Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek"

Átírás

1 Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M május május / 36

2 Tartalom 1 Mátrixhatványok konvergenciája 2 Differenciaegyenletrendszerek 3 Differenciaegyenletek alkalmazásai 4 Differenciálegyenlet-rendszerek május / 36

3 Mátrixhatványok konvergenciája 1 Mátrixhatványok konvergenciája 2 Differenciaegyenletrendszerek 3 Differenciaegyenletek alkalmazásai 4 Differenciálegyenlet-rendszerek május / 36

4 Mátrixhatványok konvergenciája O-hoz konvergálás T Egy A C n n mátrixra lim k A k = O pontosan akkor teljesül, ha ρ(a) < 1. B ( ) A = CJC 1 A k = CJ k C 1 Egy m m-es Jordan-blokkra λ k ( k ( 1) λ k 1... k ) m 1 λ k m+1 J k 0 λ λ = k (... k ) m 2 λ k m λ k így lim k J k = O esetén λ k 0 λ < 1. ( ) λ < 1 esetén ( ) k λ k i ki λ k i 0 i i! május / 36

5 Mátrixhatványok konvergenciája Neumann-sor T Egy A C n n mátrixra k=0 A k pontosan akkor konvergens, ha ρ(a) < 1, és ez esetben k=0 A k = (I A) 1 B ( ) k=0 A k konvergens k=0 J k λ konvergens minden Jordan-blokkra k=0 λ k konvergens λ < 1. ( ) ρ(a) < 1 lim k A k = O (I A)(I + A + A A k 1 ) = I A k I I + A + A A k konvergens és k=0 A k = (I A) május / 36

6 Mátrixhatványok konvergenciája Konvergens mátrixhatványok T Az A C n n mátrixra lim k Ak pontosan akkor konvergens, ha ρ(a) < 1 vagy, ha ρ(a) = 1 ahol λ = 1 az egyetlen sajátérték a spektrálkörön, és a λ = 1 geometriai és algebrai multiplicitása azonos. Konvergencia esetén lim k Ak = P 1, az N (A I)-re az O(A I) mentén való vetítés mátrixa (az 1-hez tartozó spektrálvetítő). B Ha ρ(a) > 1 a hatványok divergálnak, ha ρ(a) < 1, O-hoz konvergálnak. Marad az ρ(a) = 1 eset. Ha a spektrálkörön van 1-től különböző sajátérték, akkor a hozzá tartozó Jordan-blokk hatványainak főátlóiban az ce kiφ hatványok végtelen osszcilláló sorozatot adnak, ami miatt A k is divergens marad május / 36

7 Mátrixhatványok konvergenciája Ha λ = 1-hez tartozik egy m > 1 rendű Jordan-blokk, akkor annak hatványai divergensek: 1 ( k) ( 1... k ) ( m k ) m Marad az az eset, hogy az 1-hez tartozó minden Jordan-blokk 1 1-es (I k I, tehát konvergens). Ekkor, ha az 1 multiplicitása s, akkor [ ] [ A k = CJ k C 1 Is O = C O B k C 1 Is = [X 1 X 2 ] O [ ] [ ] k Is O Y T [X 1 X 2 ] 1 = X O O 1 Y1 T = P 1 Y T 2 ] [ ] O Y T 1 B k Y T május / 36

8 Differenciaegyenletrendszerek 1 Mátrixhatványok konvergenciája 2 Differenciaegyenletrendszerek 3 Differenciaegyenletek alkalmazásai 4 Differenciálegyenlet-rendszerek május / 36

9 Differenciaegyenletrendszerek Fibonacci-sorozat explicit alakja P A Fibonacci-sorozat F 0 = 0, F 1 = 1, F n+1 = F n + F n 1 (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,... ) explicit alakja: F n = 1 ( ( ) n ( ) n ) M Keressünk a rekurzív képletre F n = λ n alakú megoldást! λ n+1 = λ n + λ n 1 λ 2 λ 1 = 0 λ 1,2 = 1± 5 2 Az (1, λ i, λ 2 i,... ) sorozatok lin. ftlenek, ui ) n ( c2 ( Lineáris kombinációik mind megoldások: c A kezdeti feltételek (F 0 = 0, F 1 = 1) kielégítéséhez megoldandó c c 1 + c 2 = 0 + c = 1 c 1 = c 2 = május / 36 ) n

10 Differenciaegyenletrendszerek Állandó együtthatós homogén lineáris differenciaegyenlet D d-edrendű állandó együtthatós homogén lineáris differenciaegyenlet: x n = a 1 x n 1 + a 2 x n a d x n d, ahol a 1, a 2,..., a d és a kezdeti feltételül szolgáló x 0, x 1,..., x d 1 adott konstansok, x d, x d+1,... ismeretlenek. A DE karakterisztikus polinomja χ(t) = t d a 1 t d 1 a 2 t d 2... a d, gyökei a sajátértékek. Á Ha (x 0, x 1, x 2,... ) és (y 0, y 1, y 2,... ) megoldásai egy (állandó együtthatós) homogén lineáris differenciaegyenletnek, akkor tetszőleges c, d R konstansokra (cx 0 + dy 0, cx 1 + dy 1,... ) is. T Ha λ i gyöke a karakterisztikus egyenletnek, akkor x n = i c iλ n i megoldása az egyenletnek. Ha a sajátértékek különbözők, akkor ilyen alakban az összes megoldás megkapható. B Ha λ i -k különbözők, akkor d független megoldásunk van (mert a Vandermonde-determinánsuk nem 0), így minden kezdeti feltétel egyértelműen megoldható lineáris egyenletrendszerre vezet. m Ha λ multiplicitása r, akkor a független megoldások a következők: λ n, nλ n, n 2 λ n,..., n r 1 λ n május / 36

11 Differenciaegyenletrendszerek P x n = 5x n 1 8x n 2 + 4x n 3, x 0 = 0, x 1 = 1, x 2 = 5. M χ(λ) = λ 3 5λ 2 + 8λ 4 = (λ 1)(λ 2) 2 Összes megoldás: x n = c 1 1 n + c 2 2 n + c 3 n2 n. Kezdeti feltételekből: c 1 = 1, c 2 = 1, c 3 = 1, x n = 1 2 n + n2 n, (0, 1, 5, 17, 49, 129,... ) május / 36

12 Differenciaegyenletrendszerek Differenciaegyenletrendszer D Elsőrendű lineáris differenciaegyenlet-rendszer: x k+1 = Ax k x k+1 = Ax k + b k homogén inhomogén ahol x 0, b 0, b 1, b 2... ismert vektorok, x k ismeretlen, ha k > 0. T Az elsőrendű lineáris differenciaegyenlet-rendszer megoldása x k = A k x 0, k 1 x k = A k x 0 + A k 1 i b i, i=0 (homogén) (inhomogén) ahol k > május / 36

13 Differenciaegyenletrendszerek m Minden állandó együtthatós d-edrendű lineáris differenciaegyenlet átírható elsőrendű lineáris differenciaegyenlet-rendszerré, ui. ha x n a 1 x n 1 a 2 x n 2... a d x n d = 0, azaz x d a 1 x d 1 a 2 x d 2... a d x 0 = 0, akkor x x 0 x x 1. = , vagy x d x d 2 x d a 1 a 2... a d 1 a d x d 1 x d a 1 a 2... a d 1 a d x d 1 x d x d 2. = x x 1 x x 0 Előbbi a kísérő mátrix transzponáltja május / 36

14 Differenciaegyenletek alkalmazásai 1 Mátrixhatványok konvergenciája 2 Differenciaegyenletrendszerek 3 Differenciaegyenletek alkalmazásai 4 Differenciálegyenlet-rendszerek május / 36

15 Differenciaegyenletek alkalmazásai P Számítsuk ki az alábbi n-edrendű determináns értékét: D n = M D n = 2D n 1 D n 2, ugyanis az első sor szerint kifejtve D n = ( 1) (n 1) = (n 1) (n 2) (n 1) május / 36

16 Differenciaegyenletek alkalmazásai 2 1 D 1 = 2, D 2 = 1 2 = 3 λ 2 2λ + 1 λ = 1 A két független megoldás (1, 1, 1, 1,... ), (0, 1, 2, 3,... ) c 1 + 0c 2 = 2, c 1 + c 2 = 3 c 1 = 2, c 2 = 1 D n = n május / 36

17 Differenciaegyenletek alkalmazásai P Számítsuk ki az alábbi integrál értékét, ha a R konstans, a kπ: I n = π 0 cos nx cos na cos x cos a M I 0 = 0, I 1 = π, I n+1 (2 cos a)i n + I n 1 = 0, ugyanis π cos nx cos x sin nx sin x cos na cos a + sin na sin a 0 cos x cos a cos nx cos na 2 cos a cos x cos a cos nx cos x + sin nx sin x cos na cos a sin na sin a + dx cos x cos a = π 0 2 cos nx dx = 0, mert n > 0. dx május / 36

18 Differenciaegyenletek alkalmazásai λ 2 (2 cos a)λ + 1 = 0 λ 1,2 = 2 cos a ± 4 cos 2 a 4 = e ±ai 2 az alapmegoldások: (1, e ai, e 2ai, e 3ai,... ), (1, e ai, e 2ai, e 3ai,... ). c 1 + c 2 = 0, c 1 e ai + c 2 e ai = π c 1 (2i sin a) = π c 1 = π 2i sin a I n = π (cos na + i sin na) π 2i sin a sin na (cos na i sin na) = π 2i sin a sin a május / 36

19 Differenciálegyenlet-rendszerek 1 Mátrixhatványok konvergenciája 2 Differenciaegyenletrendszerek 3 Differenciaegyenletek alkalmazásai 4 Differenciálegyenlet-rendszerek május / 36

20 Differenciálegyenlet-rendszerek D Elsőrendű explicit nemlineáris differenciálegyenlet-rendszer: x = f(t, x), ahol f : R R n R n Autonóm, ha időfüggetlen: x = f(x), ahol f : R n R n (1) Állandó együtthatós lineáris (autonóm lineáris), ha x = Ax, ahol A R n n. (2) Az autonóm DER egy konstans x(t) = u megoldását egyensúlyi helyzetnek nev. Á A konstans u pontosan akkor egyensúlyi helyzete az (1) egyenletnek, ha f(u) = 0. Á Invertálható A esetén a (2) lineáris DER egyetlen egyensúlyi helyzete a május / 36

21 Differenciálegyenlet-rendszerek Stabilitás D AMH az u egyensúlyi helyzetet stabil, ha bármely ε > 0-hoz létezik olyan δ > 0, hogy ha bármely olyan x(t) megoldásra, melyre x(0) = x 0 és x 0 u < δ, igaz hogy x(t) u < ε a t 0 intervallumon. AMH az u egyensúlyi helyzet instabil, ha nem stabil. AMH az u egyensúlyi helyzetet aszimptotikusan stabil, ha stabil, és van olyan α > 0, hogy ha x 0 u < α, akkor lim t x(t) = u. T Legyen σ(a) = {λ 1,..., λ s }. A x = Ax DER egy x(t) megoldása pontosan akkor aszimptotikusan stabil, ha Re(λ i ) < 0 minden i = 1,..., s esetén. pontosan akkor stabil, ha Re(λ i ) 0 minden sajátértékre, és ha valamelyik λ i sajátértékre Re(λ i ) = 0, akkor a geometriai és algebrai multiplicitások egyenlők május / 36

22 Differenciálegyenlet-rendszerek Lineáris DER megoldása Á A Jordan-blokkok függvénye alapján t λ t 2 t 2!... n 1 (n 1)! 0 λ t 0 1 t... n 2 J = 0 0 λ... 0 esetén e Jt = e λt (n 2)! t n 3 (n 3)! λ T (e At ) = Ae At B pl. hatványsorral T Az x (t) = Ax(t), x(0) = x 0 kezdeti érték probléma megoldása x(t) = e At x 0. B (e At x 0 ) = Ae At x 0, vagyis megoldás, másrészt kielégíti a kezdeti feltételt, ui. e A0 x 0 = Ix 0 = x május / 36

23 Differenciálegyenlet-rendszerek Á Az x = Ax DER bármely x 1 és x 2 megoldásának bármely cx 1 + dx 2 lin. kombinációja megoldás. B Egyszerű behelyettesítéssel: (cx 1 + dx 2 ) = cx 1 + dx 2 = cax 1 + dax 2 = A(cx 1 + dx 2 ) m Mivel minden megoldáshoz tartoznak kezdeti feltételek, és minden kezdetiérték-probléma megoldható az e At oszlopainak lineáris kombinációjaként, ezért minden megoldás e At oszlopainak lineáris kombinációja. m Az előzőek szerint az x = Ax DER megoldásai vektorteret alkotnak, és annak minden vektora előáll az e At oszlopainak lineáris kombinációjaként, tehát ezek az oszlopvektorok bázist alkotnak a megoldások terében, ha lineárisan függetlenek (ezt később belátjuk). D Az x = Ax DER megoldásai terének valamely bázisát alaprendszernek nevezzük május / 36

24 Differenciálegyenlet-rendszerek Példa P Három tartály mindegyikében szennyezett víz van, a szennyezőanyag mennyisége kezdetben c 1, c 2, c 3 a V liter mennyiségű vízben. A harmadik tartályba tiszta víz folyik C liter/sec sebességgel, minden tartályból ugyanekkora sebességgel folyik ki az összekeveredett víz. Mennyi a szennyezőanyag mennyisége a tartályokban t > 0 esetén, ha feltételezzük, hogy a víz nagyon gyorsan és egyenletesen összekeveredik. C liter/sec c 3 V V c 2 V c május / 36

25 Differenciálegyenlet-rendszerek M Jelölje x i (t) az i-edik tartálybeli szennyező mennyiségét. Δt idő alatt CΔt mennyiségű tiszta víz folyik be, ugyanennyi ki, de a befolyó szennyező mennyisége 0, a kifolyóé x 3(t) CΔt. Így V Δx 3 (t) Δt = 0 x 3(t) V CΔt Δt x 3(t) = C V x 3(t). A másik két tartályba van befolyó szennyezés is, így a kapott három differenciálegyenlet mátrixalakban a következő: x 1 (t) x 2 (t) = C x 1 (t) x 2 (t) x 3 (t) V x 3 (t) május / 36

26 Differenciálegyenlet-rendszerek Az e At az A Jordan-alakjából leolvasható, mivel az épp a Jordan-alak konstansszorosa. Így elég e At helyett e C V tj -t számolni: e At = e C V tj = e C V t 1 C V t 1 2 ( C V t)2 C 0 1 V t Innen a megoldás, figyelembe véve a kezdeti feltételeket is: x(t) = e At c C 1 c 1 + c 2 = e C V t V t + c ( C V t)2 C c 2 + c 3 c 2 c 3 c 3 V t május / 36

27 Differenciálegyenlet-rendszerek P Oldjuk meg az x = [ ] 2 1 x, x = 1M χ A (λ) = λ 2 6λ + 9 = (λ 3) 2 λ 1,2 = 3 [ ] 1 2 Sajátvektor: (1, 1)t, Jordan-lánc: ( 1, 1) (1, 0) [ ] [ ] [ ] C =, C =, J = [ ] [ ] e e Jt 3t te = 3t t + 1 t 0 e 3t, e At = Ce Jt C 1 = e 3t t t + 1 [ ] [ ] [ ] [ ] x(t) = e At 1 = e 3t t + 1 t 1 = e 3t t t t t május / 36

28 Differenciálegyenlet-rendszerek 2M χ A (λ) = (λ 3) 2, J = [ ] 3 1 ; λ = 3, m 1 = 2, j = 0, 1, i = 1 a p (j) (λ i ) = f (j) (λ i ), j = 0, 1,..., m i 1, i = 1,..., k képletben. f (x) = e xt, f (x) = te xt, p(x) = ax + b, p (x) = a, f (3) = p(3) f (3) = p (3) e 3t = 3a + b te 3t = a a = te3t b = (1 3t)e 3t p(x) = te 3t x + (1 [ 3t)e 3t ] [ ] e At = p(a) = te 3t + (1 3t)e 2 4 3t 0 1 [ ] [ ] [ ] [ ] x(t) = e At 1 = te 3t (1 3t)e 3t [ ] = e 3t t + 1 t május / 36

29 Differenciálegyenlet-rendszerek 3M Ha A R 2 2 és λ geometriai multiplicitása 1, algebrai 2, a Jordan-lánc 0 u v, akkor {e λt u, te λt u + e λt v} alaprendszer, ui. x = c 1 (e λt u) + c 2 (te λt u + e λt v) Esetünkben λ = 3, u = ( 1, 1), v = (1, 0), így az összes megoldás [ ] [ ] [ ] x(t) = c 1 e 3t 1 + c 1 2 te 3t 1 + c 1 2 e 3t 1 0 A kezdeti feltétel x(0) = (1, 2), ebből [ ] [ ] [ ] = c c c 1 = 2, c 2 = 1 A kezdetiérték-probléma megoldása [ ] [ ] x(t) = 2e 3t 1 te 3t e 3t [ 1 0 ] [ ] = e 3t t + 1. t május / 36

30 Differenciálegyenlet-rendszerek Megoldások függetlensége D Az (a, b) intervallumon értelmezett x 1 (t), x 2 (t),... x n (t) függvények függetlenek (a, b)-n, ha c 1 x 1 (t) + + c n x n (t) = 0 csak akkor állhat fenn minden t (a, b) helyen, ha c 1 = = c n = 0. T Ha a W (x 1,..., x n ) Wronski-determináns legalább egy pontban nem 0, akkor a függvények függetlenek, ahol x 11 (t) x 21 (t)... x n1 (t) x 12 (t) x 22 (t)... x n2 (t) W (x 1,..., x n ) = x 1n (t) x 2n (t)... x nn (t) ahol x i = (x i1, x i2,..., x in ). B trivi: ha W egy t helyen nem 0, akkor a c i -kre vonatkozó egyenletrendszer egyértelműen megoldható! (A tétel megfordítása nem igaz pl. (t 2, t), (t, 1).) május / 36

31 Differenciálegyenlet-rendszerek P Az x (t) = Ax(t) DER alaprendszerét alkotják e At oszlopai. Igazoljuk Wronski-determinánssal, hogy ezek lineárisan független függvények! M Az alaprendszer Wronski-detrminánsa det(e At ). det(e At ) = e t j λ j 0 egyetlen t helyen sem május / 36

32 Differenciálegyenlet-rendszerek Lineáris differenciálegyenlet és differenciálegyenlet-rendszer Á Az y (n) = a 1 y (n 1) + a 2 y (n 2) a n 1 y + a n y DE ekvivalens a következő DER-rel: y (n) a 1 a 2... a n 1 a n y (n 1) y (n 1) y (n 2). = y..... y y y május / 36

33 Differenciálegyenlet-rendszerek Wronski-determináns D Az I intervallumon értelmezett és ott legalább n 1-szer diffható y 1, y 2,..., y n függvények Wronski-determinánsán a függvényt értjük. W (y 1, y 2,..., y n ) = y 1 y 2... y n y 1 y 2... y n y n (n 1) y (n 1) 1 y (n 1) T Ha az I intervallumon értelmezett és ott legalább n 1-szer diffható y 1, y 2,..., y n függvények Wronski-determinánsa az I-n nem azonosan 0, akkor e függvények lineárisan függetlenek május / 36

34 Differenciálegyenlet-rendszerek B c 1 y 1 + c 2 y c n y n = 0 c 1 y (k) 1 + c 2 y (k) c n y n (k) = 0 (k = 0, 1,..., n 1) Az egyenletrendszer együtthatómátrixának determinánsa y 1 y 2... y n y 1 y 2... y n W (y 1, y 2,..., y n ) = y (n 1) 1 y (n 1) 2... y n (n 1) ami ha valamely t I helyen nem 0, az egyenletrendszer egyértelműen megoldható. m Az állítás megfordítása nem igaz: y 1 = { x 2, ha x > 0, 0, egyébként y 2 = { x 2, ha x < 0, 0, egyébként W (y 1, y 2 ) = 0, de a fv-ek függetlenek május / 36

35 Differenciálegyenlet-rendszerek A fázissíkról 2-dimenziós esetben a differenciálegyenlet-rendszerek megoldásai szépen szemléltethetőek. D Az autonóm x = f(x) (f : R n R n ) egyenletrendszerek megoldásai az R n térben görbeként ábrázolhatók. Bizonyos feltételek mellett (pl. ha f lineáris), minden ponton át pontosan egy pályagörbe (trajektória) halad. Az R n teret fázistérnek, a trajektóriákat, és/vagy egy rács x pontjaiba húzott x vektorokat is tartalmazó ábrát fázisportrének nevezik. Egy phase portrait mathlet A Wikipédia a fázis-síkról, és az onnan származó rajz a következő oldalon: május / 36

36 Differenciálegyenlet-rendszerek május / 36

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Differencia- és differenciálegy.-rsz. H607 2017-04-05

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Mátrixfüggvények H607 2018-05-02 Wettl Ferenc

Részletesebben

Bevezetés az algebrába 2

Bevezetés az algebrába 2 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Alkalmazások H607 2018-05-14 Wettl Ferenc ALGEBRA

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Sajátérték, sajátvektor, sajátaltér Kf87 2017-11-21

Részletesebben

3. előadás Stabilitás

3. előadás Stabilitás Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása

Részletesebben

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Sajátérték, sajátvektor, sajátaltér Kf81 2018-11-20

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

Mátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22

Mátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22 Mátrixfüggvények Wettl Ferenc 2016. április 28. Wettl Ferenc Mátrixfüggvények 2016. április 28. 1 / 22 Tartalom 1 Diagonalizálható mátrixok függvényei 2 Mátrixfüggvény a Jordan-alakból 3 Mátrixfüggvény

Részletesebben

Haladó lineáris algebra

Haladó lineáris algebra B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j) Matematika A3 gyakorlat Energetika és Mechatronika BSc szakok, 016/17 ősz 10 feladatsor: Magasabbrendű lineáris differenciálegyenletek (megoldás) 1 Határozzuk meg az e λx, xe λx, x e λx,, x k 1 e λx függvények

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

Differenciaegyenletek

Differenciaegyenletek Differenciaegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2009/10 tanév, I. félév Losonczi László (DE) Differenciaegyenletek 2009/10 tanév, I. félév 1 / 11

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva? = komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve

Részletesebben

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35 9. Előadás (9. előadás) Lineáris egyr.(3.), Sajátérték 2019. április 24. 1 / 35 Portfólió-analízis Tegyük fel, hogy egy bank 4 különböző eszközbe fektet be (réz, búza, arany és kakaó). Az ügyfeleinek ezen

Részletesebben

1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek

1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek 7 Elsőrendű lineáris differenciálegyenlet-rendszerek Legyen n N, I R intervallum és A: I M n n (R), B: I R n folytonos függvények, és tekintsük az { y (x) = A(x)y(x) + B(x) y(ξ) = η kezdeti érték problémát,

Részletesebben

6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás)

6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 017/18 ősz 6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás) 1. Írjunk fel egy olyan legalacsonyabbrendű valós,

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Mátrix-exponens, Laplace transzformáció

Mátrix-exponens, Laplace transzformáció 2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények

Részletesebben

Matematika szigorlat június 17. Neptun kód:

Matematika szigorlat június 17. Neptun kód: Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

differenciálegyenletek

differenciálegyenletek Állandó együtthatójú lineáris homogén differenciálegyenletek L[y] = y (n) + a 1y (n 1) + + a ny = 0 a i R (1) a valós, állandó együtthatójú lineáris homogén n-ed rendű differenciálegyenlet Megoldását y

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y

Részletesebben

Numerikus matematika vizsga

Numerikus matematika vizsga 1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2.

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2. Vektorok. Melyek egyenlőek az alábbi vektorok közül? (a) (, 2, 0), (b) az (, 0, ) pontból a (2, 2, ) pontba mutató vektor, (c) ( 2,, ) ( 2,, 2), (d) [ 2 0 ], (e) 2. 0 2. Írjuk fel az x + y + 2z = 0 és

Részletesebben

Differenciálegyenlet rendszerek

Differenciálegyenlet rendszerek Differenciálegyenlet rendszerek (A kezdeti érték probléma. Lineáris differenciálegyenlet rendszerek, magasabb rendű lineáris egyenletek.) Szili László: Modellek és algoritmusok ea+gyak jegyzet alapján

Részletesebben

92 MAM143A előadásjegyzet, 2008/2009. x = f(t,x). x = f(x), (6.1)

92 MAM143A előadásjegyzet, 2008/2009. x = f(t,x). x = f(x), (6.1) 9 MAM43A előadásjegyzet, 8/9 6. Stabilitáselmélet 6.. Autonóm nemlineáris rendszerek Legyen f : R R n R n. Ekkor az általános elsőrendű explicit nemlineáris differenciálegyenletrendszer alakja x = f(t,x.

Részletesebben

Modellek és Algoritmusok - 2.ZH Elmélet

Modellek és Algoritmusok - 2.ZH Elmélet Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)

Részletesebben

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 ) Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor

Részletesebben

4. Lineáris rendszerek

4. Lineáris rendszerek 60 Hartung Ferenc: Differenciálegyenletek, MA22i, MA623d, 2006/07 4 Lineáris rendszerek 4 Lineáris algebrai előismeretek Legyen A egy n n-es mátrix, I az n n-es egységmátrix A pλ := deta λi n-edfokú polinomot

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Differenciálegyenletek

Differenciálegyenletek Differenciálegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, I. félév Losonczi László (DE) Differenciálegyenletek 2011/12 tanév, I. félév 1 /

Részletesebben

Alkalmazott algebra. Lineáris leképezések EIC. Wettl Ferenc ALGEBRA TANSZÉK BMETE90MX57 (FELSŐBB MATEMATIKA INFORMATIKUSOKNAK )

Alkalmazott algebra. Lineáris leképezések EIC. Wettl Ferenc ALGEBRA TANSZÉK BMETE90MX57 (FELSŐBB MATEMATIKA INFORMATIKUSOKNAK ) B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Alkalmazott algebra BMETE90MX57 (FELSŐBB MATEMATIKA INFORMATIKUSOKNAK ) Lineáris leképezések

Részletesebben

Differenciálegyenletek gyakorlat december 5.

Differenciálegyenletek gyakorlat december 5. Differenciálegyenletek gyakorlat Kocsis Albert Tihamér Németh Adrián 05 december 5 Ismétlés Integrálás Newton Leibniz-formula Integrálás és alapműveletek wwwwolframalphacom Alapintegrálok sin x dx = cos

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében? Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!

Részletesebben

y + a y + b y = r(x),

y + a y + b y = r(x), Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan

Részletesebben

Lineáris algebra. =0 iє{1,,n}

Lineáris algebra. =0 iє{1,,n} Matek A2 (Lineáris algebra) Felhasználtam a Szilágyi Brigittás órai jegyzeteket, néhol a Thomas féle Kalkulus III könyvet. A hibákért felelosséget nem vállalok. Hiányosságok vannak(1. órai lin algebrai

Részletesebben

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. 1.-2. Gyakorlat 1 / 42 Numerikus differenciálás

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek

Részletesebben

Differenciálegyenletek. Vajda István március 4.

Differenciálegyenletek. Vajda István március 4. Analízis előadások Vajda István 2009. március 4. Függvényegyenletek Definíció: Az olyan egyenleteket, amelyekben a meghatározandó ismeretlen függvény, függvényegyenletnek nevezzük. Függvényegyenletek Definíció:

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék,   Wettl Ferenc (BME) Utolsó el adás / 20 Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

5.1. Autonóm nemlineáris rendszerek

5.1. Autonóm nemlineáris rendszerek 5. Stabilitáselmélet 87 5. Stabilitáselmélet 5.1. Autonóm nemlineáris rendszerek Legyen f : R R n R n. Ekkor az általános elsőrendű explicit nemlineáris differenciálegyenletrendszer alakja x = f(t,x).

Részletesebben

Lineáris algebra. (közgazdászoknak)

Lineáris algebra. (közgazdászoknak) Lineáris algebra (közgazdászoknak) 10A103 FELADATOK A GYAKORLATRA (3.) 2018/2019. tavaszi félév Lineáris egyenletrendszerek 3.1. Feladat. Oldjuk meg az alábbi lineáris egyenletrendszereket Gauss-eliminációval

Részletesebben

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0 I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)

Részletesebben

1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1

1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1 numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 0. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 23. Sajátérték, sajátvektor, sajátaltér Tartalom Sajátérték, sajátvektor, sajátaltér 2 Gyakorló feladatok a zh-ra (rutinfeladatok)

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA

Részletesebben

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

Saj at ert ek-probl em ak febru ar 26.

Saj at ert ek-probl em ak febru ar 26. Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre

Részletesebben

5. Lineáris rendszerek

5. Lineáris rendszerek 66 MAM43A előadásjegyzet, 2008/2009 5 Lineáris rendszerek 5 Lineáris algebrai előismeretek Tekintsük az a x + a 2 x 2 = b 5 a 2 x + a 22 x 2 = b 2 52 lineáris egyenletrendszert Az egyenletben szereplő

Részletesebben

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága

Részletesebben

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =, Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2

Részletesebben

Differenciálegyenletek december 13.

Differenciálegyenletek december 13. Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Bevezetés az algebrába 1

Bevezetés az algebrába 1 B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Egyenletrendszerek H406 2016-10-03 Wettl Ferenc

Részletesebben

Differenciálegyenletek

Differenciálegyenletek DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)

Részletesebben

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek 10. gyakorlat Mátrixok sajátértékei és sajátvektorai Azt mondjuk, hogy az A M n mátrixnak a λ IR szám a sajátértéke, ha létezik olyan x IR n, x 0 vektor, amelyre Ax = λx. Ekkor az x vektort az A mátrix

Részletesebben

10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak

10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak 10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:

Részletesebben

Matematika A3 1. ZH+megoldás

Matematika A3 1. ZH+megoldás Matematika A3 1. ZH+megoldás 2008. október 17. 1. Feladat Egy 10 literes kezdetben tiszta vizet tartalmazó tartályba 2 l/min sebesséeggel 0.3 kg/l sótartalmú víz Áramlik be, amely elkeveredik a benne lévő

Részletesebben

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18 Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök

Részletesebben

1. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: ; B = 8 7 2, 5 1. Számítsuk ki az A + B, A B, 3A, B mátrixokat!

1. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: ; B = 8 7 2, 5 1. Számítsuk ki az A + B, A B, 3A, B mátrixokat! . Mátrixok. Határozzuk meg, hogy mikor egyenlő egymással a következő két mátrix: [ ] [ ] π a A = ; B = 8 7, 5 x. 7, 5 ln y. Legyen 4 A = 4 ; B = 5 5 Számítsuk ki az A + B, A B, A, B mátrixokat!. Oldjuk

Részletesebben

6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján

6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján Közelítő és szimbolikus számítások 6. gyakorlat Sajátérték, Gersgorin körök Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján . Mátrixok sajátértékei

Részletesebben

A lineáris algebra forrásai: egyenletrendszerek, vektorok

A lineáris algebra forrásai: egyenletrendszerek, vektorok A lineáris algebra forrásai: egyenletrendszerek, vektorok 2016. február 23. A lineáris algebra forrásai: egyenletrendszerek, vektorok 2016. február 23. 1 / 75 Tartalom 1 Vektor A 2- és 3-dimenziós tér

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2

Részletesebben

1. Homogén lineáris egyenletrendszer megoldástere

1. Homogén lineáris egyenletrendszer megoldástere X HOMOGÉN LINEÁRIS EGYENLET- RENDSZEREK 1 Homogén lineáris egyenletrendszer megoldástere Homogén lineáris egyenletrendszer definíciója már szerepelt Olyan lineáris egyenletrendszert nevezünk homogénnek,

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak

LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak LINEÁRIS EGYENLETRENDSZEREK 004. október. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:

Részletesebben

1. Bázistranszformáció

1. Bázistranszformáció 1. Bázistranszformáció Transzformáció mátrixa új bázisban A bázistranszformáció képlete (Freud, 5.8.1. Tétel) Legyenek b és d bázisok V -ben, ] v V és A Hom(V). Jelölje S = [[d 1 ] b,...,[d n ] b T n n

Részletesebben

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

Gyakorló feladatok I.

Gyakorló feladatok I. Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,

Részletesebben

Differenciálegyenletek gyakorlat Matematika BSc II/2, elemző szakirány

Differenciálegyenletek gyakorlat Matematika BSc II/2, elemző szakirány A sebesség fogalmának szemléltetése az Differenciálegyenletek gyakorlat Matematika BSc II/, elemző szakirány. gyakorlat ẋ(t) = lim h 0 x(t+h) x(t) h képlet alapján, ahol t jelöli az időt, x pedig az elmozdulást.

Részletesebben

i=1 λ iv i = 0 előállítása, melynél valamelyik λ i

i=1 λ iv i = 0 előállítása, melynél valamelyik λ i Az informatikus lineáris algebra dolgozat C részének lehetséges kérdései Az alábbi listában azok az állítások, tételek szerepelnek, melyeket a vizsgadolgozat C részében kérdezhetünk. Azok érnek 6 pontot,

Részletesebben

Polinomok maradékos osztása

Polinomok maradékos osztása 14. előadás: Racionális törtfüggvények integrálása Szabó Szilárd Polinomok maradékos osztása Legyenek P, Q valós együtthatós polinomok valamely x határozatlanban. Feltesszük, hogy deg(q) > 0. Tétel Létezik

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl

Részletesebben

7. gyakorlat megoldásai

7. gyakorlat megoldásai 7. gyakorlat megoldásai Komple számok, sajátértékek, sajátvektorok F1. Legyen z 1 = + i és z = 1 i. Számoljuk ki az alábbiakat: z 1 z 1 + z, z 1 z, z 1 z,, z 1, z 1. z M1. A szorzásnál használjuk, hogy

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben