MODELLEK ÉS ALGORITMUSOK ELŐADÁS

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MODELLEK ÉS ALGORITMUSOK ELŐADÁS"

Átírás

1 MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így add tovább! 3. Unported Licenc feltételeinek megfelelően szabadon felhasználható. 1

2 A jegyzet Bozzay Árpád és Varga Sándor B szakirányos hallgatók Modellek és algoritmusok 214/1 féléves előadásjegyzete alapján készült. Nem tartalmazza a megjegyzéseket, példákat, bizonyításokat, csupán a definíciókat, kimondott tételeket és állításokat. 1. Előadás 1.1. Inverz függvény tétel 1.1 Tétel (Globális). I R nyílt intervallum, f : I R. Tegyük fel, hogy f differenciálható, és f > az egész I-n. f 1 és differenciálható is, és (f 1 ) (y) = 1 f (f 1 (y)). 1.2 Tétel (Lokális). I R nyílt intervallum, f : I R. Tegyük fel, hogy a I, hogy f folytonosan differenciálható a-ban, és f (a) >. U = K(a), V = K(f(a)), f : U V bijekció, és (f 1 ) (x) = 1 f (f 1 (x)) x V Általánosítás 1.3 Tétel (Inverz függvény tétel). Ω R n nyílt, f : Ω R n. Tegyük fel, hogy i, f folytonosan differenciálható Ω-n, ii, a Ω, det f (a). bijekció, és U Ω nyílt, V R n nyílt, a U, f(a) V, f : U V (f 1 ) (x) = ( f (f 1 (x))) 1 (x V ) Implicit függvény tétel f R 2 R, H := {(x, y): f(x, y) = }. y kifejezhető-e? 1.4 Definíció. f R 2 R, H := {(x, y): f(x, y) = }. Ha U 1, U 2 nyílt halmazok, ϕ: U 1 U 2, hogy f(x, ϕ(x)) =, akkor ϕ kielégíti az f(x, y) = implicit egyenletet. 2. Előadás 2.1 Tétel (Implicit függvény tétel, speciális eset). Ω R 2 nyílt, f : Ω R. Tegyük fel, hogy i, f folytonosan differenciálható Ω-n, ii, (a, b) Ω, f(a, b) =, δ 2 f(a, b). 2

3 i, U 1, U 2, R nyílt, a U 1, b U 2, ϕ: U 1 U 2 bijekció, ϕ(a) = b és f(x, ϕ(x)) = (x U 1 ), ii, ϕ folytonosan differenciálható, és ϕ (x) = δ 1f(x, ϕ(x)) δ 2 f(x, ϕ(x)) (x U 1 ). 2.2 Tétel (Implicit függvény tétel, általános eset). Ω 1 R n 1, Ω 2 R n 2, f : Ω 1 Ω 2 R n 2. Tegyük fel, hogy i, f folytonosan differenciálható Ω 1 Ω 2 -n, ii, a Ω 1, b Ω 2, f(a, b) =, det δ 2 f(a, b). i, U 1 Ω 1, U 2 Ω 2 nyílt halmazok, ϕ: U 1 U 2 bijekció, ϕ(a) = b és ii, ϕ folytonosan differenciálható és f(x, ϕ(x)) = (x U 1 ), ( 1 ϕ (x) = δ 2 f(x, ϕ(x))) δ1 f(x, ϕ(x)) (x U 1 ). 2.3 Definíció. δ 2 f(a, b) = δ 1 f(a, b) = ( R n 2 y f(a, y)) ( R n 1 y f(x, b)) y=b x=a R n 2 n 2, R n 2 n Előadás 3.1. Feltételes szélsőérték 3.1 Definíció. f-nek feltételes lokális minimuma (maximuma) van a c H pontban a g i = feltételekre nézve, ha K(x), f(x) f(c) (f(x) f(c)) x K(c) H. 3.2 Tétel (Szükséges feltétel feltételes lokális szélőértékre). U R n nyílt, f, g i : U R, i = 1,..., m. Tegyük fel, hogy i, f, g i folytonosan differenciálható, i = 1,..., m, ii, f-nek létezik feltételes lokális szélsőértéke c H-ban, iii, g i(c) vektorok lineárisan függetlenek. λ 1,... λ m R, hogy L (c) =, ahol L(x) = f(x) + λ 1 g 1 (x) λ m g m (x). 3

4 3.3 Tétel (Elégséges feltétel feltételes lokális szélsőértékre). U R n nyílt, f, g i : U R, i = 1,..., m. Tegyük fel, hogy i, f, g i folytonosan differenciálható, i = 1,..., m, ii, L (c) =, c H, iii, g i(c) vektorok lineárisan függetlenek, iv, L (c) feltételesen pozitív definit, azaz L (c) h, h > g (c) h =, ahol g = g 1.. g m h R n \ {}, amelyre f-nek létezik feltételes lokális minimuma c-ben. 4. Előadás 4.1. Differenciálegyenletek 4.1 Definíció (Szakaszonként folytonosan differenciálható függvény). [α, β] R korlátos, zárt intervallum, ϕ: [α, β] R n szakaszonként folytonosan differenciálható, ha ϕ folytonos, és α = t < t 1 <... < t n = β, hogy ϕ (ti folytonosan differenciálható,t i+1 ) (i =,..., n 1). 4.2 Definíció (Összefüggő halmaz). D R n összefuggő halmaz, ha x, y D : ϕ: [α, β] D szakaszonként folytonosan differenciálható függvény, hogy ϕ(α) = x és ϕ(β) = y ([α, β] R). 4.3 Definíció (Tartomány). D R n tartomány, ha D nyílt, és összefüggő. 4.4 Definíció (Differenciálegyenlet). D R n+1 tartomány, f : D R n folytonos. Az x (t) = f(t, x(t)) egyenletet elsőrendű explicit differenciálegyenletnek nevezzük, ahol x: I R n folytonosan differenciálható, I R nyílt intervallum, és (t, x(t)) D t I. 4.5 Definíció (Kezdeti érték probléma). D R n+1 tartomány, f : D R n folytonos, (τ, ξ) D, τ R, ξ R n. Az x (t) = f(t, x(t)) feladatot kezdeti érték problémának nevezzük. 4.6 Tétel (Peano egzisztencia tétel). D R n+1, f : D R n folytonos, (τ, ξ) D. Az x (t) = f(t, x(t)), x(τ) = ξ kezdeti érték problémának létezik megoldása. 4

5 5. Előadás 5.1 Definíció. D R n+1 tartomány, f : D R n folytonos, (τ, ξ) D. Az x (t) = f(t, x(t)), x(τ) = ξ kezdeti érték probléma globálisan egyértelműen oldható meg, ha ϕ és ψ is megoldás, akkor ϕ(t) = ψ(t) t D ϕ D ψ. 5.2 Definíció. Ha az x (t) = f(t, x(t)), x(τ) = ξ kezdeti érték probléma globálisan egyértelműen oldható meg, akkor legyen ϕ = ϕ, azaz A ϕ neve teljes megoldás. D ϕ = I=Dϕ ϕ mo. I és ϕ(t) := ϕ(t), t D ϕ D ϕ. 5.3 Definíció. Az x (t) = f(t, x(t)), x(τ) = ξ kezdeti érték probléma lokálisan egyértelműen oldható meg, a (τ, ξ) D ponton, ha K(τ, ξ) D környezet, hogy a feladatot, illetve f-t erre szűkítve a kezdeti érték probléma globálisan egyértelműen oldható meg. 5.4 Megjegyzés. Ha x (t) = f(t, x(t)), x(τ) = ξ globálisan megoldható lokálisan megoldható, de ha lokálisan megoldható globálisan megoldható. 5.5 Tétel. Ha az x (t) = f(t, x(t)), x(τ) = ξ kezdeti érték probléma (τ, ξ) D esetén lokálisan egyértelműen oldható meg, akkor globálisan egyértelműen is. 5.6 Definíció. D R n+1 tartomány, f : D R n folytonos függvény kielégíti a 2. változójában a lokális Lipschitz feltételt a (τ, ξ) D pontban, ha környezet, és L >, hogy K(τ, ξ) D f(t, u) f(t, ū) L u ū (t, u), (t, ū) K(τ, ξ) (t R; u, ū R n ). 5.7 Tétel (Picard-Lindelöff tétel). Tegyük fel, hogy D R n+1 tartomány, f : D R n folytonos függvény kielégíti a lokális Lipschitz feltételt a (τ, ξ) D pontban. az x (t) = f(t, x(t)), x(τ) = ξ kezdeti érték probléma lokálisan egyértelműen oldható meg a (τ, ξ) pontban. 5.8 Tétel. x (t) = f(t, x(t)), x(τ) = ξ kezdeti érték proléma ekvivalens az integrálegyenlettel. x(t) = ξ + t τ f(s, x(s))ds 5.9 Tétel. Ha a Picard-Lindelöff tétel feltételei (τ, ξ) D pontban teljesülnek, akkor x (t) = f(t, x(t)), x(τ) = ξ kezdeti érték probléma globálisan egyértelműen oldható meg (τ, ξ) D esetén. 5.1 Tétel. Ha f : D R n folytonosan differenciálható, akkor kielégíti a Lipschitz feltételt (τ, ξ) D-ben. 5

6 6. Előadás 6.1. Szeparábilis differenciálegyenlet 6.1 Definíció. I 1, I 2 R nyílt intervallum, f : I 1 R, g : I 2 R folytonos függvények. Az x (t) = f(t) g(x(t)) differenciál egyenletet szeparábilis (vagy szétválasztható változójú) differenciálegyenletnek nevezzük. 6.2 Tétel. Ha / R g, akkor az x = f g x szeparábilis differenciálegyenlet az x(τ) = ξ kezdeti értékkel globálisan egyértelműen megoldható Elsőrendű lineáris differenciálegyenlet 6.3 Definíció. I R nyílt intervallum, f, g : I R folytonos. Az x + fx = g differenciálegyenletet elsőrendű lineáris differenciálegyenletnek nevezzük. 6.4 Tétel. Az x + f x = g lineáris differenciálegyenlet az x(τ) = ξ kezdeti értékkel globálisan egyértelműen megoldható. 6.5 Tétel. Legyen ψ az inhomogén egyenlet (x +f x = g) megoldása. ψ megoldása az inhomogén ψ = ψ + ϕ, ahol ϕ megoldása a homogén. 7. Előadás 8. Előadás 8.1. Az x = Ax homogén lineáris DER megoldása Csak akkor létezik megoldóképlet, ha A állandó mátrix, azaz a i,j állandó. 8.1 Tétel. Tekintsük az x = Ax differenciálegyenlet rendszert és legyen A állandó mátrix. Tegyük fel, hogy A-nak n db lineárisan független sajátvektora: s 1,..., s n, a hozzátartozó sajátértékek: λ 1,..., λ n. s i e λ it (i = 1,..., n) a differenciálegyenlet rendszer alaprendszere. 8.2 Megjegyzés. Hasonló tétel igaz, ha A-nak n db különböző sajátértéke Az x = Ax inhomogén lineáris DER megoldása Jelölje M ih az x = Ax + b egyenlet teljes megoldásainak halmazát. Legyen Ψ M ih. 8.3 Tétel. Ψ M ih Ψ = Ψ + ε, ahol ε M h. 8.4 Tétel. i, Az x = Ax + b differenciálegyenlet rendszer összes megoldása: ii, Ha Ψ(τ) = ξ, akkor t Ψ(t) = Φ(t) c + Φ(t) Φ(s) 1 b(s)ds (c R n ). τ t Ψ(t) = Φ(t) Φ(τ) 1 ξ + Φ(t) Φ(s) 1 b(s)ds. τ 6

7 8.3. Magasabb rendű differenciálegyenlet 8.5 Definíció. D R n+1 tartomány, h: D R folytonos. Az y (n) (t) = h(t, y(t), y (t),..., y (n 1) (t)) feladatot n-ed rendű differenciálegyenletnek nevezzük. Jel: y (n) = h (id, y, y,..., y (n 1) ). 8.6 Tétel. φ megoldása az y (n) = h (id, y, y,..., y (n 1) ) differenciálegyenletnek Ψ megoldása az x = f (id, x) differenciál egyenlet rendszernek. 8.7 Definíció. Az y (n) = h (id, y, y,..., y (n 1) ), y(τ) = ξ 1, y (τ) = ξ 2,..., y (n 1) (τ) = ξ n feladatot kezdeti érték problémának nevezzük. 8.8 Tétel. A differenciálegyenlet rendszerekre tanult tételek (picard-lindelöff, Peano) igazak maradnak n-ed rendű differenciál egyenletekre is. 9. Előadás 9.1. Magasabbrendű lineáris differenciálegyenlet 9.1 Definíció. Legyen a,... a n 1, b: I R folytonos és korlátos függvények. az y (n) + a n 1 y (n 1) a 1 y + a y = b egyenletet n-ed rendű lineáris differenciálegyenletnek nevezzük. 9.2 Tétel. ϕ kielégíti az y (n) +a n 1 y (n 1) +...+a 1 y +a y = b lineáris differenciálegyenletet Ψ kielégíti az x = Ax + b lineáris differenciálegyenlet rendszert. 9.3 Definíció. A differenciálegyenlet homogén, ha b =, inhomogén különben. (ezmitőldef?:o) 9.4 Tétel. Tekintsük az y (n) + a n 1 y (n 1) a 1 y + a y = differenciálegyenletet. i, M h C h (I, R), M h altér, dim M h = h, ii, ϕ 1,... ϕ n M h lineárisan függetlenek t I-re det ϕ 1 (t)... ϕ n (t) ϕ 1(t)... ϕ n(t). 1 (t)... ϕ (n 1) (t) ϕ (n 1) (ezt valaki nézze már meg, mert a hozott anyag elég érdekes, van valahol "minden t eleme I-re" és egy "létezik t eleme I-re") 9.5 Tétel. Legyen Ψ M ih. Ψ M ih Ψ = Ψ + ϕ, ahol ϕ M h. n 7

8 9.6 Definíció. Az y (n) + a n 1 y (n 1) a 1 y + a y = differenciálegyenlet karakterisztikus polinomján a polinomot értjük. K(z) = z n + a n 1 z n a 1 z + a 9.7 Tétel. ϕ(t) = e λt M h λ gyöke K-nak. 9.8 Tétel. Ha K-nak n db különböző gyöke, λ 1,... λ n, akkor ϕ i (t) = e λ it, i = 1,... n a differenciálegyenlet alaprendszere. 9.9 Definíció. Ha {ϕ 1,..., ϕ n } M h lineárisan függetlenek, akkor ezt a differenciálegyenlet alaprendszerének nevezzük. 9.1 Tétel. Tegyük fel, hogy K(z) = (z λ 1 ) m 1 + (z λ r ) mr, ahol λ 1,..., λ n különbözőek, és m m r = n. ϕ i,j (t) = t i e λjt, i = 1,..., r, i =,..., m j 1 alaprendszert alkot Tétel. Valós alaprendszer is van Az inhomogén állandó együtthatós differenciálegyenlet megoldása 9.12 Tétel. Ha c(t) kielégíti a Φ(t)c (t) = b(t) egyenletet, akkor c 1 (t)ϕ 1 (t) c n (t)ϕ n (t) M ih Tétel. Legyen P, Q polinom, α, β, c 1, 2, A, B R. Ha α + β i k-szoros gyöke k-nak (ha nem gyöke, akkor k = ) és ahol Q foka nagyobb mint P foka. 1. Előadás b(t) = P (t)e αt (c 1 cos βt + c 2 sin βt). ϕ(t) = t k Q(t)e αt (A cos βt + B sin βt) M ih, 1.1. Függvénysorozatok, függvénysorok A R, f n : A R, n N. 1.1 Definíció. Az (f n ) sorozatot függvénysorozatnak nevezzük, a f n sort pedig függvénysornak nevezzük, ahol ez alatt a függvénysorozatot értjük. ( n f k, ) n N 8

9 1.2 Definíció. Az (f n ) függvénysorozat konvergenciahalmaza: KH(f n ) := {x A: (f n (x)) konv. }, a f n függvénysorozat konvergenciahalmaza: ( ) KH fn := {x A: f n (x) konv. }. 1.3 Definíció. Az (f n ) pontonkéni limesze: lim f n : KH(f n ) R, x lim f n (x). A f n összegfüggvénye: n= ( ) f n : KH fn R, x f n (x). n= 1.4 Definíció. Az (f n ) függvénysorozat egyenletesen konvergens, ha ε > n, n, m n x A: f n (x) f m (x) < ε. 1.5 Tétel. Az (f n ) sorozat egyenletesen konvergens, akkor és csak akkor, ha f : A R, ε > n, n n x A: f n (x) f(x) < ε. Az (f n ) függvénysorozat egyenletes konvergenciájáról szóló tételben megjelenő f-et az (f n ) egyenletes hatásfüggvényének nevezzük. Jele: f n f. 1.6 Megjegyzés. f n f pontonként A-n, akkor és csakis akkor, ha x A, ε > n, n n : f n (x) f(x) < ε. 1.7 Tétel. f n f f n f pontonként A-n, de f n f f n f pontonként A-n. 1.8 Tétel. f n : A R. Tegyük fel, hogy f n C(A), n N, és (f n ) egyenletesen konvergens. f = lim f n C(A). 1.9 Tétel (Weierstrass-tétel). f n : A R. Tekintsük a f n függvénysort és a a n számsort. Tegyük fel, hogy sup f n () a n n N, és a n konvergens. x A f n egyenletesen konvergens. 1.1 Definíció. f n egyenletesen konvergens, ha (s n ) egyenletesen konvergens, ahol n s n := f k Tétel. f n : [a, b] R, n N. Tegyük fel, hogy f n R[a, b], n N, és (f n ) egyenletesen konvergens. f := lim f n R[a, b] és b a b f = lim f n. a 9

10 1.12 Tétel. f n : [a, b] R, n N. Tegyük fel, hogy f n R[a, b], n N, és f n egyenletesen konvergens. f := f n R[a, b] és n= b b f = f n. a n= a 1.13 Tétel. f n : (a, b) R, n N. Tegyük fel, hogy 1. f n D(a, b) ( n N, 2. x (a, b): (f n (x )) konvergens, 3. (f n) egyenletesen konvergens. 1. (f n ) egyenletesen konvergens, 2. f = lim f n D(a, b), 3. f = lim f n. 11. Előadás Fourier-sorok 11.1 Definíció. A n (a k cos kx + b k sin kx) polinomot trigonometrikus polinomnak nevezzük, a a k cos kx + b k sin kx sort pedig trigonometrikus sornak nevezzük Definíció. R 2π := {f : R R, f 2π-szerint periodikus és f R[, 2π]}, C 2π := {f : R R, f 2π-szerint periodikus és f C} Definíció. f, g R 2π ortogonális, ha f, g := fg = Definíció. A {ϕ n : n N} rendszer ortogonális, ha : n m ϕ n, ϕ m = ϕ n ϕ m = 1: n = m Tétel. Az {1, cos x, sin x, cos 2x, sin 2x,...} rendszer ortogonális Tétel. Az { 1, cos x, sinx cos 2x sin 2x,,...} 2π π π π π rendszer ortonormált. 1

11 11.7 Definíció. Az {1, cos x, sin x, cos 2x, sin 2x,...} rendszert trigonometrikus rendszernek nevezzük Tétel. A trigonometrikus rendszer teljes C 2π -ben, azaz, ha h C 2π és akkor h. h(x) cos kxdx = h(x) sin kxdx = k, 11.9 Tétel. Ha a a k cos kx + b k sin kx sor egyenletesen konvergál, és f(x) = (a k cos kx + b k sin kx), akkor a = 1 2π a k = 1 π b k = 1 π f(x)dx, f(x) cos kx dx k 1 f(x) sin kx dx k Definíció. f R 2π. Az a := 1 2π a k := 1 π b k := 1 π f(x)dx, számokat f Fourier-együtthatóinak nevezük. A sort f Fourier-sorának nevezzük. f(x) cos kx dx k 1 f(x) sin kx dx k 1. a k cos kx + b k sin kx Tétel (Da-Boir Reymond, Fejér). f C 2π, hogy f Fourier-sora egy pontban divergens. 11

12 12. Előadás 12.1 Tétel. Az f C 2π Fourier sora a a k cos kx + b k sin kx. Ha a Fourier-sor egyenletesen konvergens, akkor f(x) = a k cos kx + b k sin kx Definíció. C 2 2π = {f : R R f 2π szeint periodikus, f C 2 }, azaz f kétszer folytonosan differenciálható Tétel. Ha f C 2 2π, akkor f Fourier-sora egyenletesen konvergens, és f(x) = a k cos kx + b k sin kx Definíció. f szakaszonként folytonos a [, 2π]-n, ha > t < t 1 <... < t n = 2π, hogy f (ti 1,t i ) folytonos (i = 1,..., n), és lim x+ f = f(x + ) és lim x f = f(x ) ( x [, 2π]) Tétel. Tegyük fel, hogy 1. f 2π szerint periodikus, 2. f szakaszonként folytonos a [, 2π]-n, 3. egy adott x [, 2π]-re f (x + ) = lim és f f(t) f(x) (x ) = lim. t x t x t x+ a k cos kx + b k sin kx = 12.6 Következmény. Tegyük fel, hogy 1. f 2π szerint periodikus, 2. f szakaszonként folytonos a [, 2π]-n, 3. f D(x) egy adott x-re. f(t) f(x) t x f(x + ) + f(x ). 2 a k cos kx + b k sin kx = f(x). 12

13 12.7 Tétel (Bessel-egyenlőség). Ha f R 2π, akkor n n min f(x) (a k cos kx + b k sin kx 2 = f(x) (a k cos kx + b k sin kx Tétel (Bessel-egyenlőtlenség). Ha f R 2π, akkor f 2 2 = 12.9 Tétel. Ha f R 2π, akkor L 2 normában, azaz ( f(x) 2 dx 2πa 2 ) + π a 2 k + b 2 k. k=1 (a k cos kx + b k sin kx) = f(x). lim f(x) n a k cos kx + b k sin kx 2 =. n Továbbá (Perseral formula) f(x) 2 dx = 2πa 2 + π (a 2 k + b 2 k). k= Tétel (Carlazon-tétel). Ha f R 2π, akkor majdnem minden x-re. (a k cos kx + b k sin kx) = f(x) ( ) 2, π x Tétel. Ha f(x) = 2 x [, 2π], f(x + 2π) = f(x). Ekkkor egyenletes. f(x) = π k=1 cos kx k 2 13

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk

Részletesebben

Tartalomjegyzék. 1. Előszó 1

Tartalomjegyzék. 1. Előszó 1 Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............

Részletesebben

Differenciálegyenletek

Differenciálegyenletek DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. március 17. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

86 MAM112M előadásjegyzet, 2008/2009

86 MAM112M előadásjegyzet, 2008/2009 86 MAM11M előadásjegyzet, 8/9 5. Fourier-elmélet 5.1. Komplex trigonometrikus Fourier-sorok Tekintsük az [,], C Hilbert-teret, azaz azoknak a komplex értékű f : [,] C függvényeknek a halmazát, amelyek

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt. Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Valós számok 1. Hogyan szól a Bernoulli-egyenl tlenség? Mikor van egyenl ség? Válasz. Minden h 1 valós számra

Részletesebben

Matematikai analízis 1. Szász Róbert

Matematikai analízis 1. Szász Róbert Matematikai analízis Szász Róbert . fejezet.. Topológikus terek... Értelmezés. Adott egy X halmaz. A d : X X [0, + ) függvényt metrikának nevezzük, ha teljesülnek a következő feltételek:. d(x, y) > 0,

Részletesebben

Differenciálegyenletek gyakorlat december 5.

Differenciálegyenletek gyakorlat december 5. Differenciálegyenletek gyakorlat Kocsis Albert Tihamér Németh Adrián 05 december 5 Ismétlés Integrálás Newton Leibniz-formula Integrálás és alapműveletek wwwwolframalphacom Alapintegrálok sin x dx = cos

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC 016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 29.

Matematika szigorlat, Mérnök informatikus szak I máj. 29. Matematika szigorlat, Mérnök informatikus szak I. 2007. máj. 29. Megoldókulcs 1. Adott az S : 3x 6y + 2z = 6 sík a három dimenziós térben. (a) Írja fel egy tetszőleges, az S-re merőleges S síknak az egyenletét!

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2 Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt

Részletesebben

f(x) a (x x 0 )-t használjuk.

f(x) a (x x 0 )-t használjuk. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák: 1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre

Részletesebben

Elérhető maximális pontszám: 70+30=100 pont

Elérhető maximális pontszám: 70+30=100 pont Villamosmérnök Szak Távoktatás 2. félév Matematika kollokvium 2008. dec. 20. Név: Neptun Kód: Tanár: Fel.: Elm.: Hf.: Össz.: Oszt.: Vajda István Rendelkezésre álló idő: 105 perc Elérhető maximális pontszám:

Részletesebben

Az előadásokon ténylegesen elhangzottak rövid leírása

Az előadásokon ténylegesen elhangzottak rövid leírása TTK, Matematikus alapszak, Differenciálegyenletek (előadás, gyakorlat) Előadás BMETE93AM03; Gyakorlat BME TE93AM04. Követelmény: Előadás 4/0/0/v/4; Gyakorlat 0/020/f/2 Tananyag (általános megjegyzések).

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

5. Lineáris rendszerek

5. Lineáris rendszerek 66 MAM43A előadásjegyzet, 2008/2009 5 Lineáris rendszerek 5 Lineáris algebrai előismeretek Tekintsük az a x + a 2 x 2 = b 5 a 2 x + a 22 x 2 = b 2 52 lineáris egyenletrendszert Az egyenletben szereplő

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK

NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK NUMERIKUS MÓDSZEREK I. BEUGRÓ KÉRDÉSEK Szerkesztette: Balogh Tamás 04. január 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el!

Részletesebben

Többváltozós Függvények Analízise; Differenciálegyenletek Tantárgyi tájékoztató, 2014/2015 tavaszi félév

Többváltozós Függvények Analízise; Differenciálegyenletek Tantárgyi tájékoztató, 2014/2015 tavaszi félév Többváltozós Függvények Analízise; Differenciálegyenletek Tantárgyi tájékoztató, 214/215 tavaszi félév Kurzus adatai: Tárgy előadója: Gyakorlatvezető: Kurzus neve: Kurzus típusa: Kurzus kódja: Bessenyei

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

4. Lineáris rendszerek

4. Lineáris rendszerek 60 Hartung Ferenc: Differenciálegyenletek, MA22i, MA623d, 2006/07 4 Lineáris rendszerek 4 Lineáris algebrai előismeretek Legyen A egy n n-es mátrix, I az n n-es egységmátrix A pλ := deta λi n-edfokú polinomot

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.

Részletesebben

Hatványsorok, elemi függvények

Hatványsorok, elemi függvények Hatványsorok, elemi függvények EL 1 Hatványsorok, elemi függvények Hatványsorok, elemi függvények EL Definíció: függvénysorozat Legyen A R, H { f f:a R }. (A H halmaz elemei az A halmazon értelmezett függvények)

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 00-. I. Félév . fejezet Számhalmazok és tulajdonságaik.. Nevezetes számhalmazok ➀ a) jelölése: N b) elemei:

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2011 Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright Az Olvasó most egy egyetemi jegyzetet tart

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Differenciálegyenletek Oktatási segédanyag

Differenciálegyenletek Oktatási segédanyag VIK, Műszaki Informatika ANALÍZIS (2) Differenciálegyenletek Oktatási segédanyag A Villamosmérnöki és Informatikai Kar műszaki informatikus hallgatóinak tartott előadásai alapján összeállította: Fritz

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4 Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 +

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 + . Fourier-soro. Bevezet definíció Enne a fejezetne a célja, hogy egy szerint periodius függvényt felírjun mint trigonometrius függvényeből épzett függvénysorént. Nyilván a cos x a sin x függvénye szerint

Részletesebben

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 ) Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor

Részletesebben

5. Differenciálegyenlet rendszerek

5. Differenciálegyenlet rendszerek 5 Differenciálegyenle rendszerek Elsőrendű explici differenciálegyenle rendszer álalános alakja: d = f (, x, x,, x n ) d = f (, x, x,, x n ) (5) n d = f n (, x, x,, x n ) ömörebben: d = f(, x) Definíció:

Részletesebben

Széchenyi István Egyetem, 2005

Széchenyi István Egyetem, 2005 Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt, 205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 9. előadás: Paraméteres iterációk, relaxációs módszerek Lócsi Levente ELTE IK Tartalomjegyzék 1 A Richardson-iteráció 2 Relaxált Jacobi-iteráció 3 Relaxált Gauss Seidel-iteráció

Részletesebben

y + a y + b y = r(x),

y + a y + b y = r(x), Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan

Részletesebben

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Valós függvénytan Elektronikus tananyag

Valós függvénytan Elektronikus tananyag Valós függvénytan Elektronikus tananyag Valós függvénytan: Elektronikus tananyag TÁMOP-4.1.2.A/1-11/1 MSc Tananyagfejlesztés Interdiszciplináris és komplex megközelítésű digitális tananyagfejlesztés a

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

A brachistochron probléma megoldása

A brachistochron probléma megoldása A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e

Részletesebben

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Differenciaegyenletek a differenciálegyenletek

Differenciaegyenletek a differenciálegyenletek Differenciaegyenletek a differenciálegyenletek tükrében Guzsvány Szandra Újvidéki Egyetem, Természettudományi Kar, Újvidék E-mail: g.sandra@citromail.hu 1. Bevezetés 1.1. Történeti áttekintés Dolgozatom

Részletesebben

Differenciálegyenletek megoldása próbafüggvény-módszerrel

Differenciálegyenletek megoldása próbafüggvény-módszerrel Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós

Részletesebben

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval

4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval 4. fejezet Egyváltozós valós függvények deriválása Elm 4.. Differenciálás a definícióval A derivált definíciójával atározza meg az alábbi deriváltakat!. Feladat: f) = 6 + f 4) =? f 4) f4 + ) f4) 5 + 6

Részletesebben

Tananyag. Amikor ez nem sikerül (vagy nem érdemes előállítani a megoldás képletét, mert pl. nagyon

Tananyag. Amikor ez nem sikerül (vagy nem érdemes előállítani a megoldás képletét, mert pl. nagyon 5. lecke. A megoldás előállíthatóságának problémája. Egy közelítő módszer, hibabecsléssel Tananyag Láttuk az előzőekben, hogy az y = f(x, y) differenciálegyenlet jobb oldalának, az f = f(x, y) kétváltozós

Részletesebben

Egzisztenciatételek a differenciálegyenletek elméletéből

Egzisztenciatételek a differenciálegyenletek elméletéből Egzisztenciatételek a differenciálegyenletek elméletéből Bodó Ágnes Matematika BSc Szakdolgozat Témavezető: Besenyei Ádám adjunktus Alkalmazott Analízis és Számításmatematikai Tanszék Budapest, 2012. Tartalomjegyzék

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

x a x, ha a > 1 x a x, ha 0 < a < 1

x a x, ha a > 1 x a x, ha 0 < a < 1 EL 18 Valós exponenciális függvények Definíció: Ha a R, a>0, akkor legyen a x = e x lna, x R A valós változós exponenciális függvények grafikonja: x a x, ha a > 1 x a x, ha 0 < a < 1 A szinusz függvény

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

Differenciál egyenletek

Differenciál egyenletek Galik Zsófia menedzser hallgató Differenciál egyenletek osztályzása Differenciál egyenletek A differenciálegyenletek olyan egyenletek a matematikában (közelebbről a matematikai analízisben), melyekben

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék

Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék III 1. Aritmetika 1 1.1. Elemi számolási szabályok............................... 1 1.1.1. Számok..................................... 1 1.1.1.1. Természetes, egész és racionális számok.............. 1

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem Debrecen, 2009/2010 tanév, II. félév Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 1 / 180 Félévközi

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC 6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen

Részletesebben

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,,3.(a),(b),(), 6.(a) feladatokra 1. Oldjuk meg a következő kezdeti érték feladatot: y 1 =, y(0) = 3, 1 x y (0) = 1. Ha egy

Részletesebben

5. gyakorlat. Lineáris leképezések. Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét!

5. gyakorlat. Lineáris leképezések. Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét! 5. gyakorlat Lineáris leképezések Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét! f : IR IR, f(x) 5x Mit rendel hozzá ez a függvény két szám összegéhez? x, x IR, f(x +

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Metrikus terek, többváltozós függvények

Metrikus terek, többváltozós függvények Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

Közönséges differenciálegyenletek megoldása Mapleben

Közönséges differenciálegyenletek megoldása Mapleben Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen

Részletesebben

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n.

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n. 1. Többváltozós függvények 1. Bevezetés Ennek a fejezetnek a célja a kétváltozós függvények vizsgálata, ami során a 3-dimenziós felületeket szeretnénénk megérteni. 1. definíció. Legyen D R n. Ekkor az

Részletesebben

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........

Részletesebben

1. feladatsor, megoldások. y y = 0. y h = C e x

1. feladatsor, megoldások. y y = 0. y h = C e x 1. feladatsor, megoldások 1. Ez egy elsőrendű diffegyenlet, először a homogén egyenlet megoldását keressük meg, majd partikuláris megoldást keresünk: y y = 0 Ez pl. egy szétválasztható egyenlet, melynek

Részletesebben

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő

Részletesebben

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások: . Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,

Részletesebben