Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )"

Átírás

1 Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor másrészt f(x + y = f ( (x 1, + (y 1, y 2 = f(x 1 + y 1, + y 2 = = ( 3(x 1 + y 1 + 2( + y 2, x 1 + y 1 ( + y 2 = = (3x 1 + 3y y 2, x 1 + y 1 y 2, f(x + f(y = f(x 1, + f(y 1, y 2 = (3x 1 + 2y 1, x 1 y 1 + (3 + 2y 2, y 2 = = (3x 1 + 2y y 2, x 1 y 1 + y 2 = = (3x 1 + 3y y 2, x 1 + y 1 y 2, így f(x + y = f(x + f(y, tehát f additív Másrészt f(cx = f ( c(x 1, = f(cx 1, c = (3cx 1 + 2c, cx 1 c, másrészt cf(x = c(3x 1 + 2, x 1 = (3cx 1 + 2c, cx 1 c, így f(cx = cf(x, azaz f homogén Mivel f additív és homogén, ezért lineáris 2 Lineáris-e az f : R 2 R 2 f(x, y = (x + y, leképezés? Legyen x = (x 1, R 2, c R Ekkor f(cx = f ( c(x 1, = f(cx 1, c = (cx 1 + c, c 2 1, másrészt cf(x = c(x 1 +, 1 = (cx 1 + c, c 1, így f(cx cf(x, tehát f nem homogén, így nem lineáris 1

2 2 3 Mutassuk meg, hogy ha f : R 2 R 2 lineáris, akkor f( = Ha f lineáris, akkor additív, így f(x + y = f(x + f(y Legyen x = y = Ekkor azaz f( + = f( + f(, f( = 2f(, így f( = 4 Lineáris-e az f : R 2 R 2 f(x, y = (x + y + 1, x y leképezés? Mivel f( = (1, (,, ezért f nem lineáris 5 Tekintsük az f : R 2 R 2, f(x, y = (2x + 2y, 2x + 5y lineáris leképezést! a Írjuk föl a lineáris leképezés (természetes bázisra vonatkozó mátrixát! b Határozzuk meg a (3, 1 vektor képét a lineáris leképzés mátrixának segítségével! c Írjuk föl a lineáris leképzés karakterisztikus polinomját! d Írjuk föl a lineáris leképzés karakterisztikus egyenletét! e Határozzuk meg a lineáris leképezés sajátértékeit! f Határozzuk a különböz sajátértékekhez tartozó sajátvektorokat! a A lineáris leképezés természetes bázisra vonatkozó mátrixát úgy írhatjuk föl, hogy megnézzük a természetes bázis tagjain felvett értékeket, majd ezekb l, mint oszlopvektorokból képezünk egy mátrixot: f(1, = (2, 2, f(, 1 = (2, 5 Így a lineáris leképzés mátrixa A = (

3 b Minden lineáris leképzés a mátrixával balról szorzásként hat, így a v(3, 1 vektor képe ( ( ( f(v = Av = = c A karakterisztikus polinom a det(a λe polinom Behelyettesítve a ( 2 λ 2 det 2 5 λ determinánshoz jutunk, melyet kiszámolva, majd elvégzve a zárójelfelbontásokat a polinomot kapjuk (2 λ(5 λ 4 = λ 2 7λ + 6 d A karakterisztikus egyenlet a det(a λe = egyenlet, ami jelen esetben a λ 2 7λ+6 = másodfokú egyenlet e A sajátértékek a karakterisztikus egyenlet gyökei, így meg kell oldanunk a λ 2 7λ+6 = egyenletet: így λ 1 = 1, λ 2 = 6 λ 1,2 = 7 ± = 7 ± 5 2, f A λ sajátértékhez tartozó sajátvektorok azok az x vektorok, melykre Ax = λx teljesül Ezt átrendezve (A λex = adódik El ször meghatározzuk a λ 1 = 1 sajátértékhez tartozó sajátvektorokat Ekkor ( ( ( A 1 E = = Így meg kell oldanunk a ( ( ( x1 = egyenletrendszert Vegyük észre, hogy az alapmátrix második sora az els sor kétszerese, így az elhagyható, mivel az egyenletrendszer homogén Tehát a megoldandó lineáris egyenletrendszer x = Az egyik ismeretlent szabad paraméternek választjuk Legyen = t R \ {} Ekkor x 1 = 2t Tehát a λ 1 = 1 sajátértékhez tartozó összes sajátvektorok halmaza (amit sajátaltérnek is nevezünk {( 2t S λ1 = t R \ {}} t Meghatározzuk a λ 2 = 6 sajátértékhez tartozó sajátvektorokat: ( ( ( A 6 E = =

4 4 Így meg kell oldanunk a ( ( ( x1 = egyenletrendszert Vegyük észre, hogy az alapmátrix els sora a második sor mínusz kétszerese, így az elhagyható, mivel az egyenletrendszer homogén Tehát a megoldandó lineáris egyenletrendszer 2x 1 = Az egyik ismeretlent szabad paraméternek választjuk Legyen x 1 = t R \ {} Ekkor = 2t Tehát a λ 2 = 6 sajátértékhez tartozó összes sajátvektorok halmaza {( t S λ2 = t R \ {}} 2t 6 Jelentse f a sík x-tengelyre való tükrözésének mátrixát! a Írjuk föl a lineáris leképezés (természetes bázisra vonatkozó mátrixát! b Határozzuk meg a (2, 5 vektor képét a lineáris leképzés mátrixának segítségével! c Írjuk föl a lineáris leképzés karakterisztikus polinomját! d Írjuk föl a lineáris leképzés karakterisztikus egyenletét! e Határozzuk meg a lineáris leképezés sajátértékeit! f Határozzuk a különböz sajátértékekhez tartozó sajátvektorokat! a Mivel f(1, = (1, és f(, 1 = (, 1, ezért a lineáris leképezés mátrixa ( 1 A = 1 b Minden lineáris leképzés a mátrixával balról szorzásként hat, így a v(2, 5 vektor képe ( ( ( f(v = Av = = c A karakterisztikus polinom a det(a λe polinom Behelyettesítve a ( 1 λ det 1 λ determinánshoz jutunk, melyet kiszámolva, majd elvégzve a zárójelfelbontásokat a polinomot kapjuk (1 λ( 1 λ = λ 2 1 d A karakterisztikus egyenlet a det(a λe = egyenlet, ami jelen esetben a λ 2 1 = másodfokú egyenlet e A sajátértékek a karakterisztikus egyenlet gyökei, így meg kell oldanunk a λ 2 1 = egyenletet, amib l λ 1 = 1, λ 2 = 1 adódik

5 f A λ sajátértékhez tartozó sajátvektorok azok az x vektorok, melykre Ax = λx teljesül Ezt átrendezve (A λex = adódik El ször meghatározzuk a λ 1 = 1 sajátértékhez tartozó sajátvektorokat Ekkor A 1 E = ( 1 1 ( 1 1 = ( 2 5 Így meg kell oldanunk a ( 2 ( ( x1 = egyenletrendszert Vegyük észre, hogy az alapmátrix második sora csupa nulla elemekb l áll, így az elhagyható, mivel az egyenletrendszer homogén Tehát a megoldandó lineáris egyenletrendszer 2 =, amib l = Az x 1 ismeretlent szabad paraméternek választhatjuk Legyen x 1 = t R \ {} Tehát a λ 1 = 1 sajátértékhez tartozó összes sajátvektorok halmaza (amit sajátaltérnek is nevezünk {( t S λ1 = t R \ {}} Meghatározzuk a λ 2 = 1 sajátértékhez tartozó sajátvektorokat: ( ( ( A ( 1 E = + = 1 1 Így meg kell oldanunk a ( 2 ( ( x1 = egyenletrendszert Vegyük észre, hogy az alapmátrix második sora csupa nulla elemb l áll, így az elhagyható, mivel az egyenletrendszer homogén Tehát a megoldandó lineáris egyenletrendszer 2x 1 =, amib l x 1 = adódik Az ismeretlent szabad paraméternek választjuk Legyen = t R \ {} Tehát a λ 2 = 1 sajátértékhez tartozó összes sajátvektorok halmaza {( S λ2 = t R \ {}} t 7 Tekintsük az alábbi mátrixszal adott valós tér fölötti lineáris transzformációt A = a Írjuk föl a lineáris leképzés karakterisztikus polinomját! b Írjuk föl a lineáris leképzés karakterisztikus egyenletét! c Határozzuk meg a lineáris leképezés sajátértékeit! d Határozzuk meg a különböz sajátértékekhez tartozó sajátvektorokat!

6 6 a A karakterisztikus polinom 2 λ 4 8 det(a λe = det 6 8 λ 14 = ( 2 λ(8 λ( 5 λ λ (8 λ + 42( 2 λ + 24( 5 λ = = λ 3 + λ 2 + 4λ 4 b A karakterisztikus egyenlet λ 3 + λ 2 + 4λ 4 = c A sajátértékek a karakterisztikus egyenlet gyökei, azaz a λ 3 + λ 2 + 4λ 4 = egyenlet megoldásai Az els két tagból emeljünk ki λ 2 -et, a második két tagból pedig 4-et Majd alakítsuk szorzattá az egyenlet bal oldalát: λ 3 + λ 2 + 4λ 4 = λ 2 (1 λ + 4(λ 1 = (λ 1(4 λ 2 = Egy szorzat csak úgy lehet nulla, ha valamelyik tényez je nulla, így az egyenlet megoldásai, azaz a sajátértékek λ 1 = 1, λ 2 = 2, λ 3 = 2 d A λ sajátértékhez tartozó sajátvektorok azok az x vektorok, melykre Ax = λx teljesül Ezt átrendezve (A λex = adódik El ször meghatározzuk a λ 1 = 1 sajátértékhez tartozó sajátvektorokat Ekkor A 1 E = = Így meg kell oldanunk a x 1 = egyenletrendszert Elimináljuk az egyenletrendszer mátrixát, azaz az els sor 2-szeresét adjuk hozzá a második sorhoz és az els sor 1-szeresét adjuk hozzá a harmadik sorhoz Ezután a második sor 1-szeresét adjuk hozzá a harmadik sorhoz:

7 Így az egyenletrendszer 3x = + 2 = Legyen = t R\{} Ekkor = 2t Ezeket az els egyenletbe behelyettesítve 3x 1 + 8t 8t =, azaz x 1 = Tehát a λ 1 = 1 sajátértékhez tartozó összes sajátvektorok halmaza S λ1 = 2t t R \ {} t Most meghatározzuk a λ 2 = 2 sajátértékhez tartozó sajátvektorokat Ekkor A 2 E = = Így meg kell oldanunk a x 1 = egyenletrendszert Elimináljuk az egyenletrendszer mátrixát Els lépésben az els sort osszuk el 4-gyel, majd az els sor 6-szorosát adjuk hozzá a második sorhoz és az els sor 3-szorosát adjuk hozzá a harmadik sorhoz Ezután a második sor 1/2-szeresét adjuk hozzá a harmadik sorhoz: Így a megoldandó egyenletrendszer x = 2 = A második egyenletb l = adódik Ezt behelyettesítve az els egyenletbe azt kapjuk, hogy x 1 = Legyen = t R \ {} Ekkor x 1 = t Tehát a λ 2 = 2 sajátértékhez tartozó összes sajátvektorok halmaza S λ2 = t t t R \ {} Most meghatározzuk a λ 2 = 2 sajátértékhez tartozó sajátvektorokat Ekkor A + 2 E = =

8 8 Így meg kell oldanunk a x 1 = egyenletrendszert Elimináljuk az egyenletrendszer mátrixát Els lépésben a harmadik sort osszuk el 3-al, és cseréljük fel az els és harmadik sort Az els sor 6-szorosát adjuk hozzá a harmadik sorhoz, majd a második sor 1-szeresét adjuk hozzá a harmadik sorhoz: Így a megoldandó egyenletrendszer x 1 + = 4 8 = A második egyenletb l = 2 adódik Legyen = t R \ {} Ekkor = 2t Az els egyenletb l x 1 = t adódik Tehát a λ 3 = 2 sajátértékhez tartozó összes sajátvektorok halmaza S λ3 = t 2t t R \ {} t 8 Tekintsük az alábbi mátrixszal adott valós tér fölötti lineáris transzformációt A = a Írjuk föl a lineáris leképzés karakterisztikus polinomját! b Írjuk föl a lineáris leképzés karakterisztikus egyenletét! c Határozzuk meg a lineáris leképezés sajátértékeit! d Határozzuk a legkisebb sajátértékhez tartozó sajátvektorokat! a A karakterisztikus polinom det(a λe = det b A karakterisztikus egyenlet 1 λ λ 4 5 λ (1 λ(3 λ(5 λ = = (1 λ(3 λ(5 λ

9 9 c A sajátértékek a karakterisztikus egyenlet gyökei, azaz a (1 λ(3 λ(5 λ = egyenlet megoldásai Egy szorzat csak úgy lehet nulla, ha valamelyik tényez je nulla, így az egyenlet megoldásai, azaz a sajátértékek λ 1 = 1, λ 2 = 3, λ 3 = 5 d A λ sajátértékhez tartozó sajátvektorok azok az x vektorok, melykre Ax = λx teljesül Ezt átrendezve (A λex = adódik El ször meghatározzuk a λ 1 = 1 sajátértékhez tartozó sajátvektorokat Ekkor A 1 E = = Így meg kell oldanunk a x 1 = egyenletrendszert Elimináljuk az egyenletrendszer mátrixát, azaz az els sor 1-szeresét adjuk hozzá a második sorhoz Ezután a második sor 4/3-szorosát adjuk hozzá a harmadik sorhoz: Így az egyenletrendszer 2 = 3 = Az utolsó egyenletb l =, ezt behelyettesítve a második egyenletbe = adódik Legyen x 1 = t R \ {} Tehát a λ 1 = 1 sajátértékhez tartozó összes sajátvektorok halmaza S λ1 = t t R \ {} 9 Egy szerkezet valamely pontjához tartozó feszültségállapotot alábbi mátrix jellemez:

10 [MP a] Határozzuk meg a f feszültségek nagyságát és a hozzájuk tartozó feszültségi f irányokat! A f feszültségek a transzformációhoz tartozó sajátértékek, a f irányok pedig az egységnyi hosszúságú sajátvektorok A sajátértékek a karakterisztikus egyenlet gyökei A karakterisztikus polinom det(a λe = det A karakterisztikus egyenlet 5 λ λ 25 λ = (5 λ(3 + λ(25 λ 9(25 λ = (25 λ ( (5 λ(3 + λ 9 = = (25 λ(λ 2 2λ 24 (25 λ(λ 2 2λ 24, melynek megoldásai, azaz a f feszültségek λ 1 = 6 [MPa], λ 2 = 25 [MPa], λ 3 = 4 [MPa] El ször meghatározzuk a λ 1 = 6 sajátértékhez tartozó sajátvektorokat Ekkor 5 3 A 6 E = = Így meg kell oldanunk a x 1 =

11 egyenletrendszert Vegyük észre, hogy a második sor az els 3-szorosa, így az elhagyható A harmadik egyenletb l = adódik Az els egyenletb l x 1 = 3 Ha = t R \ {}, akkor x 1 = 3t Tehát a λ 1 = 6 sajátértékhez tartozó összes sajátvektorok halmaza S λ1 = 3t t t R \ {} Mivel a f iránynak egységnyi hosszúnak kell lenni, ezért 9t 2 + t 2 = 1 is kell, hogy teljesüljön, azaz t = 1/ 1 Így a λ 1 -hez tartozó f irány n 1 = Meghatározzuk a λ 2 = 25 sajátértékhez tartozó sajátvektorokat: 5 3 A 25 E = = Így meg kell oldanunk a x 1 egyenletrendszert A harmadik egyenlet elhagyható Az els egyenletet 5-el osztva, majd annak 6-szorosát a második sorhoz hozzáadva adódik Így a megoldandó egyenletrendszer 5x = 91 = = A második egyenletb l = Ezt az els egyenletbe visszahelyettesítve x 1 = adódik Tehát a λ 2 = 25 sajátértékhez tartozó összes sajátvektorok halmaza S λ2 = t R \ {} t Mivel a f iránynak egységnyi hosszúnak kell lenni, ezért t 2 = 1 is kell, hogy teljesüljön, azaz t = 1 Így a λ 2 -höz tartozó f irány n 2 = 1

12 12 Meghatározzuk a λ 3 = 4 sajátértékhez tartozó sajátvektorokat: 5 3 A + 4 E = = Így meg kell oldanunk a x 1 = egyenletrendszert Az els egyenlet a második 3-szorosa, így az elhagyható A harmadik egyenletb l = A második egyenletb l = 3x 1 adódik Legyen x 1 = t R \ {} Ekkor = 3t Tehát a λ 3 = 4 sajátértékhez tartozó összes sajátvektorok halmaza S λ3 = t 3t t R \ {} Mivel a f iránynak egységnyi hosszúnak kell lenni, ezért t 2 + 9t 2 = 1 is kell, hogy teljesüljön, azaz t = 1/ 1 Így a λ 3 -hoz tartozó f irány 1 1 n 3 = 3 1

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 0. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 23. Sajátérték, sajátvektor, sajátaltér Tartalom Sajátérték, sajátvektor, sajátaltér 2 Gyakorló feladatok a zh-ra (rutinfeladatok)

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

Diszkrét Matematika II.

Diszkrét Matematika II. Orosz Ágota Kaiser Zoltán Diszkrét Matematika II. példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika II. példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

y + a y + b y = r(x),

y + a y + b y = r(x), Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó

Részletesebben

és n oszlopból áll, akkor m n-es mátrixról beszélünk. (Az oszlopok száma a mátrix vízszintes mérete, a sorok 2 3-as, a ij..

és n oszlopból áll, akkor m n-es mátrixról beszélünk. (Az oszlopok száma a mátrix vízszintes mérete, a sorok 2 3-as, a ij.. Biológia alapszak Matematika I A GY 6/7 félév III MÁTRIXOK SAJÁTÉRTÉK-FELADAT III Mátrixok Definíció Számok téglalap alakú táblázatban való elrendezését mátrix nak nevezzük Ha a táblázat m sorból és n

Részletesebben

Geometria II gyakorlatok

Geometria II gyakorlatok Geometria II gyakorlatok Kovács Zoltán Copyright c 2011 Last Revision Date: 2012. május 8. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát technikával készült, a megjelenés

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

5. Lineáris rendszerek

5. Lineáris rendszerek 66 MAM43A előadásjegyzet, 2008/2009 5 Lineáris rendszerek 5 Lineáris algebrai előismeretek Tekintsük az a x + a 2 x 2 = b 5 a 2 x + a 22 x 2 = b 2 52 lineáris egyenletrendszert Az egyenletben szereplő

Részletesebben

25 i, = i, z 1. (x y) + 2i xy 6.1

25 i, = i, z 1. (x y) + 2i xy 6.1 6 Komplex számok megoldások Lásd ábra z = + i, z = + i, z = i, z = i z = 7i, z = + 5i, z = 5i, z = i, z 5 = 9, z 6 = 0 Teljes indukcióval 5 Teljes indukcióval 6 Az el z feladatból következik z = z = =

Részletesebben

Magasabbfokú egyenletek

Magasabbfokú egyenletek 86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 9 IX MÁTRIxOk 1 MÁTRIx FOGALmA, TULAJDONSÁGAI A mátrix egy téglalap alakú táblázat, melyben az adatok, a mátrix elemei, sorokban és oszlopokban vannak elhelyezve Az (1) mátrixnak

Részletesebben

Differenciálegyenletek megoldása próbafüggvény-módszerrel

Differenciálegyenletek megoldása próbafüggvény-módszerrel Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós

Részletesebben

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27. Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága 7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása

Részletesebben

Példatár Lineáris algebra és többváltozós függvények

Példatár Lineáris algebra és többváltozós függvények Példatár Lineáris algebra és többváltozós függvények Simonné Szabó Klára. február 4. Tartalomjegyzék. Integrálszámítás.. Racionális törtek integrálása...................... Alapfeladatok..........................

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis. 1 Diagonalizálás Diagonalizálható mátrixok Ismétlés Legyen M,N T n n Az M és N hasonló, ha van olyan A lineáris transzformáció, hogy M is és N is az A mátrixa egy-egy alkalmas bázisban Az M és N pontosan

Részletesebben

Bevezetés a számításelméletbe I. Zárthelyi feladatok október 20.

Bevezetés a számításelméletbe I. Zárthelyi feladatok október 20. Bevezetés a számításelméletbe I. Zárthelyi feladatok 4. október.. A p paraméter milyen értékére esnek egy síkba az A(; 3; 3), B(3; 4; ), C(4; 6; ) és D(p; ; 5) pontok?. Megadható-e R 4 -ben négy darab

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

1. Az euklideszi terek geometriája

1. Az euklideszi terek geometriája 1. Az euklideszi terek geometriája Bázishoz tartozó skaláris szorzat Emékeztető Az R n vektortérbeli v = λ 2... és w = λ 1 λ n µ 1 µ 2... µ n λ 1 µ 1 +λ 2 µ 2 +...+λ n µ n. Jele v,w. v,w = v T u, azaz

Részletesebben

4. Lineáris rendszerek

4. Lineáris rendszerek 60 Hartung Ferenc: Differenciálegyenletek, MA22i, MA623d, 2006/07 4 Lineáris rendszerek 4 Lineáris algebrai előismeretek Legyen A egy n n-es mátrix, I az n n-es egységmátrix A pλ := deta λi n-edfokú polinomot

Részletesebben

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,,3.(a),(b),(), 6.(a) feladatokra 1. Oldjuk meg a következő kezdeti érték feladatot: y 1 =, y(0) = 3, 1 x y (0) = 1. Ha egy

Részletesebben

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága 7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak

LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak LINEÁRIS EGYENLETRENDSZEREK 004. október. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

Numerikus matematika vizsga

Numerikus matematika vizsga 1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

Lineáris algebra. négyzetes mátrix: n x n-es mátrix oszlop mátrix, oszlop vektor: egyetlen oszlopból áll

Lineáris algebra. négyzetes mátrix: n x n-es mátrix oszlop mátrix, oszlop vektor: egyetlen oszlopból áll Lineáris algebra Def: Def: Mátrix: egy téglalap alakú számtáblázat, minden helyén valós, vagy komplex szám áll A = [a i j n x m n: A sorainak száma, m: A oszlopainak száma négyzetes mátrix: n x n-es mátrix

Részletesebben

Komplex számok algebrai alakja

Komplex számok algebrai alakja Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z

Részletesebben

Egyenletek, egyenlőtlenségek V.

Egyenletek, egyenlőtlenségek V. Egyenletek, egyenlőtlenségek V. DEFINÍCIÓ: (Másodfokú egyenlet) Az ax + bx + c = 0 alakban felírható egyenletet (a, b, c R; a 0), ahol x a változó, másodfokú egyenletnek nevezzük. TÉTEL: Az ax + bx + c

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2

Részletesebben

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 ) Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden

Részletesebben

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0 Tantárgy neve Lineáris algebra I Tantárgy kódja MTB1004 Meghirdetés féléve 2 Kreditpont 3k Összóraszám elm+gyak 2+0 Számonkérés módja kollokvium Előfeltétel tantárgyi kód MTB1003 Tantárgyfelelős neve Kurdics

Részletesebben

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek 3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

FELADATGY JTEMÉNY MATEMATIKA I. GYAKORLATHOZ KÉZI CSABA

FELADATGY JTEMÉNY MATEMATIKA I. GYAKORLATHOZ KÉZI CSABA FELADATGY JTEMÉNY MATEMATIKA I. GYAKORLATHOZ KÉZI CSABA KÉZI CSABA El szó Ez a feladatgy jtemény a Debreceni Egyetem M szaki Karának Matematika I. tantárgyának tematikájához szorosan illeszkedik. Célja

Részletesebben

Tartalomjegyzék. Bevezetés 17. I. A lineáris algebra forrásai Vektorok 29. A könyvben követett elvek 18 A könyv felépítése 21 Szoftverek 23

Tartalomjegyzék. Bevezetés 17. I. A lineáris algebra forrásai Vektorok 29. A könyvben követett elvek 18 A könyv felépítése 21 Szoftverek 23 Tartalomjegyzék Bevezetés 17 A könyvben követett elvek 18 A könyv felépítése 21 Szoftverek 23 I. A lineáris algebra forrásai 25 1 Vektorok 29 Vektorok a 2- és 3-dimenziós térben 29 Irányított szakasz,

Részletesebben

1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3

1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 Tartalomjegyzék 1. Műveletek valós számokkal... 1 1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 2. Függvények... 4 2.1. A függvény

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2011 Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright Az Olvasó most egy egyetemi jegyzetet tart

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

1. A vektor és a vektortér fogalma

1. A vektor és a vektortér fogalma 1. A vektor és a vektortér fogalma Célunk: a vektor és a vektortér fogalmának minél tágabb értelmezése. Ez azért hasznos, mert így a síkvektorok körében használatos egyes fogalmak és tételek átvihet k

Részletesebben

Bázistranszformáció és alkalmazásai 2.

Bázistranszformáció és alkalmazásai 2. Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

Irracionális egyenletek, egyenlôtlenségek

Irracionális egyenletek, egyenlôtlenségek 9 Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek /I a) Az egyenlet bal oldala a nemnegatív számok halmazán, a jobb oldal minden valós szám esetén

Részletesebben

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák)

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák) Feladatok megoldásokkal az ötödik gyakorlathoz Taylor polinom, szöveges szélsőérték problémák) 1. Feladat. Írjuk fel az fx) = e x függvény a = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével

Részletesebben

Diszkrét matematika feladatok

Diszkrét matematika feladatok gyakorlat Diszkrét matematika feladatok 205/6 tanév, I. félév. Bizonyítsa be teljes indukcióval az alábbi állításokat! n(n + ) (a) + 2 + + n = 2 (b) 2 + 2 2 + + n 2 n(n + )(2n + ) = 6 ( ) 2 n(n + ) (c)

Részletesebben

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013 UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS

Részletesebben

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 9 IX Magasabbrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk n-ed rendű differenciálegyenletek Az alakú ahol n-edrendű differenciálegyenlet általános megoldása tetszőleges

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem Debrecen, 2009/2010 tanév, II. félév Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 1 / 180 Félévközi

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

Komplex számok trigonometrikus alakja

Komplex számok trigonometrikus alakja Komplex számok trigonometrikus alakja 015. február 15. 1. Alapfeladatok 1. Feladat: Határozzuk meg az alábbi algebrai alakban adott komplex számok trigonometrikus alakját! z 1 = 4 + 4i, z = 4 + i, z =

Részletesebben

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc Dr. Kersner Róbert 007 Tartalomjegyzék Előszó ii. Determináns. Mátrixok 6 3. Az inverz mátrix 9 4. Lineáris egyenletrendszerek 5. Lineáris

Részletesebben

11. DETERMINÁNSOK. 11.1 Mátrix fogalma, műveletek mátrixokkal

11. DETERMINÁNSOK. 11.1 Mátrix fogalma, műveletek mátrixokkal 11 DETERMINÁNSOK 111 Mátrix fogalma, műveletek mátrixokkal Bevezetés A közgazdaságtanban gyakoriak az olyan rendszerek melyek jellemzéséhez több adat szükséges Például egy k vállalatból álló csoport minden

Részletesebben

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2) Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Alfa tanár úr 5 tanulót vizsgáztatott matematikából. Az elért pontszámokat véletlen sorrendben írta

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Megoldások november

IV. INTEGRÁLSZÁMÍTÁS Megoldások november IV. INTEGRÁLSZÁMÍTÁS Megoldások 009. november Határozatlan integrálás.05. + C + C.06. + C + C.07. ( ( 5 5 + C.08. ( ( + 5 5 + + C.09. + ( + ln + + C.. ( + ( + ( + 5 5 + + C.. + ( + ( + ( + + ( + ( + +

Részletesebben

Statikailag határozatlan tartó vizsgálata

Statikailag határozatlan tartó vizsgálata Statikailag határozatlan tartó vizsgálata Készítette: Hénap Gábor henapg@mm.bme.hu E E P MT A y F D E E d B MT p C x a b c Adatok: a = m, p = 1 N, b = 3 m, F = 5 N, c = 4 m, d = 5 mm. m A kés bbikekben

Részletesebben

Lagrange-féle multiplikátor módszer és alkalmazása

Lagrange-féle multiplikátor módszer és alkalmazása Eötvös Loránd Tudományegyetem Természettudományi Kar Nemesné Jónás Nikolett Lagrange-féle multiplikátor módszer és alkalmazása Matematika BSc, Matematikai elemz szakirány Témavezet : Szekeres Béla János,

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

Lineáris algebra - jegyzet. Kupán Pál

Lineáris algebra - jegyzet. Kupán Pál Lineáris algebra - jegyzet Kupán Pál Tartalomjegyzék fejezet Vektorgeometria 5 Vektorok normája Vektorok skaláris szorzata 4 3 Vektorok vektoriális szorzata 5 fejezet Vektorterek, alterek, bázis Vektorterek

Részletesebben

1. Lineáris transzformáció

1. Lineáris transzformáció Lineáris transzformáció Lineáris transzformáció mátrixának felírása eg adott bázisban: Emlékeztető: Legen B = {u,, u n } eg tetszőleges bázisa az R n -nek, Eg tetszőleges v R n vektor egértelműen felírható

Részletesebben

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból A vizsga formája: Feladatlap az adott évfolyam anyagából, a megoldásra fordítható idő 60 perc.

Részletesebben

NÉVMUTATÓ. Beke Manó, 17 Bellman, R., 310, 398 Bevilacqua, R., 93 Boros Tibor, 459, 464 Boullion, T. L., 109 Bunyakovszkij, V. J.

NÉVMUTATÓ. Beke Manó, 17 Bellman, R., 310, 398 Bevilacqua, R., 93 Boros Tibor, 459, 464 Boullion, T. L., 109 Bunyakovszkij, V. J. NÉVMUTATÓ Beke Manó, 17 Bellman, R., 310, 398 Bevilacqua, R., 93 Boros Tibor, 459, 464 Boullion, T. L., 109 Bunyakovszkij, V. J., 155 157 Cauchy, A. L., 155 157 Cayley, A., 272, 327 Codenotti, B., 93 Cramer,

Részletesebben

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés Nagyon könnyen megfigyelhetjük, hogy akármilyen két számmal elindítunk egy Fibonacci sorozatot, a sorozat egymást követő tagjainak

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

Kibernetika korábbi vizsga zárthelyi dolgozatokból válogatott tesztkérdések Figyelem! Az alábbi tesztek csak mintául szolgálnak a tesztkérdések megoldásához, azaz a bemagolásuk nem jelenti a tananyag elsajátítását

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

Matematika MSc Építőmérnököknek. Szerző: Simon Károly

Matematika MSc Építőmérnököknek. Szerző: Simon Károly Matematika MSc Építőmérnököknek Szerző: Simon Károly Matematika MSc Építőmérnököknek A jegyzet nagyobb részét Dr. Simon Bakos Erzsébet gépelte Latex szövegszerkesztőben. Tartalomjegyzék 1. Az A-ben tanult

Részletesebben

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor Bevezetés a számításelméletbe I. feladatgyűjtemény Szeszlér Dávid, Wiener Gábor Tartalomjegyzék Előszó 2 1. Feladatok 5 1.1. Térbeli koordinátageometria........................... 5 1.2. Vektortér, altér..................................

Részletesebben

Előadásvázlat a Lineáris algebra II. tárgyhoz

Előadásvázlat a Lineáris algebra II. tárgyhoz Előadásvázlat a Lineáris algebra II. tárgyhoz Kovács Zoltán 2005. január 4. Tartalomjegyzék 1. Euklideszi vektorterek 3 1.1. Bilineáris és kvadratikus formák, skaláris szorzatok................ 3 1.2.

Részletesebben