Méret: px
Mutatás kezdődik a ... oldaltól:

Download ""

Átírás

1 XI A MÁTRIX INVERZE 1 Az inverzmátrix definíciója Determinánsok szorzástétele Az egységmátrix definíciója: E n = n-edrenű (azaz n n típusú) mátrix E n -nel bármely mátrixot akár jobbról, akár balról szorozva, amennyiben a mátrixszal összeszorozható, a szóbanforgó másik mátrix adódik 11 Definíció Legyen A n-edrendű T feletti mátrix Az A mátrix inverzén értjük azt az A 1 -gyel jelölt n-edrendű T feletti mátrixot, amely a következőt teljesíti: (1) AA 1 = A 1 A = E n Kérdés, hogy melyek azok a mátrixok, amelyeknek van inverzük 1

2 12 Definíció Legyen A n-edrendű (T feletti) mátrix Az A mátrix elemeiből (az elemeknek a sorokban, oszlopokban való elrendezését megtartva) determináns is képezhető Az ily módon létrehozott determinánst az A mátrix determinánsának nevezzük, és A -val jelöljük 13 Tétel (Determinánsok szorzástétele) Legyenek A, B n n-es (T feletti) mátrixok Érvényes a következő: (2) AB = A B Bizonyítás Az A mátrix álljon az a ij ; a B mátrix a b ij elemekből (i = 1, 2,,n; j = 1, 2,,n) A bizonyítás céljából alkossuk meg a következő D determinánst a 11 a 12 a 1n a 21 a 22 a 2n D = a n1 a n2 a nn b 11 b 12 b 1n b 21 b 22 b 2n b n1 b n2 b nn 2

3 Alkalmazzuk a D determinánsra Laplace tételét Fejtsük ki D-t az első n sora szerint Kapjuk, hogy D = A B Végezzünk olyan átalakításokat D-n, amelyek nem változtatják meg a determináns értékét Elsőként az n + 1-edik oszlopát alakítjuk át a determinánsnak Az n + 1-edik oszlophoz hozzáadjuk az első oszlop b 11 -szeresét, a második oszlop b 21 - szeresét, és így tovább, végül az n-edik oszlop b n1 - szeresét Az átalakítás eredményeként az n + 1-edik oszlop utolsó n eleme 0 lett D az átalakítás után a következő: n a 11 a 12 a 1n t=1 a 1tb t a 21 a 22 a n 2n t=1 a 2tb t a n1 a n2 a n nn t=1 a ntb t b 11 b 12 b 1n b 21 b 22 b 2n b n1 b n2 b nn Vegyük észre, hogy az n+1-edik oszlop első n eleme éppen az AB szorzatmátrix első oszlopának elemeiből áll Jelöljük az AB mátrixot C-vel és elemei 3

4 is legyenek c ij, i = 1, 2,,n; j = 1, 2,,n A jelölés bevezetésével : c 11 = n a 1t b t1, c 21 = n a 2t b t1,, c 1n = n a nt b t1 t=1 t=1 t=1 A D determinánson megkezdett átalakítássorozatot folytathatjuk a determináns n + 2 oszlopának átalakításával: az n+2-edik oszlophoz hozzáadjuk az első oszlop b 12 -szeresét, a második oszlop b 22 -szeresét, és így tovább, végül az n-edik oszlop b n2 -szeresét Az n + 2 oszlop első n eleme a szorzatmátrix második oszlopa (c 21, c 22,,c n2 ) lett, míg a további elemek 0-k Hasonlóan járunk el az n + 3 oszlop esetében, és folytatva az eljárást végül a 2n-edik oszlopra végezzük el az átalakítást A D determináns utolsó n oszlopának felső n sorában a szorzatmátrix elemei állnak, az alsó n sora viszont 0 Részletesen leírva a következőhöz jutottunk: 4

5 a 11 a 12 a 1n c 11 c 12 c 1n a 21 a 22 a 2n c 21 c 22 c 2n a = n1 a n2 a nn c n1 c n2 c nn Fejtsük ki az utóbbi determinánst Laplace tétel szerint, kiválasztva n oszlopot mégpedig az n + 1- ediktől a 2n-edikig terjedő oszlopokat Ezekből az oszlopokból kiválasztható n-edrendű determinánsok közül a C -n kívül mindegyikről tudjuk, hogy 0 Így C -t kell megszorozni az adjungáltjával A C komplementere ( 1) n, és az adjungált előjelét pedig az határozza meg, hogy mit kapunk ha ( 1)-t a C sor és oszlopindexeinek összegére emeljük C sor és oszlopindexeinek összege: n+(n+1)+ +2n = 2n 1 + 2n 2 = n+2n 2 Az adjungált előjele ( 1) n+2n2, ezt még megszorozva C komplementerével ( 1) n -nel ( 1) 2n+2n2-5

6 tet kapunk, ami 1-el egyenlő Így D = C = AB vel A bizonyítás kezdetén megállapítottuk, hogy D = A B Tehát AB = A B 2 Az inverzmátrix létezésének feltétele 21 Tétel Az A n n-es (T feletti) mátrixnak csakis akkor létezhet inverze, ha A 0 Bizonyítás Tegyük fel, hogy létezik olyan A 1 mátrix, amelyik teljesíti az (1) feltételt Tekintsük az (1)-ben szereplő két egyenlőség közül csak az egyiket, például az (3) A A 1 = E n egyenlőséget Vegyük az egyenlőség mind a két oldalának determinánsát (4) AA 1 = E n = 1 Az utóbbi egyenlőség bal oldalán AA 1 = A A 1 írható a determinánsok szorzástételének felhasználásával Tulajdonképpen a determinánsok szorzástételének ebben a fejezetben való tárgyalására azért volt 6

7 szükség, hogy ezt a lépést megtehessük Most már (4) így írható: (5) A A 1 = 1 Legyen A = 0 Nincs olyan A 1 T szám, melyre 0 A 1 = 1 lenne, tehát A 1 nem létezhet 22 Definíció Az A mátrix n n-es mátrixot nemelfajuló mátrixnak nevezzük, ha A 0 és elfajulónak, ha A = 0 A 21 Tétel az utóbbi definíció alapján úgy is fogalmazható, hogy egy mátrixnak csakis akkor lehet inverze, ha nemelfajuló 3 A nemelfajuló mátrix inverzének létezése 31 Tétel Az A nemelfajuló mátrixnak van egyértelműen meghatározott inverze A bizonyítás során szükségünk lesz a következő tételre 32 Tétel Legyenek A és B olyan T feletti mátrixok, amelyekre az AB szorzat létezik Ekkor (AB) T = B T A T 7

8 ahol T a transzponálás jele A tétel bizonyítása közvetlen számolással elvégezhető Bizonyítás (A 31 Tételé) A bizonyítás konstruktív jellegű Eljárást adunk az inverz meghatározására Az (1) feltételnek eleget tevő A 1 megalkotását részfeladatokra bontjuk Először az adott n-edrendű A mátrixhoz keresünk olyan n-edrendű X mátrixot, amelyre (6) AX = E n, majd olyan n-edrendű Y mátrixot, amelyre (7) Y A = E n és végül bizonyítjuk, hogy X = Y a) A bizonyítás első része a (6) feltételnek eleget tevő X mátrix megtalálása Tulajdonképpen egy speciális mátrixegyenlet megoldásáról van szó A (6) egyenlet a mátrixok elemeit is részletesen leírva a következő: a 11 a 12 a 1n a 21 a 22 a 2n a n1 a n2 a nn 8 x 11 x 12 x 1n x 21 x 22 x 2n x n1 x n2 x nn =

9 (8) =, Jelöljük az X mátrix oszlopvektorait x 1, x 2,,x n - nel, azaz x 1 = x 11 x 21 x n1 x 2 = x 12 x 22 x n2,, x n = x 1n x 2n x nn és E n -net is írjuk (e 1, e 2,,e n ) mátrixként ahol e i az i-edik egységvektor A most bevezetett jelölésekkel (6) a következő alakú: (9) A(x 1 x 2 x n ) = (e 1 e 2 e n ) Ez a mátrixegyenlet ekvivalens a következő n egyenletrendszerrel: (10) Ax i = e i i = 1, 2,,n Mindegyik egyenletrendszer megoldása az X mátrix egy-egy oszlopát adja Lényeges körülmény, hogy 9

10 valamennyi egyenletrendszernek ugyanaz a mátrixa Állítjuk, hogy valamennyi egyenletrendszer az A 0 feltétel következményeként megoldható és egyetlen megoldása van Az utóbbi állítást kétféle módon ((α) illetve (β)) is megmutatjuk (α) (10)-nek valamennyi egyenletrendszere eleget tesz a Cramer-szabály követelményeinek az egyenletrendszer ugyanannyi egyenletből áll, mint amennyi az ismeretleneinek a száma, és az egyenletrendszer determinánsa nem 0 A Cramer-szabály szerint az egyenletrendszerek mindegyike megoldható és egyetlen megoldása van (β) Az A mátrix n vektorból álló oszlopvektorrendszere lineárisan független, hiszen az A rangja a rang definíciója szerint n Az n komponensű T feletti vektorok terének dimenziója n (Ennek a vektortérnek egyik bázisa az e 1, e 2,,e n egységvektorokból álló vektorrendszer) A-nak oszlopvektorai a T feletti n-komponensű vektorok terében bázist alkotnak Bármely bázis elemeinek lineáris kombinációjaként az n komponensű T feletti vektorok terének bármely vektora előáll, méghozzá egyértelmű módon Így az A oszlopvektorainak lineáris kombinációjaként megkapjuk e 1 -gyet, e 2 -őt,, e n -et Az e vektor lineáris kombinációként való előállításának egyértelműen meghatározott konstansai az x i kom- 10

11 ponensei mindegyik i = 1, 2,,n-re b) Térjünk rá az Y A = E n mátrixegyenlet megoldására A probléma visszavezethető az AX = E n megoldott típusra, a 32 Tétel alkalmazásával Az Y A = E n mátrixegyenlőségnek mind a két oldalát transzponálva az (Y A) T = E n egyenlőséghez, majd 32 Tétel szerint az A T Y T = E mátrix egyenlethez jutunk A bizonyítás a) része alapján Y T -re egyértelmű megoldás adható, transzponálással Y is megkapható c) Bizonyítjuk, hogy X = Y A bizonyítást a következő gondolatmenet adja: X = E n X = (Y A)X = Y (AX) = Y E n = Y Vegyük észre, hogy a bizonyítás azon múlik, hogy a mátrixszorzás asszociatív 4 Az inverzmátrix gyakorlati kiszámítása A 31 Tétel bizonyítása során az is látható, hogy az A mátrix inverzének meghatározásához elegendő a (6) mátrixegyenletet, vagy a vele ekvivalens (10) egyenletrendszereket megoldani Az Ax i = e i i = 1, 2,,n ugyan n egyenletrendszert jelent, de az egyenletrendszereket nem kell külön-külön megoldani mivel mindegyik egyenletrendszer mátrixa 11

12 ugyanaz, mégpedig az A mátrix Kiindulási táblázat a következő: a 1 a 2 a n e 1 e 2 e n (11) e 1 a 11 a 12 a 1n e 2 a 21 a 22 a 2n e n a n1 a n2 a nn Az egyenletrendszerek megoldása elemi bázistranszformációk végrehajtásával jár Mivel az inverz létezésének feltétele az, hogy A 0 legyen, ami azt jelenti, hogy A rangja és így oszloprangja is n kell hogy legyen, ezért az A mátrix valamennyi oszlopvektora be kell hogy kerüljön a bázisba Ha ez nem teljesíthető, akkor A = 0, és nincs A-nak inverze Ezért az inverzmátrix meghatározásának megkezdése előtt nem szükséges az A 0, feltételt külön ellenőrízni, amint látható ennek teljesülése, vagy nem teljesülése menet közben úgyis kiderül Tegyük fel, hogy sikerült az A mátrix valamennyi oszlopvektorát a bázisba vinni Ezt az jelzi, hogy a táblázat baloldalán az e 1, e 2,,e n jeleket felváltották az a 1, a 2,,a n jelek Ekkor az e 1 oszlopában az Ax 1 = e 1 egyenletrendszer, e 2 oszlopában 12

13 Ax 2 = e 2 egyenletrendszer,, e n oszlopában pedig az Ax n = e n egyenletrendszer megoldása áll Ha a számolás úgy történt, hogy az egységvektorok helyére rendre az a 1, a 2,,a n vektorokat vontuk be, akkor azon a helyen, ahol (11)-ben az egységmátrix állt, a számítás befejezésekor az inverzmátrixot kapjuk Általában ez a számolás egyszerűbbé tétele miatt nem sikerül Ezért sorcseréket kell végezni A táblázatban az a 1 jellel egy sorban lévő elemek az inverzmátrix első sorát, az a 2 -vel egy sorban lévők a második sorát,, a n -nel egy sorban lévők az n-edik sorát adják 5 Mátrixegyenletek megoldása A 4 alfejezetben vázolt módszer alkalmas az (14) AX = B valamint az (15) Y A = B típusú mátrixegyenletek megoldására is A (14) mátrixegyenletet n egyenletrendszerre bontjuk Legyenek az X mátrix oszlopvektorai x 1, x 2,,x n a B 13

14 Az egyenlet- mátrix oszlopvektorai b 1, b 2,,b n rendszerek (16) Ax i = b i (i = 1, 2,,n) Ezek megoldása egyszerre történik a következő kiindulási táblázattal: a 1 a 2 a n b 1 b 2 b n e 1 a 11 a 12 a 1n b 11 b 12 b 1n e 2 a 21 a 22 a 2n b 21 b 22 b 1n e n a n1 a n2 a nn b n1 b n2 b nn Ha figyelembevesszük, hogy itt (16)-nak megfelelően n egyenletrendszer megoldásáról van szó, akkor a megoldhatóság eldöntése és a megoldás megtalálása az egyenletrendszerek megoldásával kapcsolatos ismeretek alapján megvalósítható A (15) típusú mátrixegyenlet a (14) típusúra vezethető vissza transzponálással: A T Y T = B T 14

15 51 Megjegyzés Természetesen a (14), illetve a (15) mátrixegyenletek nemcsak az elemi bázistranszformáció módszerét alkalmazva, hanem bármely az egyenletrendszerek megoldására alkalmas eljárással megoldhatók, így Gauss-kiküszöböléssel is 6 Alkalmazás Általános bázistranszformáció Legyen adva a V (T test feletti) vektortér Legyen e 1, e 2, e n ; valamint e 1, e 2,,e n két bázisa Mindegyik bázis kifejezhető a másik bázis elemeivel: e 1 = ρ 11 e ρ 1n e n (17) e 2 = ρ 21 e ρ 2n e n e n = ρ n1 e ρ nn e n 61 Definíció Legyen V vektortér (T felett) és e 1,,e n valamint e 1, e n V két bázisa (17) szerint e 1, e n bázis elemei kifejezhetők az e 1, e n bázis elemeinek lineáris kombinációjaként Ebben 15

16 az előállításban szerepet játszó ρ 11 ρ 12 ρ 1n ρ R = 21 ρ 22 ρ 2n ρ n1 ρ n2 ρ nn mátrixot az e 1, e 2,,e n bázisról az e 1, e 2,,e n bázisra való átmenetmátrixnak nevezzük e 1 Ha bevezetjük az e e = 2 valamint az e n e = e 1 e 2 e n jelölést, akkor (17) a következő tömörebb formában is írható: e = Re Alkalmas R mátrixszal érvényes az e = R e összefüggés is R az e bázisról az e-re való átmenet mátrixa Az utóbbi két egyenlőségből behelyettesítéssel e = RR e valamint e = R Re következik Mivel a báziselőállítás egyértelmű, RR = E n, R R = E n ahonnan R = R 1 Innen egy igen fontos megállapítás vonható le: 16

17 62 Tétel Egy vektortér egyik bázisáról egy másikra való átmenetmátrix csakis nemelfajuló mátrix lehet 7 Gazdasági alkalmazás: Az ágazati kapcsolatok mérlegéről Tegyük fel, hogy egy ország gazdaságát, egy nagyvállalat termelését n szektorra bontották Az egyes szektorok által a kibocsátott termék értéke forintban x = (x 1, x 2,,x n ) Ez a bruttó kibocsátás vektora Az i-edik szektor a j-ediknek x ij értéket ad át, amely felhasználásra kerül a j-edik termelésében Az M mátrix elemei ezek az x ij számok x 11 x 12 x 1n M = x n1 x n2 x nn Ha M sorait összeadjuk, azaz az M 1 vektort képezzük, akkor megkapjuk az úgy nevezett termelő fogyasztást (Az 1 vektor definíciója: olyan oszlopvektor, amelynek mindegyik komponense 1) A valóságban mindig x > M1 A különbségvektor, azaz y = x M1 17

18 a nettó kibocsátás vektora Használni fogjuk az X mátrixot is, amelynek főátlójában az x 1, x 2,,x n számok állnak, a többi eleme 0 A következőképpen kapjuk meg az úgy nevezett technológiai mátrixot, amelyet A-val jelölünk: A = MX 1 Természetesen M = AX A bruttó és a nettó kibocsátások vektorai közötti kapcsolat: amelyből x = Ax + y, y = (E A)x és x = (E A) 1 y Az utóbbiak az ágazati kapcsolatok mérlegének alapvető összefüggései 8 Példa Számítsuk ki a következő mátrix inverzét A =

19 a 1 a 2 a 3 e 1 e 2 e 3 e e e a 1 a 3 e 1 e 2 e 3 e a e a 3 e 1 e 2 e 3 a a e e 1 e 2 e 3 a a a Az A mátrix inverze: A 1 =

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

1. Homogén lineáris egyenletrendszer megoldástere

1. Homogén lineáris egyenletrendszer megoldástere X HOMOGÉN LINEÁRIS EGYENLET- RENDSZEREK 1 Homogén lineáris egyenletrendszer megoldástere Homogén lineáris egyenletrendszer definíciója már szerepelt Olyan lineáris egyenletrendszert nevezünk homogénnek,

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

Bázistranszformáció és alkalmazásai 2.

Bázistranszformáció és alkalmazásai 2. Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39

5. Előadás. (5. előadás) Mátrixegyenlet, Mátrix inverze március 6. 1 / 39 5. Előadás (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 1 / 39 AX = B (5. előadás) Mátrixegyenlet, Mátrix inverze 2019. március 6. 2 / 39 AX = B Probléma. Legyen A (m n)-es és B (m l)-es

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak

10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak 10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:

Részletesebben

1. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: ; B = 8 7 2, 5 1. Számítsuk ki az A + B, A B, 3A, B mátrixokat!

1. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: ; B = 8 7 2, 5 1. Számítsuk ki az A + B, A B, 3A, B mátrixokat! . Mátrixok. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: [ ] [ ] π a A = ; B = 8 7, 5 x. 7, 5 ln y. Legyen 4 A = 4 ; B = 5 5 Számítsuk ki az A + B, A B, A, B mátrixokat!. Oldjuk

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak

LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak LINEÁRIS EGYENLETRENDSZEREK 004. október. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz 2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix

Részletesebben

1. Determinánsok. Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert:

1. Determinánsok. Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert: 1 Determinánsok 1 Bevezet definíció Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert: a 11 x 1 +a 12 x 2 = b 1 a 21 x 1 +a 22 x 2 = b 2 Szorozzuk meg az első egyenletet

Részletesebben

11. DETERMINÁNSOK. 11.1 Mátrix fogalma, műveletek mátrixokkal

11. DETERMINÁNSOK. 11.1 Mátrix fogalma, műveletek mátrixokkal 11 DETERMINÁNSOK 111 Mátrix fogalma, műveletek mátrixokkal Bevezetés A közgazdaságtanban gyakoriak az olyan rendszerek melyek jellemzéséhez több adat szükséges Például egy k vállalatból álló csoport minden

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer

8. Előadás. Megyesi László: Lineáris algebra, , oldal. 8. előadás Mátrix rangja, Homogén lineáris egyenletrendszer 8. Előadás Megyesi László: Lineáris algebra, 51. 56., 70. 74. oldal. Gondolkodnivalók Elemi bázistranszformáció 1. Gondolkodnivaló Most ne vegyük figyelembe, hogy az elemi bázistranszformáció során ez

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága 7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása

Részletesebben

LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I. éves nappali programtervező informatikus hallgatóknak évi tanév I. félév

LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I. éves nappali programtervező informatikus hallgatóknak évi tanév I. félév LINEÁRIS ALGEBRA (A, B, C) tematika (BSc) I éves nappali programtervező informatikus hallgatóknak 2010-2011 évi tanév I félév Vektoriális szorzat és tulajdonságai bizonyítás nélkül: Vegyes szorzat és tulajdonságai

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek 3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1

Részletesebben

Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós

Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós Lineáris algebra és a rang fogalma (el adásvázlat, 2010. szeptember 29.) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: (1) A mátrixalgebrával kapcsolatban: számtest

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y

Részletesebben

7. Előadás. Megyesi László: Lineáris algebra, oldal. 7. előadás Elemi bázistranszformáció

7. Előadás. Megyesi László: Lineáris algebra, oldal. 7. előadás Elemi bázistranszformáció 7. Előadás Megyesi László: Lineáris algebra, 57. 61. oldal. Gondolkodnivalók Bázis, dimenzió 1. Gondolkodnivaló Legyenek a v vektor koordinátái a v 1,..., v n bázisban: (1, α 2,..., α n ). Igazoljuk, hogy

Részletesebben

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága 7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása

Részletesebben

12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor

12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor 12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

Gauss-eliminációval, Cholesky felbontás, QR felbontás

Gauss-eliminációval, Cholesky felbontás, QR felbontás Közelítő és szimbolikus számítások 4. gyakorlat Mátrix invertálás Gauss-eliminációval, Cholesky felbontás, QR felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei

Részletesebben

Gauss elimináció, LU felbontás

Gauss elimináció, LU felbontás Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek

Részletesebben

Mátrixok, mátrixműveletek

Mátrixok, mátrixműveletek Mátrixok, mátrixműveletek 1 előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Mátrixok, mátrixműveletek p 1/1 Mátrixok definíciója Definíció Helyezzünk el n m elemet egy olyan téglalap

Részletesebben

Lineáris algebra. (közgazdászoknak)

Lineáris algebra. (közgazdászoknak) Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval

Részletesebben

9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz

9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz 9. gyakorlat Lineáris egyenletrendszerek megoldási módszerei folyt. Néhány kiegészítés a Gauss- és a Gauss Jordan-eliminációhoz. Mindkét eliminációs módszer műveletigénye sokkal kisebb, mint a Cramer-szabályé:

Részletesebben

Lineáris algebra (10A103)

Lineáris algebra (10A103) Lineáris algebra (10A103 Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli (beugróval, feltétele a Lineáris algebra gyakorlat

Részletesebben

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei

Norma Determináns, inverz Kondíciószám Direkt és inverz hibák Lin. egyenletrendszerek A Gauss-módszer. Lineáris algebra numerikus módszerei Indukált mátrixnorma Definíció A. M : R n n R mátrixnormát a. V : R n R vektornorma által indukált mátrixnormának nevezzük, ha A M = max { Ax V : x V = 1}. Az indukált mátrixnorma geometriai jelentése:

Részletesebben

MATEMATIKA FELADATGYŰJTEMÉNY

MATEMATIKA FELADATGYŰJTEMÉNY Pék Johanna MATEMATIKA FELADATGYŰJTEMÉNY Nem matematika alapszakos hallgatók számára Tartalomjegyzék Előszó iii. Lineáris algebra.. Mátrixok...................................... Lineáris egyenletrendszerek..........................

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35 9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 3. előadás: Mátrixok LU-felbontása Lócsi Levente ELTE IK 2013. szeptember 23. Tartalomjegyzék 1 Alsó háromszögmátrixok és Gauss-elimináció 2 Háromszögmátrixokról 3 LU-felbontás Gauss-eliminációval

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 7. gyakorlat Gyakorlatvezet : Bogya Norbert 2012. március 26. Ismétlés Tartalom 1 Ismétlés 2 Koordinátasor 3 Bázistranszformáció és alkalmazásai Vektorrendszer rangja Mátrix

Részletesebben

MA1143v A. csoport Név: december 4. Gyak.vez:. Gyak. kódja: Neptun kód:.

MA1143v A. csoport Név: december 4. Gyak.vez:. Gyak. kódja: Neptun kód:. MAv A. csoport Név:... Tekintsük az alábbi mátriot! A 7 a Invertálható-e az A mátri? Ha igen akkor bázistranszformációval határozza meg az inverzét! Ellenőrizze számításait! b Milyen egyéb mátritulajdonságokra

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

EGYSZERŰSÍTETT ALGORITMUS AZ ELEMI BÁZISCSERE ELVÉGZÉSÉRE

EGYSZERŰSÍTETT ALGORITMUS AZ ELEMI BÁZISCSERE ELVÉGZÉSÉRE Lipécz György* EGYSZERŰSÍTETT ALGORITMUS AZ ELEMI BÁZISCSERE ELVÉGZÉSÉRE AVAGY A SZÁMÍTÓGÉP-HASZNÁLAT LEHETŐSÉGE A LINEÁRIS ALGEBRA ÉS AZ OPERÁCIÓKUTATÁS ALAPJAINAK OKTATÁSÁBAN " Simplicitassigillum veri"

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 0. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 23. Sajátérték, sajátvektor, sajátaltér Tartalom Sajátérték, sajátvektor, sajátaltér 2 Gyakorló feladatok a zh-ra (rutinfeladatok)

Részletesebben

1. A kétszer kettes determináns

1. A kétszer kettes determináns 1. A kétszer kettes determináns 2 2-es mátrix inverze Tétel [ ] [ ] a c 1 d c Ha ad bc 0, akkor M= inverze. b d ad bc b a Ha ad bc = 0, akkor M-nek nincs inverze. A főátló két elemét megcseréljük, a mellékátló

Részletesebben

Egyenletek, egyenletrendszerek, matematikai modell. 1. Oldja meg az Ax=b egyenletrendszert Gauss módszerrel és adja meg az A mátrix LUfelbontását,

Egyenletek, egyenletrendszerek, matematikai modell. 1. Oldja meg az Ax=b egyenletrendszert Gauss módszerrel és adja meg az A mátrix LUfelbontását, Egyenletek egyenletrendszerek matematikai modell Oldja meg az A=b egyenletrendszert Gauss módszerrel és adja meg az A mátri LUfelbontását ahol 8 b 8 Oldja meg az A=b egyenletrendszert és határozza meg

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Lineáris algebra. =0 iє{1,,n}

Lineáris algebra. =0 iє{1,,n} Matek A2 (Lineáris algebra) Felhasználtam a Szilágyi Brigittás órai jegyzeteket, néhol a Thomas féle Kalkulus III könyvet. A hibákért felelosséget nem vállalok. Hiányosságok vannak(1. órai lin algebrai

Részletesebben

Bodó Bea, Somonné Szabó Klára Matematika 2. közgazdászoknak

Bodó Bea, Somonné Szabó Klára Matematika 2. közgazdászoknak ábra: Ábra Bodó Bea, Somonné Szabó Klára Matematika. közgazdászoknak IV. modul: Lineáris algebra 9. lecke: n-dimenziós vektorok Tanulási cél: n -dimenziós vektorok fogalmának megismerése, majd műveletek

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma.

Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma. Vektorterek Több esetben találkozhattunk olyan struktúrával, ahol az összeadás és a (valós) számmal való szorzás értelmezett, pl. a szabadvektorok esetében, vagy a függvények körében, vagy a mátrixok esetében.

Részletesebben

1. Geometria a komplex számsíkon

1. Geometria a komplex számsíkon 1. Geometria a komplex számsíkon A háromszög-egyenlőtlenség A háromszög-egyenlőtlenség (K1.4.3) Minden z,w C-re z +w z + w. Egyenlőség pontosan akkor áll, ha z és w párhuzamosak, és egyenlő állásúak, azaz

Részletesebben

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2.

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2. Vektorok. Melyek egyenlőek az alábbi vektorok közül? (a) (, 2, 0), (b) az (, 0, ) pontból a (2, 2, ) pontba mutató vektor, (c) ( 2,, ) ( 2,, 2), (d) [ 2 0 ], (e) 2. 0 2. Írjuk fel az x + y + 2z = 0 és

Részletesebben

Bevezetés a számításelméletbe I. Zárthelyi feladatok október 20.

Bevezetés a számításelméletbe I. Zárthelyi feladatok október 20. Bevezetés a számításelméletbe I. Zárthelyi feladatok 2011. október 20. 1. Határozzuk meg annak a síknak az egyenletét, amely átmegy a P(3;1; 1) ponton és nincs közös pontja az alábbi egyenletrendszerekkel

Részletesebben

i=1 λ iv i = 0 előállítása, melynél valamelyik λ i

i=1 λ iv i = 0 előállítása, melynél valamelyik λ i Az informatikus lineáris algebra dolgozat C részének lehetséges kérdései Az alábbi listában azok az állítások, tételek szerepelnek, melyeket a vizsgadolgozat C részében kérdezhetünk. Azok érnek 6 pontot,

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Bevezetés az algebrába 1

Bevezetés az algebrába 1 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Egyenletrendszerek H406 2016-10-03 Wettl Ferenc

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0 Tantárgy neve Lineáris algebra I Tantárgy kódja MTB1004 Meghirdetés féléve 2 Kreditpont 3k Összóraszám elm+gyak 2+0 Számonkérés módja kollokvium Előfeltétel tantárgyi kód MTB1003 Tantárgyfelelős neve Kurdics

Részletesebben

1. Mit jelent az, hogy egy W R n részhalmaz altér?

1. Mit jelent az, hogy egy W R n részhalmaz altér? Az informatikus lineáris algebra dolgozat B részének lehetséges kérdései Az alábbi listában azok a definíciók és állítások, tételek szerepelnek, melyeket a vizsgadolgozat B részében kérdezhetünk. A válaszoknál

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Rang, sajátérték. Dr. Takách Géza NyME FMK Informatikai Intézet takach/ február 15

Rang, sajátérték. Dr. Takách Géza NyME FMK Informatikai Intézet   takach/ február 15 Diszkrét matematika II, 2 el adás Rang, sajátérték Dr Takách Géza NyME FMK Informatikai Intézet takachinfnymehu http://infnymehu/ takach/ 25 február 5 Gyakorlati célok Ezen el adáson, és a hozzá kapcsolódó

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Diszkrét matematika II., 8. előadás. Vektorterek

Diszkrét matematika II., 8. előadás. Vektorterek 1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.

Részletesebben

A lineáris algebra forrásai: egyenletrendszerek, vektorok

A lineáris algebra forrásai: egyenletrendszerek, vektorok A lineáris algebra forrásai: egyenletrendszerek, vektorok 2016. február 23. A lineáris algebra forrásai: egyenletrendszerek, vektorok 2016. február 23. 1 / 75 Tartalom 1 Vektor A 2- és 3-dimenziós tér

Részletesebben

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő

Részletesebben

Hadamard-mátrixok Előadó: Hajnal Péter február 23.

Hadamard-mátrixok Előadó: Hajnal Péter február 23. Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Hadamard-mátrixok Előadó: Hajnal Péter 2012. február 23. 1. Hadamard-mátrixok Ezen az előadáson látásra a blokkrendszerektől független kombinatorikus

Részletesebben

NUMERIKUS MÓDSZEREK I. TÉTELEK

NUMERIKUS MÓDSZEREK I. TÉTELEK NUMERIKUS MÓDSZEREK I. TÉTELEK Szerkesztette: Balogh Tamás 014. január 19. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis. 1 Diagonalizálás Diagonalizálható mátrixok Ismétlés Legyen M,N T n n Az M és N hasonló, ha van olyan A lineáris transzformáció, hogy M is és N is az A mátrixa egy-egy alkalmas bázisban Az M és N pontosan

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem Debrecen, 2007/8 tanév, II. félév Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2007/8 tanév, II. félév 1 / 186 Félévközi

Részletesebben

I. VEKTOROK, MÁTRIXOK

I. VEKTOROK, MÁTRIXOK 217/18 1 félév I VEKTOROK, MÁTRIXOK I1 I2 Vektorok 1 A síkon derékszögű koordinátarendszerben minden v vektornak van vízszintes és van függőleges koordinátája, ezeket sorrendben v 1 és v 2 jelöli A v síkbeli

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar 2014. február 16. Losonczi László, Pap Gyula (DE, KTK) Gazdasági matematika II. 2014. február

Részletesebben

Egészrészes feladatok

Egészrészes feladatok Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges

Részletesebben

Matematika A2a LINEÁRIS ALGEBRA NAGY ATTILA

Matematika A2a LINEÁRIS ALGEBRA NAGY ATTILA LINEÁRIS ALGEBRA NAGY ATTILA 20160515 Tartalomjegyzék 1 Algebrai struktúrák 5 2 Lineáris tér (vektortér) 13 21 A vektortér fogalma 14 22 Vektorok lineáris függetlensége és függősége 18 23 Generátorrendszer,

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

1. Az euklideszi terek geometriája

1. Az euklideszi terek geometriája 1. Az euklideszi terek geometriája Bázishoz tartozó skaláris szorzat Emékeztető Az R n vektortérbeli v = λ 2... és w = λ 1 λ n µ 1 µ 2... µ n λ 1 µ 1 +λ 2 µ 2 +...+λ n µ n. Jele v,w. v,w = v T u, azaz

Részletesebben

2. előadás. Lineáris algebra numerikus módszerei. Mátrixok Mátrixműveletek Speciális mátrixok, vektorok Norma

2. előadás. Lineáris algebra numerikus módszerei. Mátrixok Mátrixműveletek Speciális mátrixok, vektorok Norma Mátrixok Definíció Az m n típusú (méretű) valós A mátrixon valós a ij számok alábbi táblázatát értjük: a 11 a 12... a 1j... a 1n.......... A = a i1 a i2... a ij... a in........... a m1 a m2... a mj...

Részletesebben

Lineáris algebra (10A103)

Lineáris algebra (10A103) Lineáris algebra (10A103) Kátai-Urbán Kamilla (1. előadás) Mátrixok 2019. február 6. 1 / 35 Bevezetés Előadás Tudnivalók (I.) Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Az előadáson készített

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

Gyakorló feladatok I.

Gyakorló feladatok I. Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,

Részletesebben

Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások

Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások 1. Feladat. (6p) Jelöljön. egy tetszőleges vektornormát, ill. a hozzá tartozó indukált mátrixnormát! Igazoljuk, hogy ha A

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

és n oszlopból áll, akkor m n-es mátrixról beszélünk. (Az oszlopok száma a mátrix vízszintes mérete, a sorok 2 3-as, a ij..

és n oszlopból áll, akkor m n-es mátrixról beszélünk. (Az oszlopok száma a mátrix vízszintes mérete, a sorok 2 3-as, a ij.. Biológia alapszak Matematika I A GY 6/7 félév III MÁTRIXOK SAJÁTÉRTÉK-FELADAT III Mátrixok Definíció Számok téglalap alakú táblázatban való elrendezését mátrix nak nevezzük Ha a táblázat m sorból és n

Részletesebben

Lineáris algebra. Közgazdász szakos hallgatóknak a Matematika A2a Vektorfüggvények tantárgyhoz tavaszi félév

Lineáris algebra. Közgazdász szakos hallgatóknak a Matematika A2a Vektorfüggvények tantárgyhoz tavaszi félév Lineáris algebra Közgazdász szakos hallgatóknak a Matematika Aa Vektorfüggvények tantárgyhoz 9. tavaszi félév Tartalomjegyzék. Komplex számok és polinomok.................... 4.. A komplex számok bevezetése,

Részletesebben

A mátrix típusát sorainak és oszlopainak száma határozza meg. Tehát pl. egy 4 sorból és 3 oszlopból álló mátrix 4 3- as típusú.

A mátrix típusát sorainak és oszlopainak száma határozza meg. Tehát pl. egy 4 sorból és 3 oszlopból álló mátrix 4 3- as típusú. 1. Vektorok, lineáris algebra 1.1. Mátrixok 1.1.1. Fogalmak, tételek Definíció A mátrix elemek általában számok táblázata téglalap alakú elrendezésben. Nyomtatott nagybetűvel jelölik ezen felül nyomtatásban

Részletesebben

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül

Részletesebben