. Helyettesítsük rendre a v = (1, 0, 2, 0, 1), w = (0, 1, 0, 1, 0) és x = (1, 2, 2, 2, 1) vektorokat = = 0, = = 0, = = 0. Tehát mindhárom vektor eleme a megoldástérnek. A három vektor akkor alkot bázist a három dimenziós megoldástérben, ha lineárisan független

11 Gondolkodnivalók Mátrix rangja Tehát a vektorrendszer rangja 2, így lineárisan függő, nem bázis. (c) w, x, y;. Korábban már láttuk, hogy a w = (0, 1, 0, 1, 0) és x = (1, 2, 2, 2, 1) vektorok megoldásai a homogén lineáris egyenletrendszernek, az y = (1, 0, 1, 0, 0) vektor esetén = = 0, így ez is eleme a megoldástérnek. A vektorok lineáris függetlenségét kell már csak vizsgálni.

12 Gondolkodnivalók Mátrix rangja Tehát a vektorrendszer rangja 3, így lineárisan független. Tehát a w, x, y vektorrendszer bázis lesz a megoldástérben..

13 Definíció Mátrix inverze Legyen A n n-es mátrix. Az A mátrix inverze az A 1 n n-es mátrix, ha AA 1 = A 1 A = E, ahol E az n n-es egységmátrix. Létezés Nem minden n n-es mátrixnak létezik inverze. Legyen A olyan n n-es mátrix, amelynek determinánsa 0. Ekkor a determinánsok szorzástételét felhasználva bármely B n n-es mátrix esetén a következő teljesül: AB = A B = 0. Tehát az AB nem lehet az egységmátrix, bárhogy is választjuk a B-t, így A-nak nincs inverze.

14 Inverz létezése, kiszámítása Tétel Legyen a a 1n A =..... a n1... a nn n n-es mátrix. Ekkor A-nak pontosan akkor létezik inverze, ha determinánsa nem 0. Ha A determinánsa nem 0, akkor az inverze: A 1 = 1 A A 1n. A.... A n1... A nn ahol A ij az i. sor j. eleméhez tartozó adjungált aldeterminánst jelöli. T,

15 Az inverz gyakorlati kiszámítása Az előző tételben megadott módszer az inverz kiszámítására nagyon hosszadalmas: egy n n-es mátrix inverzéhez ki kellene számolni n 2 db n 1 n 1-es determinánst. Ehelyett elemi bázistranszformációval fogjuk számolni a mátrix inverzét. Inverzmátrix kiszámítása elemi bázistranszformációval A mátrixot beírjuk egy táblázatba, majd elemi bázistranszformációkat hajtunk végre, amíg csak tudunk generáló elemet választani. Ha sikerült az összes oszlopvektort bevinni a bázisba, akkor a mátrixnak létezik az inverze, azaz invertálható. A mátrix inverzét megkapjuk, ha sor- és oszlopcserékkel az indexeket rendezzük. FONTOS: most nem szabad elhagyni a bázisból kikerülő vektor oszlopát!!!

16 Inverzmátrix kiszámítása Példa Döntsük el, hogy invertálható-e az alábbi mátrix, ha igen, adjuk meg az inverzét: Beírjuk egy táblázatba a mátrixot, majd elemi bázistranszformációkat hajtunk végre: v 1 v 2 v 3 e e e v 1 v 2 e 2 e v e v 1 e 1 e 2 v v e

17 v 1 e 1 e 2 v v e e 3 e 1 e 2 v v v Vagyis minden vektort sikerült bevinni a bázisba, így a mátrixnak van inverze. Az inverz az utolsó táblázatból olvasható le, ha sor- és oszlopcserékkel rendeztük a táblázatot: e 3 e 1 e 2 v v v e 3 e 1 e 2 v v v e 1 e 2 e 3 v v v

18 Tehát a mátrix inverze: Ellenőrzés: = A mátrix inverze úgy is kiszámolható, hogy a táblázatba a mátrix mellé az egységmátrixot is beírjuk, ebben az esetben a generáló elem oszlopa elhagyható, és a végén csak a sorokat kell rendezni:. v 1 v 2 v 3 e 1 e 2 e 3 e e e e 1 e 2 e 3 v v v

19 Azonosságok Legyen A és B tetszőleges n n-es invertálható mátrix, ekkor 1 (A 1 ) 1 = A, 2 (AB) 1 = B 1 A 1. Bizonyítás: A másodikat bizonyítjuk. Az AB-nek inverze a B 1 A 1, mivel a szorzatuk az egységmátrix: (AB) (B 1 A 1 ) = A (BB 1 ) A 1 = A E A 1 = AA 1 = E. Negatív kitevős hatvány Ha A invertálható mátrix, akkor az inverz létezését felhasználva definiálhatók A negatív kitevős hatványai: A k = (A 1 ) k. A hatványozás korábban megadott azonosságai negatív kitevők esetén is érvényesek maradnak.

20 Mátrixegyenlet

21 Mátrixegyenlet Legyen A n m-es, B pedig n k-as mátrix. Található-e olyan X mátrix, amelyre AX = B? Az X mátrixnak m k-asnak kell lennie ahhoz, hogy az egyenlőség teljesülhessen. Valójában a fenti kérdés k db olyan lineáris egyenletrendszer megoldására vezet, melyeknek együttható mátrixa éppen A, míg a konstansoszlopok rendre éppen B oszlopai. Az ilyen típusú egyenletrendszerek egyszerre is megoldhatók, mégpedig úgy, hogy most az elemi bázistranszformáció során a konstansoszlop helyett a B mátrix szerepel.

22 Mátrixegyenlet megoldása Példa Oldjuk meg az ( mátrixegyenletet. ) ( X = ) Beírjuk a mátrixokat egy táblázatba, balra az A-t, jobbra pedig B-t, majd elemi bázistranszformációkat hajtunk végre: x 1 x 2 x 3 b 1 b 2 b 3 e e x 3 b 1 b 2 b 3 x x

23 Fontos megjegyezni, hogy most az x változók az X megoldásmátrix OSZLOPAIBAN helyezkednek el, és az értéküket úgy határozhatjuk meg, mint az egyenletrendszer megoldása esetén. Tehát ebben az esetben az x 3 szabad változó lesz, így minden oszlop harmadik eleme szabadon megválasztható, a többi érték pedig, mint az egyenletrendszereknél, kifejezhető. Például az második oszlop esetén a jobboldali konstansok közül csak a második oszlopot kell figyelembe venni: x 3 b 2 x 1 1 2, x vagyis X második oszlopának harmadik eleme szabadon választható (b R), az első eleme 2 b, második eleme pedig 1 + b lesz. Hasonlóképpen megadható X többi oszlopa is. Az általános megoldás: 1 a 2 b 1 c X = 2 + a 1 + b 1 + c. a b c

24 Ellenőrzés: ( ) 1 a 2 b 1 c 2 + a 1 + b 1 + c a b c = ( ). Megjegyzés Ahogy a mátrixinverz számításnál már megjegyeztük, az inverz úgy is számítható, hogy az E egységmátrixot az A mellé írjuk. Ez annak felel meg, mintha az AX = E mátrix egyenletet oldanánk meg, ekkor ha megoldható, akkor az X éppen A inverzét adja.

25 Leontyev-modell Tegyük fel, hogy egy gazdaság 3 fő ágazatból áll: mezőgazdaság, ipar és szállítás. Mindegyik ágazatnak 1 egységnyi termék előállításához szüksége van mindhárom ágazat termékeire. Ráfordítási mátrix A gazdaság egy mátrixszal írható le, ezt ráfordítási mátrixnak hívjuk. A mátrix oszlopai mutatják, hogy 1 egységnyi termék előállításához mennyi termékre szükség az egyes ágazatoktól. Példa Ráfordítási mátrix: M I S M I S

26 A ráfordítási mátrixszal kapcsolatban sok kérdés tehető fel: Adott termékmennyiség előállítása során mennyi terméket kell legyártani? "Működőképes"-e a gazdaság? Milyen árak mellett lehet az összprofitot maximalizálni? Milyen egyensúlyi helyzetei vannak a gazdaságnak?

27 Példa Legyen egy gazdaság ráfordítási mátrixa: M I S M I S Szeretnénk előállítani 2 M, 1 I és 3 S terméket. Mennyi terméket kell ehhez összesen előállítani (teljes kibocsátás)? Az egyes ágazatokban előállítandó termékek számát vektorként is megadhatjuk, jelölje ezt p ( a példában p T = (2, 1, 3)), ez az úgynevezett nettó kibocsátás. Jelöljük a ráfordítási mátrixot A-val, ekkor 1 lépésben A p termékre van szükség. A probléma az, hogy ezeknek a termékeknek az előállításához is ismét A Ap termékre van szükség, és így tovább. Így kapjuk a p + Ap + A 2 p + A 3 p +... végtelen sort.

28 Végiggondolható, ha q a teljes kibocsátás, akkor ennyi termék előállításakor Aq terméket használunk fel, és még marad is p termék: q = Aq + p. Tehát q = (E A) 1 p. A példában szereplő ráfordítási mátrix és nettó kibocsátás: A = , p = Ekkor E A = Ennek a mátrixnak kell az inverzét meghatározni..

29 Az E A inverze: (E A) 1 = A teljes kibocsátás így: (E A) 1 p = =

30 Leontyev-inverz Definíció Ha A egy gazdaság ráfordítási mátrixa, akkor az (E A) 1 mátrixot az A mátrix Leontyev-inverzének nevezzük. A Leontyev-inverz mutatja meg, hogy egy-egy termék előállításához összesen mennyi kibocsátásra van szükség. Minél kisebbek az elemei, annál hatákonyabb a gazdaság. Ha valahol negatív értékek szerepelnek benne, az annak a jele, hogy a gazdaság hosszú távon nem működőképes.

31 Példa Működőképes-e az a gazdaság, amelynek ráfordítási mátrixa: A = Ha a Leontyev-inverzben ((E A) 1 -ben) valahol negatív érték szerepel, akkor a gazdaság nem működőképes (E A) 1 = TOTÁLIS KATASZTRÓFA Az ok nyilvánvaló: a gazdaság működése többe kerül, mint amennyit termel. Ilyenkor meg lehet vizsgálni, hogy megmenthető-e a gazdaság, van-e esetleg olyan ágazat, amelynek hatékonyságát kicsit (kis költséggel) növelve, a gazdaság már működőképes.

32 Változtassunk a probléma bemenő adatain egy kicsit, és vizsgáljuk, hogy mennyire változik a végeredmény (ez az úgynevezett érzékenység-vizsgálat). Esetünkben a helyzet menthető: A = (E A) 1 = Ez sem túl hatékony gazdaság, hiszen a mátrix elemei nagyok, de legalább már működőképes..,

33 Profit, költségek A ráfordítási mátrix alkalmas az ágazatonkénti költség és profit meghatározására is. Példa Legyen egy gazdaság ráfordítási mátrixa: A = , és legyen az ágazatok termékeinek árvektora v = ( ). Határozzuk meg az egyes ágazatok egységnyi termékének előállításakor keletkező költséget.

34 A keletkező költség a va képlet segítségével számolható: va = ( ) = ( ) Látható, hogy az első két ágazat ilyen árak mellett veszteséges. Az első ágazat esetén 1 egységnyi árhoz 1.7 egységnyi előállítási költség tartozik, míg a második ágazatnál a 2 egységnyi árhoz 2.2 költség. A harmadik ágazat nyereséges, itt a profit = 1.36 egység. Korábban láttuk, hogy az a gazdaság, amelynek ez az A mátrix a ráfordítási mátrixa nem működőképes. Be lehet bizonyítani, hogy egy gazdaság pontosan akkor működőképes (vagyis mátrixának Leontyev-inverzében nem szerepel negatív szám), ha meg lehet úgy határozni az árakat, hogy semelyik ágazat se legyen veszteséges.

35 Egyensúlyi helyzet - zárt gazdaság Egyensúlyi helyzet esetén öncélú a rendszer: a termelés felemészti az összes terméket. Vagyis adott mennyiségű (p vektor) terméket szeretnénk előállítani, úgy, hogy ehhez éppen p termékre legyen szükség: Ap = p. Ez a mátrixok sajátértékének, sajátvektorának fogalmához vezet. Egy ilyen gazdaság nem igazán működőképes, de ha valahonnan kap megfelelő mennyiségű kezdő terméket, akkor működik, azonban valódi termelésre képtelen.

36 Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris.

37 Gondolkodnivalók Mátrix inverze 2. Gondolkodnivaló Hogyan oldanánk meg XA = B típusú mátrixegyenleteket? Oldjuk meg a következőt: ( ) X =

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2

Részletesebben

Bázistranszformáció és alkalmazásai 2.

Bázistranszformáció és alkalmazásai 2. Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek 3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 0. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 23. Sajátérték, sajátvektor, sajátaltér Tartalom Sajátérték, sajátvektor, sajátaltér 2 Gyakorló feladatok a zh-ra (rutinfeladatok)

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak

LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak LINEÁRIS EGYENLETRENDSZEREK 004. október. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:

Részletesebben

Bázistranszformáció és alkalmazásai

Bázistranszformáció és alkalmazásai Bázistranszformáció és alkalmazásai Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Elmélet Gyakorlati végrehajtás 2 Vektor bevitele a bázisba Rangszámítás Lineáris egyenletrendszer

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

Gauss elimináció, LU felbontás

Gauss elimináció, LU felbontás Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek

Részletesebben

11. DETERMINÁNSOK. 11.1 Mátrix fogalma, műveletek mátrixokkal

11. DETERMINÁNSOK. 11.1 Mátrix fogalma, műveletek mátrixokkal 11 DETERMINÁNSOK 111 Mátrix fogalma, műveletek mátrixokkal Bevezetés A közgazdaságtanban gyakoriak az olyan rendszerek melyek jellemzéséhez több adat szükséges Például egy k vállalatból álló csoport minden

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága 7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

Lineáris algebra (10A103)

Lineáris algebra (10A103) Lineáris algebra (10A103 Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli (beugróval, feltétele a Lineáris algebra gyakorlat

Részletesebben

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága 7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

5. Előadás. Megyesi László: Lineáris algebra, 29. 36. oldal. 5. előadás Lineáris függetlenség

5. Előadás. Megyesi László: Lineáris algebra, 29. 36. oldal. 5. előadás Lineáris függetlenség 5. Előadás Megyesi László: Lineáris algebra, 29. 36. oldal. Gondolkodnivalók Vektortér 1. Gondolkodnivaló Alteret alkotnak-e az R n n (valós n n-es mátrixok) vektortérben az alábbi részhalmazok? U 1 =

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis. 1 Diagonalizálás Diagonalizálható mátrixok Ismétlés Legyen M,N T n n Az M és N hasonló, ha van olyan A lineáris transzformáció, hogy M is és N is az A mátrixa egy-egy alkalmas bázisban Az M és N pontosan

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor

Részletesebben

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő

Részletesebben

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0 Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

12 48 b Oldjuk meg az Egyenlet munkalapon a következő egyenletrendszert az inverz mátrixos módszer segítségével! Lépések:

12 48 b Oldjuk meg az Egyenlet munkalapon a következő egyenletrendszert az inverz mátrixos módszer segítségével! Lépések: A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Egyenletrendszerek megoldása Excelben. Solver használata. Mátrixműveletek és függvények

Részletesebben

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0 Tantárgy neve Lineáris algebra I Tantárgy kódja MTB1004 Meghirdetés féléve 2 Kreditpont 3k Összóraszám elm+gyak 2+0 Számonkérés módja kollokvium Előfeltétel tantárgyi kód MTB1003 Tantárgyfelelős neve Kurdics

Részletesebben

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 ) Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

és n oszlopból áll, akkor m n-es mátrixról beszélünk. (Az oszlopok száma a mátrix vízszintes mérete, a sorok 2 3-as, a ij..

és n oszlopból áll, akkor m n-es mátrixról beszélünk. (Az oszlopok száma a mátrix vízszintes mérete, a sorok 2 3-as, a ij.. Biológia alapszak Matematika I A GY 6/7 félév III MÁTRIXOK SAJÁTÉRTÉK-FELADAT III Mátrixok Definíció Számok téglalap alakú táblázatban való elrendezését mátrix nak nevezzük Ha a táblázat m sorból és n

Részletesebben

A parciális törtekre bontás?

A parciális törtekre bontás? Miért működik A parciális törtekre bontás? Borbély Gábor 212 június 7 Tartalomjegyzék 1 Lineáris algebra formalizmus 2 2 A feladat kitűzése 3 3 A LER felépítése 5 4 A bizonyítás 6 1 Lineáris algebra formalizmus

Részletesebben

A szimplex algoritmus

A szimplex algoritmus A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 9. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 6. Bogya Norbert Lineáris algebra gyakorlat (9. gyakorlat Bázistranszformáció és alkalmazásai (folytatás Tartalom Bázistranszformáció

Részletesebben

DETERMINÁNSSZÁMÍTÁS. Határozzuk meg a 1 értékét! Ez most is az egyetlen elemmel egyezik meg, tehát az értéke 1.

DETERMINÁNSSZÁMÍTÁS. Határozzuk meg a 1 értékét! Ez most is az egyetlen elemmel egyezik meg, tehát az értéke 1. DETERMINÁNSSZÁMÍTÁS A (nxn) kvadratikus (négyzetes) mátrixhoz egyértelműen hozzárendelhetünk egy D R számot, ami a mátrix determinánsa. Már most megjegyezzük, hogy a mátrix determinánsa, illetve a determináns

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Lineáris egyenletrendszerek Összeállított: dr. Leitold Adrien egyetemi docens 2008.09.08. Leontieff-modellek Leontieff-modellek: input-output modellek gzdság leírásár legyen n féle, egymássl összefüggésben

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés Nagyon könnyen megfigyelhetjük, hogy akármilyen két számmal elindítunk egy Fibonacci sorozatot, a sorozat egymást követő tagjainak

Részletesebben

NUMERIKUS MÓDSZEREK I. TÉTELEK

NUMERIKUS MÓDSZEREK I. TÉTELEK NUMERIKUS MÓDSZEREK I. TÉTELEK Szerkesztette: Balogh Tamás 014. január 19. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

1. ábra ábra

1. ábra ábra A kifejtési tétel A kifejtési tétel kimondásához először meg kell ismerkedni az előjeles aldetermináns fogalmával. Ha az n n-es A mátrix i-edik sorának és j-edik oszlopának kereszteződésében az elem áll,

Részletesebben

LINEÁRIS ALGEBRA.

LINEÁRIS ALGEBRA. LINEÁRIS ALGEBRA Bércesné Novák Ágnes Honlap: http://digitus.itk.ppke.hu/~b_novak Követelményrendszer: http://digitus.itk.ppke.hu/~b_novak/la/4_la_kovetelmeny.doc Gauss elimináció Vektoralgebra: http://digitus.itk.ppke.hu/~b_novak/dmat/vektorfolcop.pdf

Részletesebben

MATEMATIKA FELADATGYŰJTEMÉNY

MATEMATIKA FELADATGYŰJTEMÉNY Pék Johanna MATEMATIKA FELADATGYŰJTEMÉNY Nem matematika alapszakos hallgatók számára Tartalomjegyzék Előszó iii. Lineáris algebra.. Mátrixok...................................... Lineáris egyenletrendszerek..........................

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor Bevezetés a számításelméletbe I. feladatgyűjtemény Szeszlér Dávid, Wiener Gábor Tartalomjegyzék Előszó 2 1. Feladatok 5 1.1. Térbeli koordinátageometria........................... 5 1.2. Vektortér, altér..................................

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 9 IX MÁTRIxOk 1 MÁTRIx FOGALmA, TULAJDONSÁGAI A mátrix egy téglalap alakú táblázat, melyben az adatok, a mátrix elemei, sorokban és oszlopokban vannak elhelyezve Az (1) mátrixnak

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

Lineáris algebra I. Vektorok és szorzataik

Lineáris algebra I. Vektorok és szorzataik Lineáris algebra I. Vektorok és szorzataik Ismert fogalmak Témák Vektortér Lineáris kombináció Lineáris függőség, függetlenség Generátorrendszer, bázis, dimenzió Lineáris leképezések Szabadvektorok vektortere

Részletesebben

Növényvédő szerek A 500 0 0 0 0 65000 B 0 0 50 500 500 60000 C 50 25 0 50 50 12000 D 0 25 5 50 0 6000

Növényvédő szerek A 500 0 0 0 0 65000 B 0 0 50 500 500 60000 C 50 25 0 50 50 12000 D 0 25 5 50 0 6000 A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Termelési és optimalizálási feladatok megoldása. Mátrixműveletek alkalmazása.

Részletesebben

A lineáris tér. Készítette: Dr. Ábrahám István

A lineáris tér. Készítette: Dr. Ábrahám István A lineáris tér Készítette: Dr. Ábrahám István A lineáris tér fogalma A fejezetben a gyakorlati alkalmazásokban használt legfontosabb fogalmakat, összefüggéseket tárgyaljuk. Adott egy L halmaz, amiben azonos

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

1. Az euklideszi terek geometriája

1. Az euklideszi terek geometriája 1. Az euklideszi terek geometriája Bázishoz tartozó skaláris szorzat Emékeztető Az R n vektortérbeli v = λ 2... és w = λ 1 λ n µ 1 µ 2... µ n λ 1 µ 1 +λ 2 µ 2 +...+λ n µ n. Jele v,w. v,w = v T u, azaz

Részletesebben

Numerikus matematika vizsga

Numerikus matematika vizsga 1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos

Részletesebben

1. A kétszer kettes determináns

1. A kétszer kettes determináns 1. A kétszer kettes determináns 2 2-es mátrix inverze Tétel [ ] [ ] a c 1 d c Ha ad bc 0, akkor M= inverze. b d ad bc b a Ha ad bc = 0, akkor M-nek nincs inverze. A főátló két elemét megcseréljük, a mellékátló

Részletesebben

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41

Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41 Ortogonalizáció Wettl Ferenc 2016-03-22 Wettl Ferenc Ortogonalizáció 2016-03-22 1 / 41 Tartalom 1 Ortonormált bázis 2 Ortogonális mátrix 3 Ortogonalizáció 4 QR-felbontás 5 Komplex skaláris szorzás 6 Diszkrét

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

1. Geometria a komplex számsíkon

1. Geometria a komplex számsíkon 1. Geometria a komplex számsíkon A háromszög-egyenlőtlenség A háromszög-egyenlőtlenség (K1.4.3) Minden z,w C-re z +w z + w. Egyenlőség pontosan akkor áll, ha z és w párhuzamosak, és egyenlő állásúak, azaz

Részletesebben

Diszkrét Matematika II.

Diszkrét Matematika II. Orosz Ágota Kaiser Zoltán Diszkrét Matematika II. példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika II. példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser

Részletesebben

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28.

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28. Miskolci Egyetem Diszkrét matek I. Vizsga-jegyzet Hegedűs Ádám Imre 2010.12.28. KOMBINATORIKA Permutáció Ismétlés nélküli permutáció alatt néhány különböző dolognak a sorba rendezését értjük. Az "ismétlés

Részletesebben

Tétel: A háromszög belső szögeinek összege: 180

Tétel: A háromszög belső szögeinek összege: 180 Tétel: A háromszög belső szögeinek összege: 180 Bizonyítás: legyenek az ABC háromszög belső szögei α, β, γ. Húzzunk a C csúcson át párhuzamost AB-vel. A C csúcsnál keletkezett egyenesszöget a háromszög

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem Debrecen, 2009/2010 tanév, II. félév Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 1 / 180 Félévközi

Részletesebben

Bevezetés a számításelméletbe I. Zárthelyi feladatok október 20.

Bevezetés a számításelméletbe I. Zárthelyi feladatok október 20. Bevezetés a számításelméletbe I. Zárthelyi feladatok 4. október.. A p paraméter milyen értékére esnek egy síkba az A(; 3; 3), B(3; 4; ), C(4; 6; ) és D(p; ; 5) pontok?. Megadható-e R 4 -ben négy darab

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013 UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +

Részletesebben

1. Lineáris transzformáció

1. Lineáris transzformáció Lineáris transzformáció Lineáris transzformáció mátrixának felírása eg adott bázisban: Emlékeztető: Legen B = {u,, u n } eg tetszőleges bázisa az R n -nek, Eg tetszőleges v R n vektor egértelműen felírható

Részletesebben

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis

Részletesebben

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége LINEÁRIS VEKTORTÉR Kiegészítő anyag (Bércesné Noák Ágnes előadása) Vektorok függetlensége, függősége Vektortér V 0 Halmaz T test : + ; + ; Abel csoport V elemeit ektoroknak neezzük. Abel - csoport Abel

Részletesebben

Lineáris algebra (10A103)

Lineáris algebra (10A103) Lineáris algebra (10A103) Dr. Hartmann Miklós Tudnivalók Honlap: http://www.math.u-szeged.hu/~hartm Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli, feltétele a Lineáris algebra gyakorlat teljesítése.

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

5. Lineáris rendszerek

5. Lineáris rendszerek 66 MAM43A előadásjegyzet, 2008/2009 5 Lineáris rendszerek 5 Lineáris algebrai előismeretek Tekintsük az a x + a 2 x 2 = b 5 a 2 x + a 22 x 2 = b 2 52 lineáris egyenletrendszert Az egyenletben szereplő

Részletesebben

Ujv ari Mikl os KONVEX ANAL IZIS 2009 1

Ujv ari Mikl os KONVEX ANAL IZIS 2009 1 Ujvári Miklós KONVEX ANALÍZIS 2009 1 2 Tartalomjegyzék Bevezetés... 5 Jelölések... 10 1. Végesen generált halmazok.... 11 1. A Gauss Jordan-elimináció... 11 2. Alterek, affin halmazok... 24 3. Poliéder

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 9 IX Magasabbrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk n-ed rendű differenciálegyenletek Az alakú ahol n-edrendű differenciálegyenlet általános megoldása tetszőleges

Részletesebben

y + a y + b y = r(x),

y + a y + b y = r(x), Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

Mátrixok. 3. fejezet. 3.1. Bevezetés: műveletek táblázatokkal

Mátrixok. 3. fejezet. 3.1. Bevezetés: műveletek táblázatokkal fejezet Mátrixok Az előző fejezetben a mátrixokat csak egyszerű jelölésnek tekintettük, mely az egyenletrendszer együtthatóinak tárolására, és az egyenletrendszer megoldása közbeni számítások egyszerüsítésére

Részletesebben

Teszt kérdések. Az R n vektortér

Teszt kérdések. Az R n vektortér Teszt kérdések Döntse el az alábbi állításokról, hogy igazak agy hamisak! Az R tér geometriája 1. Ha két térbeli egyenesnek nincs közös pontja, akkor párhuzamosak.. Egy térbeli egyenest egyértelműen meghatározza

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben