MODELLEK ÉS ALGORITMUSOK ELŐADÁS

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MODELLEK ÉS ALGORITMUSOK ELŐADÁS"

Átírás

1 MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így add tovább! 3. Unported Licenc feltételeinek megfelelően szabadon felhasználható. 1

2 A jegyzet Bozzay Árpád és Varga Sándor B szakirányos hallgatók Modellek és algoritmusok 214/1 féléves előadásjegyzete alapján készült. Nem tartalmazza a megjegyzéseket, példákat, bizonyításokat, csupán a definíciókat, kimondott tételeket és állításokat. 1. Előadás 1.1. Inverz függvény tétel 1.1 Tétel (Globális). I R nyílt intervallum, f : I R. Tegyük fel, hogy f differenciálható, és f > az egész I-n. f 1 és differenciálható is, és (f 1 ) (y) = 1 f (f 1 (y)). 1.2 Tétel (Lokális). I R nyílt intervallum, f : I R. Tegyük fel, hogy a I, hogy f folytonosan differenciálható a-ban, és f (a) >. U = K(a), V = K(f(a)), f : U V bijekció, és (f 1 ) (x) = 1 f (f 1 (x)) x V Általánosítás 1.3 Tétel (Inverz függvény tétel). Ω R n nyílt, f : Ω R n. Tegyük fel, hogy i, f folytonosan differenciálható Ω-n, ii, a Ω, det f (a). bijekció, és U Ω nyílt, V R n nyílt, a U, f(a) V, f : U V (f 1 ) (x) = ( f (f 1 (x))) 1 (x V ) Implicit függvény tétel f R 2 R, H := {(x, y): f(x, y) = }. y kifejezhető-e? 1.4 Definíció. f R 2 R, H := {(x, y): f(x, y) = }. Ha U 1, U 2 nyílt halmazok, ϕ: U 1 U 2, hogy f(x, ϕ(x)) =, akkor ϕ kielégíti az f(x, y) = implicit egyenletet. 2. Előadás 2.1 Tétel (Implicit függvény tétel, speciális eset). Ω R 2 nyílt, f : Ω R. Tegyük fel, hogy i, f folytonosan differenciálható Ω-n, ii, (a, b) Ω, f(a, b) =, δ 2 f(a, b). 2

3 i, U 1, U 2, R nyílt, a U 1, b U 2, ϕ: U 1 U 2 bijekció, ϕ(a) = b és f(x, ϕ(x)) = (x U 1 ), ii, ϕ folytonosan differenciálható, és ϕ (x) = δ 1f(x, ϕ(x)) δ 2 f(x, ϕ(x)) (x U 1 ). 2.2 Tétel (Implicit függvény tétel, általános eset). Ω 1 R n 1, Ω 2 R n 2, f : Ω 1 Ω 2 R n 2. Tegyük fel, hogy i, f folytonosan differenciálható Ω 1 Ω 2 -n, ii, a Ω 1, b Ω 2, f(a, b) =, det δ 2 f(a, b). i, U 1 Ω 1, U 2 Ω 2 nyílt halmazok, ϕ: U 1 U 2 bijekció, ϕ(a) = b és ii, ϕ folytonosan differenciálható és f(x, ϕ(x)) = (x U 1 ), ( 1 ϕ (x) = δ 2 f(x, ϕ(x))) δ1 f(x, ϕ(x)) (x U 1 ). 2.3 Definíció. δ 2 f(a, b) = δ 1 f(a, b) = ( R n 2 y f(a, y)) ( R n 1 y f(x, b)) y=b x=a R n 2 n 2, R n 2 n Előadás 3.1. Feltételes szélsőérték 3.1 Definíció. f-nek feltételes lokális minimuma (maximuma) van a c H pontban a g i = feltételekre nézve, ha K(x), f(x) f(c) (f(x) f(c)) x K(c) H. 3.2 Tétel (Szükséges feltétel feltételes lokális szélőértékre). U R n nyílt, f, g i : U R, i = 1,..., m. Tegyük fel, hogy i, f, g i folytonosan differenciálható, i = 1,..., m, ii, f-nek létezik feltételes lokális szélsőértéke c H-ban, iii, g i(c) vektorok lineárisan függetlenek. λ 1,... λ m R, hogy L (c) =, ahol L(x) = f(x) + λ 1 g 1 (x) λ m g m (x). 3

4 3.3 Tétel (Elégséges feltétel feltételes lokális szélsőértékre). U R n nyílt, f, g i : U R, i = 1,..., m. Tegyük fel, hogy i, f, g i folytonosan differenciálható, i = 1,..., m, ii, L (c) =, c H, iii, g i(c) vektorok lineárisan függetlenek, iv, L (c) feltételesen pozitív definit, azaz L (c) h, h > g (c) h =, ahol g = g 1.. g m h R n \ {}, amelyre f-nek létezik feltételes lokális minimuma c-ben. 4. Előadás 4.1. Differenciálegyenletek 4.1 Definíció (Szakaszonként folytonosan differenciálható függvény). [α, β] R korlátos, zárt intervallum, ϕ: [α, β] R n szakaszonként folytonosan differenciálható, ha ϕ folytonos, és α = t < t 1 <... < t n = β, hogy ϕ (ti folytonosan differenciálható,t i+1 ) (i =,..., n 1). 4.2 Definíció (Összefüggő halmaz). D R n összefuggő halmaz, ha x, y D : ϕ: [α, β] D szakaszonként folytonosan differenciálható függvény, hogy ϕ(α) = x és ϕ(β) = y ([α, β] R). 4.3 Definíció (Tartomány). D R n tartomány, ha D nyílt, és összefüggő. 4.4 Definíció (Differenciálegyenlet). D R n+1 tartomány, f : D R n folytonos. Az x (t) = f(t, x(t)) egyenletet elsőrendű explicit differenciálegyenletnek nevezzük, ahol x: I R n folytonosan differenciálható, I R nyílt intervallum, és (t, x(t)) D t I. 4.5 Definíció (Kezdeti érték probléma). D R n+1 tartomány, f : D R n folytonos, (τ, ξ) D, τ R, ξ R n. Az x (t) = f(t, x(t)) feladatot kezdeti érték problémának nevezzük. 4.6 Tétel (Peano egzisztencia tétel). D R n+1, f : D R n folytonos, (τ, ξ) D. Az x (t) = f(t, x(t)), x(τ) = ξ kezdeti érték problémának létezik megoldása. 4

5 5. Előadás 5.1 Definíció. D R n+1 tartomány, f : D R n folytonos, (τ, ξ) D. Az x (t) = f(t, x(t)), x(τ) = ξ kezdeti érték probléma globálisan egyértelműen oldható meg, ha ϕ és ψ is megoldás, akkor ϕ(t) = ψ(t) t D ϕ D ψ. 5.2 Definíció. Ha az x (t) = f(t, x(t)), x(τ) = ξ kezdeti érték probléma globálisan egyértelműen oldható meg, akkor legyen ϕ = ϕ, azaz A ϕ neve teljes megoldás. D ϕ = I=Dϕ ϕ mo. I és ϕ(t) := ϕ(t), t D ϕ D ϕ. 5.3 Definíció. Az x (t) = f(t, x(t)), x(τ) = ξ kezdeti érték probléma lokálisan egyértelműen oldható meg, a (τ, ξ) D ponton, ha K(τ, ξ) D környezet, hogy a feladatot, illetve f-t erre szűkítve a kezdeti érték probléma globálisan egyértelműen oldható meg. 5.4 Megjegyzés. Ha x (t) = f(t, x(t)), x(τ) = ξ globálisan megoldható lokálisan megoldható, de ha lokálisan megoldható globálisan megoldható. 5.5 Tétel. Ha az x (t) = f(t, x(t)), x(τ) = ξ kezdeti érték probléma (τ, ξ) D esetén lokálisan egyértelműen oldható meg, akkor globálisan egyértelműen is. 5.6 Definíció. D R n+1 tartomány, f : D R n folytonos függvény kielégíti a 2. változójában a lokális Lipschitz feltételt a (τ, ξ) D pontban, ha környezet, és L >, hogy K(τ, ξ) D f(t, u) f(t, ū) L u ū (t, u), (t, ū) K(τ, ξ) (t R; u, ū R n ). 5.7 Tétel (Picard-Lindelöff tétel). Tegyük fel, hogy D R n+1 tartomány, f : D R n folytonos függvény kielégíti a lokális Lipschitz feltételt a (τ, ξ) D pontban. az x (t) = f(t, x(t)), x(τ) = ξ kezdeti érték probléma lokálisan egyértelműen oldható meg a (τ, ξ) pontban. 5.8 Tétel. x (t) = f(t, x(t)), x(τ) = ξ kezdeti érték proléma ekvivalens az integrálegyenlettel. x(t) = ξ + t τ f(s, x(s))ds 5.9 Tétel. Ha a Picard-Lindelöff tétel feltételei (τ, ξ) D pontban teljesülnek, akkor x (t) = f(t, x(t)), x(τ) = ξ kezdeti érték probléma globálisan egyértelműen oldható meg (τ, ξ) D esetén. 5.1 Tétel. Ha f : D R n folytonosan differenciálható, akkor kielégíti a Lipschitz feltételt (τ, ξ) D-ben. 5

6 6. Előadás 6.1. Szeparábilis differenciálegyenlet 6.1 Definíció. I 1, I 2 R nyílt intervallum, f : I 1 R, g : I 2 R folytonos függvények. Az x (t) = f(t) g(x(t)) differenciál egyenletet szeparábilis (vagy szétválasztható változójú) differenciálegyenletnek nevezzük. 6.2 Tétel. Ha / R g, akkor az x = f g x szeparábilis differenciálegyenlet az x(τ) = ξ kezdeti értékkel globálisan egyértelműen megoldható Elsőrendű lineáris differenciálegyenlet 6.3 Definíció. I R nyílt intervallum, f, g : I R folytonos. Az x + fx = g differenciálegyenletet elsőrendű lineáris differenciálegyenletnek nevezzük. 6.4 Tétel. Az x + f x = g lineáris differenciálegyenlet az x(τ) = ξ kezdeti értékkel globálisan egyértelműen megoldható. 6.5 Tétel. Legyen ψ az inhomogén egyenlet (x +f x = g) megoldása. ψ megoldása az inhomogén ψ = ψ + ϕ, ahol ϕ megoldása a homogén. 7. Előadás 8. Előadás 8.1. Az x = Ax homogén lineáris DER megoldása Csak akkor létezik megoldóképlet, ha A állandó mátrix, azaz a i,j állandó. 8.1 Tétel. Tekintsük az x = Ax differenciálegyenlet rendszert és legyen A állandó mátrix. Tegyük fel, hogy A-nak n db lineárisan független sajátvektora: s 1,..., s n, a hozzátartozó sajátértékek: λ 1,..., λ n. s i e λ it (i = 1,..., n) a differenciálegyenlet rendszer alaprendszere. 8.2 Megjegyzés. Hasonló tétel igaz, ha A-nak n db különböző sajátértéke Az x = Ax inhomogén lineáris DER megoldása Jelölje M ih az x = Ax + b egyenlet teljes megoldásainak halmazát. Legyen Ψ M ih. 8.3 Tétel. Ψ M ih Ψ = Ψ + ε, ahol ε M h. 8.4 Tétel. i, Az x = Ax + b differenciálegyenlet rendszer összes megoldása: ii, Ha Ψ(τ) = ξ, akkor t Ψ(t) = Φ(t) c + Φ(t) Φ(s) 1 b(s)ds (c R n ). τ t Ψ(t) = Φ(t) Φ(τ) 1 ξ + Φ(t) Φ(s) 1 b(s)ds. τ 6

7 8.3. Magasabb rendű differenciálegyenlet 8.5 Definíció. D R n+1 tartomány, h: D R folytonos. Az y (n) (t) = h(t, y(t), y (t),..., y (n 1) (t)) feladatot n-ed rendű differenciálegyenletnek nevezzük. Jel: y (n) = h (id, y, y,..., y (n 1) ). 8.6 Tétel. φ megoldása az y (n) = h (id, y, y,..., y (n 1) ) differenciálegyenletnek Ψ megoldása az x = f (id, x) differenciál egyenlet rendszernek. 8.7 Definíció. Az y (n) = h (id, y, y,..., y (n 1) ), y(τ) = ξ 1, y (τ) = ξ 2,..., y (n 1) (τ) = ξ n feladatot kezdeti érték problémának nevezzük. 8.8 Tétel. A differenciálegyenlet rendszerekre tanult tételek (picard-lindelöff, Peano) igazak maradnak n-ed rendű differenciál egyenletekre is. 9. Előadás 9.1. Magasabbrendű lineáris differenciálegyenlet 9.1 Definíció. Legyen a,... a n 1, b: I R folytonos és korlátos függvények. az y (n) + a n 1 y (n 1) a 1 y + a y = b egyenletet n-ed rendű lineáris differenciálegyenletnek nevezzük. 9.2 Tétel. ϕ kielégíti az y (n) +a n 1 y (n 1) +...+a 1 y +a y = b lineáris differenciálegyenletet Ψ kielégíti az x = Ax + b lineáris differenciálegyenlet rendszert. 9.3 Definíció. A differenciálegyenlet homogén, ha b =, inhomogén különben. (ezmitőldef?:o) 9.4 Tétel. Tekintsük az y (n) + a n 1 y (n 1) a 1 y + a y = differenciálegyenletet. i, M h C h (I, R), M h altér, dim M h = h, ii, ϕ 1,... ϕ n M h lineárisan függetlenek t I-re det ϕ 1 (t)... ϕ n (t) ϕ 1(t)... ϕ n(t). 1 (t)... ϕ (n 1) (t) ϕ (n 1) (ezt valaki nézze már meg, mert a hozott anyag elég érdekes, van valahol "minden t eleme I-re" és egy "létezik t eleme I-re") 9.5 Tétel. Legyen Ψ M ih. Ψ M ih Ψ = Ψ + ϕ, ahol ϕ M h. n 7

8 9.6 Definíció. Az y (n) + a n 1 y (n 1) a 1 y + a y = differenciálegyenlet karakterisztikus polinomján a polinomot értjük. K(z) = z n + a n 1 z n a 1 z + a 9.7 Tétel. ϕ(t) = e λt M h λ gyöke K-nak. 9.8 Tétel. Ha K-nak n db különböző gyöke, λ 1,... λ n, akkor ϕ i (t) = e λ it, i = 1,... n a differenciálegyenlet alaprendszere. 9.9 Definíció. Ha {ϕ 1,..., ϕ n } M h lineárisan függetlenek, akkor ezt a differenciálegyenlet alaprendszerének nevezzük. 9.1 Tétel. Tegyük fel, hogy K(z) = (z λ 1 ) m 1 + (z λ r ) mr, ahol λ 1,..., λ n különbözőek, és m m r = n. ϕ i,j (t) = t i e λjt, i = 1,..., r, i =,..., m j 1 alaprendszert alkot Tétel. Valós alaprendszer is van Az inhomogén állandó együtthatós differenciálegyenlet megoldása 9.12 Tétel. Ha c(t) kielégíti a Φ(t)c (t) = b(t) egyenletet, akkor c 1 (t)ϕ 1 (t) c n (t)ϕ n (t) M ih Tétel. Legyen P, Q polinom, α, β, c 1, 2, A, B R. Ha α + β i k-szoros gyöke k-nak (ha nem gyöke, akkor k = ) és ahol Q foka nagyobb mint P foka. 1. Előadás b(t) = P (t)e αt (c 1 cos βt + c 2 sin βt). ϕ(t) = t k Q(t)e αt (A cos βt + B sin βt) M ih, 1.1. Függvénysorozatok, függvénysorok A R, f n : A R, n N. 1.1 Definíció. Az (f n ) sorozatot függvénysorozatnak nevezzük, a f n sort pedig függvénysornak nevezzük, ahol ez alatt a függvénysorozatot értjük. ( n f k, ) n N 8

9 1.2 Definíció. Az (f n ) függvénysorozat konvergenciahalmaza: KH(f n ) := {x A: (f n (x)) konv. }, a f n függvénysorozat konvergenciahalmaza: ( ) KH fn := {x A: f n (x) konv. }. 1.3 Definíció. Az (f n ) pontonkéni limesze: lim f n : KH(f n ) R, x lim f n (x). A f n összegfüggvénye: n= ( ) f n : KH fn R, x f n (x). n= 1.4 Definíció. Az (f n ) függvénysorozat egyenletesen konvergens, ha ε > n, n, m n x A: f n (x) f m (x) < ε. 1.5 Tétel. Az (f n ) sorozat egyenletesen konvergens, akkor és csak akkor, ha f : A R, ε > n, n n x A: f n (x) f(x) < ε. Az (f n ) függvénysorozat egyenletes konvergenciájáról szóló tételben megjelenő f-et az (f n ) egyenletes hatásfüggvényének nevezzük. Jele: f n f. 1.6 Megjegyzés. f n f pontonként A-n, akkor és csakis akkor, ha x A, ε > n, n n : f n (x) f(x) < ε. 1.7 Tétel. f n f f n f pontonként A-n, de f n f f n f pontonként A-n. 1.8 Tétel. f n : A R. Tegyük fel, hogy f n C(A), n N, és (f n ) egyenletesen konvergens. f = lim f n C(A). 1.9 Tétel (Weierstrass-tétel). f n : A R. Tekintsük a f n függvénysort és a a n számsort. Tegyük fel, hogy sup f n () a n n N, és a n konvergens. x A f n egyenletesen konvergens. 1.1 Definíció. f n egyenletesen konvergens, ha (s n ) egyenletesen konvergens, ahol n s n := f k Tétel. f n : [a, b] R, n N. Tegyük fel, hogy f n R[a, b], n N, és (f n ) egyenletesen konvergens. f := lim f n R[a, b] és b a b f = lim f n. a 9

10 1.12 Tétel. f n : [a, b] R, n N. Tegyük fel, hogy f n R[a, b], n N, és f n egyenletesen konvergens. f := f n R[a, b] és n= b b f = f n. a n= a 1.13 Tétel. f n : (a, b) R, n N. Tegyük fel, hogy 1. f n D(a, b) ( n N, 2. x (a, b): (f n (x )) konvergens, 3. (f n) egyenletesen konvergens. 1. (f n ) egyenletesen konvergens, 2. f = lim f n D(a, b), 3. f = lim f n. 11. Előadás Fourier-sorok 11.1 Definíció. A n (a k cos kx + b k sin kx) polinomot trigonometrikus polinomnak nevezzük, a a k cos kx + b k sin kx sort pedig trigonometrikus sornak nevezzük Definíció. R 2π := {f : R R, f 2π-szerint periodikus és f R[, 2π]}, C 2π := {f : R R, f 2π-szerint periodikus és f C} Definíció. f, g R 2π ortogonális, ha f, g := fg = Definíció. A {ϕ n : n N} rendszer ortogonális, ha : n m ϕ n, ϕ m = ϕ n ϕ m = 1: n = m Tétel. Az {1, cos x, sin x, cos 2x, sin 2x,...} rendszer ortogonális Tétel. Az { 1, cos x, sinx cos 2x sin 2x,,...} 2π π π π π rendszer ortonormált. 1

11 11.7 Definíció. Az {1, cos x, sin x, cos 2x, sin 2x,...} rendszert trigonometrikus rendszernek nevezzük Tétel. A trigonometrikus rendszer teljes C 2π -ben, azaz, ha h C 2π és akkor h. h(x) cos kxdx = h(x) sin kxdx = k, 11.9 Tétel. Ha a a k cos kx + b k sin kx sor egyenletesen konvergál, és f(x) = (a k cos kx + b k sin kx), akkor a = 1 2π a k = 1 π b k = 1 π f(x)dx, f(x) cos kx dx k 1 f(x) sin kx dx k Definíció. f R 2π. Az a := 1 2π a k := 1 π b k := 1 π f(x)dx, számokat f Fourier-együtthatóinak nevezük. A sort f Fourier-sorának nevezzük. f(x) cos kx dx k 1 f(x) sin kx dx k 1. a k cos kx + b k sin kx Tétel (Da-Boir Reymond, Fejér). f C 2π, hogy f Fourier-sora egy pontban divergens. 11

12 12. Előadás 12.1 Tétel. Az f C 2π Fourier sora a a k cos kx + b k sin kx. Ha a Fourier-sor egyenletesen konvergens, akkor f(x) = a k cos kx + b k sin kx Definíció. C 2 2π = {f : R R f 2π szeint periodikus, f C 2 }, azaz f kétszer folytonosan differenciálható Tétel. Ha f C 2 2π, akkor f Fourier-sora egyenletesen konvergens, és f(x) = a k cos kx + b k sin kx Definíció. f szakaszonként folytonos a [, 2π]-n, ha > t < t 1 <... < t n = 2π, hogy f (ti 1,t i ) folytonos (i = 1,..., n), és lim x+ f = f(x + ) és lim x f = f(x ) ( x [, 2π]) Tétel. Tegyük fel, hogy 1. f 2π szerint periodikus, 2. f szakaszonként folytonos a [, 2π]-n, 3. egy adott x [, 2π]-re f (x + ) = lim és f f(t) f(x) (x ) = lim. t x t x t x+ a k cos kx + b k sin kx = 12.6 Következmény. Tegyük fel, hogy 1. f 2π szerint periodikus, 2. f szakaszonként folytonos a [, 2π]-n, 3. f D(x) egy adott x-re. f(t) f(x) t x f(x + ) + f(x ). 2 a k cos kx + b k sin kx = f(x). 12

13 12.7 Tétel (Bessel-egyenlőség). Ha f R 2π, akkor n n min f(x) (a k cos kx + b k sin kx 2 = f(x) (a k cos kx + b k sin kx Tétel (Bessel-egyenlőtlenség). Ha f R 2π, akkor f 2 2 = 12.9 Tétel. Ha f R 2π, akkor L 2 normában, azaz ( f(x) 2 dx 2πa 2 ) + π a 2 k + b 2 k. k=1 (a k cos kx + b k sin kx) = f(x). lim f(x) n a k cos kx + b k sin kx 2 =. n Továbbá (Perseral formula) f(x) 2 dx = 2πa 2 + π (a 2 k + b 2 k). k= Tétel (Carlazon-tétel). Ha f R 2π, akkor majdnem minden x-re. (a k cos kx + b k sin kx) = f(x) ( ) 2, π x Tétel. Ha f(x) = 2 x [, 2π], f(x + 2π) = f(x). Ekkkor egyenletes. f(x) = π k=1 cos kx k 2 13

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

5. Lineáris rendszerek

5. Lineáris rendszerek 66 MAM43A előadásjegyzet, 2008/2009 5 Lineáris rendszerek 5 Lineáris algebrai előismeretek Tekintsük az a x + a 2 x 2 = b 5 a 2 x + a 22 x 2 = b 2 52 lineáris egyenletrendszert Az egyenletben szereplő

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

1. feladatsor, megoldások. y y = 0. y h = C e x

1. feladatsor, megoldások. y y = 0. y h = C e x 1. feladatsor, megoldások 1. Ez egy elsőrendű diffegyenlet, először a homogén egyenlet megoldását keressük meg, majd partikuláris megoldást keresünk: y y = 0 Ez pl. egy szétválasztható egyenlet, melynek

Részletesebben

5. Differenciálegyenlet rendszerek

5. Differenciálegyenlet rendszerek 5 Differenciálegyenle rendszerek Elsőrendű explici differenciálegyenle rendszer álalános alakja: d = f (, x, x,, x n ) d = f (, x, x,, x n ) (5) n d = f n (, x, x,, x n ) ömörebben: d = f(, x) Definíció:

Részletesebben

Közönséges differenciálegyenletek megoldása Mapleben

Közönséges differenciálegyenletek megoldása Mapleben Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

I. feladatsor. (t) z 1 z 3

I. feladatsor. (t) z 1 z 3 I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

Eötvös Loránd Tudományegyetem Természettudományi Kar

Eötvös Loránd Tudományegyetem Természettudományi Kar Eötvös Loránd Tudományegyetem Természettudományi Kar Közönséges differenciálegyenletek numerikus megoldása Szakdolgozat Soós Ivett Matematika B.Sc., Matematikai elemz szakirány Témavezet : Mincsovics Miklós

Részletesebben

Állandó együtthatós lineáris rekurziók

Állandó együtthatós lineáris rekurziók 1. fejezet Állandó együtthatós lineáris rekurziók 1.1. A megoldás menete. Mese. Idézzük fel a Fibonacci-számokat! Az F n sorozatot a következő módon definiáltuk: legyen F 0 = 0, F 1 = 1, és F n+2 = F n+1

Részletesebben

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2013 Ismertet Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezet Lektor Technikai szerkeszt Copyright Az Olvasó most egy egyetemi jegyzetet tart

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Szakdolgozat. Miskolci Egyetem. Nemlineáris programozás. Készítette: Horváth Gábor Programtervező informatikus hallgató

Szakdolgozat. Miskolci Egyetem. Nemlineáris programozás. Készítette: Horváth Gábor Programtervező informatikus hallgató Szakdolgozat Miskolci Egyetem Nemlineáris programozás Készítette: Horváth Gábor Programtervező informatikus hallgató Témavezető: Dr. Nagy Tamás egyetemi docens, Alkalmazott Matematikai Tanszék Miskolc,

Részletesebben

Nagy Ilona 2013.06.01.

Nagy Ilona 2013.06.01. Bevezető matematika példatár Kádasné Dr. V. Nagy Éva Nagy Ilona 0.06.0. Tartalomjegyzék Bevezető. Gyakorlatok.. Műveletek törtekkel, hatványokkal, gyökökkel................. A logaritmus fogalma; arány-

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

KALKULUS II. PÉLDATÁR

KALKULUS II. PÉLDATÁR Lajkó Károly KALKULUS II. PÉLDATÁR mobidiák könyvtár Lajkó Károly KALKULUS II. PÉLDATÁR mobidiák könyvtár SOROZATSZERKESZTŽ Fazekas István Lajkó Károly KALKULUS II. PÉLDATÁR Programozó és programtervez

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

Néhány közelítő megoldás geometriai szemléltetése

Néhány közelítő megoldás geometriai szemléltetése 5. Fejezet Néány közelítő megoldás geometriai szemléltetése 5.. Iránymező Látattuk, ogy az explicit differenciálegyenletek rendelkeznek azzal az érdekes és kivételes tulajdonsággal, ogy bár esetenként

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek.

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek. A Valószínűségszámítás II. előadássorozat második témája. A CENTRÁLIS HATÁRELOSZLÁSTÉTEL A valószínűségszámítás legfontosabb eredménye a centrális határeloszlástétel. Ez azt mondja ki, hogy független valószínűségi

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

Newton módszer. az F(x) = 0 egyenlet x* gyökének elég jó közelítése. Húzzuk meg az F(x) függvény (x 0. )) pontbeli érintőjét, és jelölje x 1

Newton módszer. az F(x) = 0 egyenlet x* gyökének elég jó közelítése. Húzzuk meg az F(x) függvény (x 0. )) pontbeli érintőjét, és jelölje x 1 Newton módszer A húrmódszernél és a szelőmódszernél az F(x) függvény gyökének közelítéséhez a függvény húrját használtuk. Hatásosabb a módszer akkor, ha érintőkkel dolgozunk. Def.: Legyen x 0 az F(x) =

Részletesebben

Analízis Gyakorlattámogató jegyzet

Analízis Gyakorlattámogató jegyzet Analízis Gyakorlattámogató jegyzet Király Balázs. március. Tartalomjegyzék Előszó 7 I. Analízis I. 9. Számhalmazok tulajdonságai.. Gyakorlat.......................................... Házi Feladatok.....................................

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12. Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Többváltozós széls érték számítás és alkalmazásai

Többváltozós széls érték számítás és alkalmazásai Eötvös Loránd Tudományegyetem Természettudományi Kar Többváltozós széls érték számítás és alkalmazásai BSc Szakdolgozat Készítette: Prikkel Anett Matematika BSc Matematikai elemz szakirány Témavezet :

Részletesebben

Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat

Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat ANALÍZIS FELADATGYŰJTEMÉNY I Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat Algoritmuselmélet Algoritmusok bonyolultsága Analitikus módszerek a pénzügyben és a közgazdaságtanban Analízis

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék FELTÉTELES OPTIMALIZÁLÁS DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-4...B-0//KONV-00-000 jel½u projekt részeként az Európai Unió támogatásával,

Részletesebben

A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok.

A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. ZÁRÓVIZSGA TÉMAKÖRÖK egyetemi szintű közgazdasági programozó matematikus szakon A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. 2. Függvények, függvények folytonossága.

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

NUMERIKUS MÓDSZEREK PÉLDATÁR

NUMERIKUS MÓDSZEREK PÉLDATÁR EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR NUMERIKUS MÓDSZEREK PÉLDATÁR Bozsik József, Krebsz Anna Budapest, Tartalomjegyzék Előszó............................................... 6. GÉPI SZÁMÁBRÁZOLÁS

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

Az osztályozó vizsgák tematikája matematikából

Az osztályozó vizsgák tematikája matematikából Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám rendje A rend fogalma A 1-nek két darab egész kitevőjű hatványa van: 1 és 1. Az i-nek 4 van: i, i 2 = 1, i 3 = i, i 4 = 1. Innentől kezdve ismétlődik: i 5 = i, i 6 = i 2 = 1, stb. Négyesével

Részletesebben

A prímszámok eloszlása, avagy az első 50 millió

A prímszámok eloszlása, avagy az első 50 millió Bevezetés Pímszámok A prímszámok eloszlása, avagy az első 50 millió prímszám. Klukovits Lajos TTIK Bolyai Intézet 2014. április 8. Néhány definíció. 1 A klasszikus számelméleti. p N prím, ha a p a = ±1,

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

Nemlineáris optimalizálás

Nemlineáris optimalizálás Nemlineáris optimalizálás Rapcsák Tamás 2007. 3 Előszó A Nemlineáris optimalizálás című anyag a gazdaságmatematikai elemző közgazdász hallgatók számára készült és egyrészt a matematikai alapozó kurzusokra

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu Polinomgy r k Dr. Vattamány Szabolcs 1. Bevezet Ezen jegyzet célja, hogy megismertesse az olvasót az egész, a racionális, a valós és a komplex számok halmaza fölötti polinomokkal. A szokásos jelölést használjuk:

Részletesebben

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:...

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:... 1. Feladat. Döntse el, hogy igaz vagy hamis. Név:........................................... (1) (1 3) = (3 1). (hamis) () (1 ) = ( 1). (igaz). Feladat. Döntse el, hogy igaz vagy hamis. Név:...........................................

Részletesebben

Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok.

Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok. Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok. Láttuk, hogy a Wiener-folyamat teljesíti az úgynevezett funkcionális centrális határeloszlástételt. Ez az eredmény durván szólva azt fejezi

Részletesebben

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége LINEÁRIS VEKTORTÉR Kiegészítő anyag (Bércesné Noák Ágnes előadása) Vektorok függetlensége, függősége Vektortér V 0 Halmaz T test : + ; + ; Abel csoport V elemeit ektoroknak neezzük. Abel - csoport Abel

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

1. Algebrai alapok: Melyek műveletek az alábbiak közül? 1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0711 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Analízis. 11 12. évfolyam. Szerkesztette: Surányi László. 2015. július 5.

Analízis. 11 12. évfolyam. Szerkesztette: Surányi László. 2015. július 5. Analízis 11 12. évfolyam Szerkesztette: Surányi László 2015. július 5. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó András, Kalló

Részletesebben

Késleltetett differenciálegyenletek periodikus pályái és globális dinamikája

Késleltetett differenciálegyenletek periodikus pályái és globális dinamikája Késleltetett differenciálegyenletek periodikus pályái és globális dinamikája Doktori értekezés tézisei Vas Gabriella Témavezető: Dr. Krisztin Tibor egyetemi tanár Matematika- és Számítástudományok Doktori

Részletesebben

Nemlineáris optimalizálás Dr. Házy, Attila

Nemlineáris optimalizálás Dr. Házy, Attila Nemlineáris optimalizálás Dr. Házy, Attila Nemlineáris optimalizálás Dr. Házy, Attila Miskolci Egyetem Kelet-Magyarországi Informatika Tananyag Tárház Kivonat Kivonat Nemzeti Fejlesztési Ügynökség http://ujszechenyiterv.gov.hu/

Részletesebben

ALGORITMUSAI DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék

ALGORITMUSAI DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék FELTÉTEL NÉLKÜLI OPTIMALIZÁLÁS ALGORITMUSAI DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-4...B-0//KONV-00-000 jel½u projekt részeként

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

Idősorok zajszűrése gyors Fourier - transzformációval

Idősorok zajszűrése gyors Fourier - transzformációval Idősorok zajszűrése gyors Fourier - transzformációval Készítette: Jakab Jenő Dátum: 2013.05.27. Tartalom Tartalom... 2 1. Bevezető... 3 2. Matematika alapok... 3 2.1. Alapfeltevések, definíciók... 3 2.2.

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

KONVEX HALMAZ, FARKAS TÉTEL, GORDAN TÉTEL, EXTREMÁLIS PONT, EXTREMÁLIS IRÁNY, LINEÁRIS PROGRAMOZÁS ELMÉLETE

KONVEX HALMAZ, FARKAS TÉTEL, GORDAN TÉTEL, EXTREMÁLIS PONT, EXTREMÁLIS IRÁNY, LINEÁRIS PROGRAMOZÁS ELMÉLETE KONVEX HALMAZ, FARKAS TÉTEL, GORDAN TÉTEL, EXTREMÁLIS PONT, EXTREMÁLIS IRÁNY, LINEÁRIS PROGRAMOZÁS ELMÉLETE DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

II. rész. Valós függvények

II. rész. Valós függvények II. rész Valós függvények Feladatok 3 4 3.. Értelmezési tartomány Határozza meg a következ függvények értelmezési tartományát! 3.. y = + + 3.. 3.4. 3.6. y = y = 3 y = + 3 ln 5 4 3.3. 3.5. 3.7. y = 3 +

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 01. május 7. KÖZÉPSZINT 1) Az A és B halmazokról tudjuk, hogy B\ A 1; ; 4; 7. Elemeinek felsorolásával adja meg az A halmazt! A ; 5; 6; 8; 9 I. AB 1; ; ; 4; 5; 6; 7; 8; 9 és ) Egy

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser

Részletesebben

4. Kartell két vállalat esetén

4. Kartell két vállalat esetén 4. Kartell két vállalat esetén 34 4. Kartell két vállalat esetén Ebben a fejezetben azzal az esettel foglalkozunk, amikor a piacot két vállalat uralja és ezek összejátszanak. A vállalatok együttműködését

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Jelek és rendszerek - 1-2.előadás

Jelek és rendszerek - 1-2.előadás Jelek és rendszerek - 1-2.előadás Bevezetés, rendszeranaĺızis az időtartományban Mérnök informatika BSc (lev.) Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet

Részletesebben

Analízis II. harmadik, javított kiadás

Analízis II. harmadik, javított kiadás Ljkó Károly Anlízis II. hrmdik, jvított kidás Debreceni Egyetem Mtemtiki és Informtiki Intézet 2003 c Ljkó Károly ljko @ mth.klte.hu Amennyiben hibát tlál jegyzetben, kérjük jelezze szerzőnek! A jegyzet

Részletesebben