Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek"

Átírás

1 Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk a kri3kus pontok vagy határciklusok stabilitását. Ilyen esetekben a Lyapunov függvény Használata, és a Lyapunov stabiltás analizís segíthet bennünket. 1. Hamilton rendszerekkel fogunk foglalkozni. 2. A Lyapunov stabilitás analizist tanuljuk meg.

2 A Hamilton rendszerek síkban Egy kétdimenziós differenciálegyenlet rendszer egyszabadság fokú Hamilton Kpusú rendszer, ha a következő alakban írható: dx dt = x = H(x, y) y dy dt = y = H(x, y) x ahol H(x,y) mindkét változó szerint kétszer differenciálható függvény. Ezt nevezzük Hamilton függvénynek Egy ilyen rendszer egy H(x,p) egyszabadsági fokú mechanikai rendszerrel ekvivalens. x = H p p = H x A Hamilton függvény felírható mint: H(x, y) = T(x, y) +V(x, y) mozgási energia helyzek energia

3 Egy Hamilton rendszer konzerva3v (az össz energia megmarad egy trajektórián a dinamika során ) dh[x(t), y(t)] dt = H(x,y) x dx dt + H(x, y) y dy dt = H x H y H y H x = 0 H[x(t), y(t)] konstans a trajektóriák mentén Példa: fizikai inga L(θ, θ ) = T(θ, θ ) V(θ, θ ) = m 2 Euler- Lagrange egyenletek θ + g l sin(θ) = 0 d dt d dt ( lθ) mgl( 1 cos(θ) ) L(θ, θ ) θ = L(θ, θ ) θ ml 2 θ + mglsin(θ) = 0 θ = φ φ = g l sin( θ) H(θ,φ) = φ 2 2 g l cos θ ( ) θ l g m

4 A fizikai inga, mint dinamikus rendszernek a tárgyalása θ = φ φ = g l sin( θ) KriKkus pontok: Jacobi mátrix 0 1 g l cos(θ) 0 (nπ,0) Ha n páros Ha n páratlan 0 1 g 0 l 0 1 g 0 l 2π π λ 1,2 = ±i 0 φ g l π 2π 3π θ nemhperbolikus krikkus pont λ 1,2 = ± g l nyeregpontok Trajektóriák: H( θ,φ) = φ 2 görbék 2 g l cos θ ( ) = C

5 nyeregpontok nemhiperbolikus krikkus pont

6 H(x, y) = y 2 ( ) 2 cos x nemhiperbolikus krikkus pontok nyeregpontok

7 Ha adoy az x = f ( x ) síkbeli dinamika, amelynek a Jacobi mátrixa J, akkor azt mondjuk, hogy a krikkus pontok nemelfajultak, ha a J- nek nincs 0 sajátértéke. Ha J- nek 0 a sajátértéke, akkor a krikkus pont elfajult. Tétel: Egy 2d Hamilton rendszer minden nemelfajult kridkus pontja vagy nyeregpont vagy center. Bizonyítás: 2 H x z 0,0 J(0,0) = J 0 = Tételezzük fel, hogy a krikkus pont az O(0,0) origó. A Jacobi mátrix: ( ) 2 H ( ) y 2 0,0 2 H ( 0,0) 2 H x 2 y x ( 0,0) Tr(J 0 ) = 0 det( J 0 ) = 2 H ( 0,0) 2 H 0,0 x 2 y 2 ( ) 2 H x y ( 0,0) 2 Ha det(j 0 ) < 0 det(j 0 ) > 0 nyeregpont center

8 Példák: Határozzuk meg a Hamilton függvényét a követlező dinamikai rendszereknek, és rajzoljuk fel a fázis- portréjukat 1. x = y y = x + x 2 H(x, y) = y 2 2 x 2 2 x 3 3 trajektóriák H(x, y) = C KriKkus pontok: O(0,0) P( 1,0) J = x 0 J P = J 0 = λ 1,2 = ±i center nemhiperbolikus λ 1,2 = ±1 nyeregpont v +1 = 1 1 v 1 = 1 1

9 center nyeregpont

10 2. x = y + x 2 y 2 y = x 2xy H(x, y) = x y x 2 y y 3 3 KriKkus pontok: 2x J = 1 2y 1 2y 2x Trajektóriák: H(x, y) = x 2 O = (0,0) A = (0,1) 2 + y x 2 y y 3 3 B = ( 2, 1 2 ) C = ( 3 2, 1 2 ) 3 = C J 0 = J A = J B = 0 3 J C = λ 1,2 = ±i λ 1,2 = ± 3 v 3 = 1 1 λ 1,2 = ± 3 v 3 = 1 0 λ 1,2 = ± 3 v 3 = 1 3 center nyeregpont v 3 = 1 1 nyeregpont 1 v 3 = 3 nyeregpont v 3 = 1 0

11 center nyeregpontok

12 Tekintsünk egy 2d dinamikus rendszert. Legyen x 0 egy krikkus pont. Ha Λ + (γ) = Λ (γ) = x 0, akkor γ egy homoklinikus orbitál. - egy homoklinikus orbitál egy krikkus pontot önmagával kök össze - Végtelen idejű dinamika kell, hogy az összekötés megvalósuljon homoklinikus orbitál

13 Tekintsünk egy 2d dinamikus rendszert. x 0 y 0 Λ (γ) = y 0 Legyen és két krkkus pont. Ha Λ + (γ) = x 0 és, akkor egy heteroklinikus orbitál. γ Heteroklinikus orbitálok

14 szeparatrix Egy olyan orbitál ami fázissíkot két dinamikailag kalitakven különböző doméniumra ossza A homoklinikus és heteroklinikus orbitálok példák szeparatrix- re

15 Potenciálmódszer a kridkus pontok stabilitásának a viszgálatára x = U x y = U y U(x, y) du dt = U x dx dt + U y potenciálfüggvény dy dt = U x 2 + U 2 y 0 Egy trajektória mentén a potenciálfüggvény csökken. krikkus pontok: x = 0 y = 0 U x = 0 U y = 0 lokális maximumok vagy minimumai a potenciálfüggvénynek lokális maximum lokális minimum instabil krikkus pont stabil krikkus pont

16 Példa x = x x 3 y = y O(0,0) KriKkus pontok: A( 1,0) B(1,0) J = 1 3x J O = λ 1,2 = ±1 nyeregpont J A = λ 1 = 2 λ 2 = 1 stabil nodus V (x, y) = x x y 2 2 J B = λ 1 = 2 λ 2 = 1 stabil nodus dupla potenciálvölgy

17 KriDkus pontok stabilitása x = f ( x ) Ha x (t) egy trajektória a fenk dinamikában Egy x 0 krikkus pont stabil, ha minden ε > 0 - hoz létezik δ > 0 úgy, hogy ha, x (t) x 0 (t) < ε mikor x (t 0 ) x 0 (t 0 ) < δ. t t 0 Egy x 0 krikkus pont asszimptodkusan stabil, ha stabil és létezik η > 0 úgy, hogy lim t x (t) x 0 (t) = 0 ha x (t 0 ) x 0 (t 0 ) < η Egy stabil krikkus pont környezetében a trajektóriák a krikkus pont közelében maradnak Egy asszimptokkusan stabil krikkus pont környezetében a trajetóriák bekonvergálnak a KriKkus pontban

18 Lyapunov függvény és stabilitás vizsgálat Nemhiperbolikus krikkus pontok esetén a Lyapunov stabilitás vizsgálat használható, hogy a krikkus pontok stabilitását vizsgáljuk Lyapunov stabilitás tétele Legyen x = f ( x ) egy dinamika és f folytonosan deriválható. Legyen x 0 egy krikkus pont és E R 2 egy nyílt halmaz amely tartalmazza az x 0 pontot. Tételezzük fel, hogy létezik egy V ( x ) folytonosan deriválható függvény amelyre V ( x 0 ) = 0 V ( x ) > 0ha x x 0 V ( x ) Lyapunov függvény Ilyen esetben, ha d dt V ( x (t)) 0, x 1. E akkor x 0 stabil d dt V ( x (t)) < 0, x 2. E akkor x 0 asszimptokkusan stabil d ( x (t)) > 0, x 3. E akkor instabil x 0 dt V d 4. dt V ( x (t)) ( ) = 0 x E a trajektoriák a ( x ( t) ) = C görbék V

19 Példák: x = y 3 KriKkus pont: O(0,0) minden sajátérték 0 1. y = x 3 nemhiperbolikus krikkus pont a klasszikus stabilitásvizsgálat nem müködik V (x, y) = x 4 + y 4 dv dt = V x dx dt + V y megfelelő Lyapunov függvény dy dt = 4 x 3 y 3 ( ) + 4y 3 x 3 ( ) = 0 A trajektóriák: x 4 + y 4 = C Az O stabil, de nem asszimptokkusan stabil y > 0 x < 0 y < 0 x > 0

20 2. x = y y = x y(1 x 2 ) KriKkus pont: O(0,0) J O = λ 1,2 = 1 2 ± i 3 2 stabil fókusz Lyapunov függvény: V (x, y) = x 2 + y 2 dv dt Ha x <1 = V x dx dt + V y dv dt 0 dy dt = 2y 2 (x 2 1) dv dt = 0 y = 0 x = 0 y = x az y=0 egyenesről a trajektóriák távolodnak Az O pont asszimptokkusan stabil

21 3. x = 8x xy 2 3y 3 y = 2x 2 y + 2xy 2 Bizonyítsuk be, hogy O(0,0) asszimptokkusan stabil krikkus pont J O = λ 1 = 8 λ 2 = 0 Az O krikkus pont nemhiperbolikus V (x, y) = 2x 2 + 3y 2 Legyen: V = 4x( 8x xy 2 3y 3 ) + 6y(2x 2 y + 2xy 2 ) = 8x 2 (y 2 4) V 0 ha y < 2 A trajektóriák mentén végig csökken V ha V(x,y)<12 és V = 0 V < 0 ha ha y < 2 x = 0 x = 3y 3 y = 0 y x a trajektoriák távolodnak az x=0 tengelytől A Lyapunov stabilitás doménium 2x 2 + 3y 2 <12 egy ellipszis belsejében van

22

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

1. feladatsor, megoldások. y y = 0. y h = C e x

1. feladatsor, megoldások. y y = 0. y h = C e x 1. feladatsor, megoldások 1. Ez egy elsőrendű diffegyenlet, először a homogén egyenlet megoldását keressük meg, majd partikuláris megoldást keresünk: y y = 0 Ez pl. egy szétválasztható egyenlet, melynek

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

Többváltozós széls érték számítás és alkalmazásai

Többváltozós széls érték számítás és alkalmazásai Eötvös Loránd Tudományegyetem Természettudományi Kar Többváltozós széls érték számítás és alkalmazásai BSc Szakdolgozat Készítette: Prikkel Anett Matematika BSc Matematikai elemz szakirány Témavezet :

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1 Drótos G.: Fejezete az elméleti mechaniából 4. rész 4. Kis rezgése 4.. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan r pontoat nevezzü valamely oordináta-rendszerben, ahol a vizsgált tömegpont gyorsulása

Részletesebben

Közönséges differenciálegyenletek megoldása Mapleben

Közönséges differenciálegyenletek megoldása Mapleben Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Geometriai alapok Felületek

Geometriai alapok Felületek Geometriai alapok Felületek Geometriai alapok Felületek matematikai definíciója A háromdimenziós tér egy altere Függvénnyel rögzítjük a pontok helyét Parabolavezérgörbéjű donga 4 f z x + a C Elliptikus

Részletesebben

4. Kartell két vállalat esetén

4. Kartell két vállalat esetén 4. Kartell két vállalat esetén 34 4. Kartell két vállalat esetén Ebben a fejezetben azzal az esettel foglalkozunk, amikor a piacot két vállalat uralja és ezek összejátszanak. A vállalatok együttműködését

Részletesebben

Nemlineáris optimalizálás

Nemlineáris optimalizálás Nemlineáris optimalizálás Rapcsák Tamás 2007. 3 Előszó A Nemlineáris optimalizálás című anyag a gazdaságmatematikai elemző közgazdász hallgatók számára készült és egyrészt a matematikai alapozó kurzusokra

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

5. Lineáris rendszerek

5. Lineáris rendszerek 66 MAM43A előadásjegyzet, 2008/2009 5 Lineáris rendszerek 5 Lineáris algebrai előismeretek Tekintsük az a x + a 2 x 2 = b 5 a 2 x + a 22 x 2 = b 2 52 lineáris egyenletrendszert Az egyenletben szereplő

Részletesebben

Analízis II. gyakorlat

Analízis II. gyakorlat Analízis II. gyakorlat Németh Adrián 4. január 7. Tartalomjegyzék Előszó.................................................... Ismétlés................................................... Integrálás...............................................

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Nemlineáris optimalizálás Dr. Házy, Attila

Nemlineáris optimalizálás Dr. Házy, Attila Nemlineáris optimalizálás Dr. Házy, Attila Nemlineáris optimalizálás Dr. Házy, Attila Miskolci Egyetem Kelet-Magyarországi Informatika Tananyag Tárház Kivonat Kivonat Nemzeti Fejlesztési Ügynökség http://ujszechenyiterv.gov.hu/

Részletesebben

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a Feladatok, amelyek gráfokkal oldhatók meg ) A königsbergi hidak problémája (Euler-féle probléma) a b d c A megfelelő gráf: d a b c ) Egy szórakoztató feladat (Hamilton-féle probléma) Helyezzük el az,,,...,

Részletesebben

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék FELTÉTELES OPTIMALIZÁLÁS DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-4...B-0//KONV-00-000 jel½u projekt részeként az Európai Unió támogatásával,

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

Halmazelmélet. 1. Jelenítsük meg Venn-diagrammon az alábbi halmazokat: a) b) c) 2. Milyen halmazokat határoznak meg az alábbi Venn-diagrammok?

Halmazelmélet. 1. Jelenítsük meg Venn-diagrammon az alábbi halmazokat: a) b) c) 2. Milyen halmazokat határoznak meg az alábbi Venn-diagrammok? Halmazelmélet Alapfogalmak Unió: ; metszet: ; különbség: ; komplementer: (itt U egy univerzum halmaz). Egyenlőség: két halmaz egyenlő, ha ugyanazok az elemeik. Ezzel ekvivalens, hogy. Tartalmazás: ; valódi

Részletesebben

A prímszámok eloszlása, avagy az első 50 millió

A prímszámok eloszlása, avagy az első 50 millió Bevezetés Pímszámok A prímszámok eloszlása, avagy az első 50 millió prímszám. Klukovits Lajos TTIK Bolyai Intézet 2014. április 8. Néhány definíció. 1 A klasszikus számelméleti. p N prím, ha a p a = ±1,

Részletesebben

Mikróökonómia feladatok

Mikróökonómia feladatok kidolgozva A feladatok még hiányosak, folyamatosan frissítem őket! Utolsó frissítés: 007-04-04 19:13:47 1. oldal, összesen 44 oldal Konzultáció 006-10-6 1. feladat (Cobb-Douglas függvény) Józsi bácsi 100

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat

Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat ANALÍZIS FELADATGYŰJTEMÉNY I Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat Algoritmuselmélet Algoritmusok bonyolultsága Analitikus módszerek a pénzügyben és a közgazdaságtanban Analízis

Részletesebben

1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás

1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás 1. szemináriumi feladatok két időszakos fogyasztás/ megtakarítás 1. feladat Az általunk vizsgál gazdaság csupán két időszakig működik. A gazdaságban egy reprezentatív fogyasztó hoz döntéseket. A fogyasztó

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

Néhány közelítő megoldás geometriai szemléltetése

Néhány közelítő megoldás geometriai szemléltetése 5. Fejezet Néány közelítő megoldás geometriai szemléltetése 5.. Iránymező Látattuk, ogy az explicit differenciálegyenletek rendelkeznek azzal az érdekes és kivételes tulajdonsággal, ogy bár esetenként

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

Mikroökonómia - Bevezetés, a piac

Mikroökonómia - Bevezetés, a piac Mikroökonómia szeminárium Bevezetés, a piac Budapesti Corvinus Egyetem Makroökonómia Tanszék 2011 szeptember 21. A témakör alapfogalmai Keresleti (kínálati) görbe - kereslet (kínálat) fogalma - kereslet

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter

Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter Raszterizáció OpenGL Mely pixelek vannak a primitíven belül fragment generálása minden ilyen pixelre Attribútumok (pl., szín) hozzárendelése

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése

A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése 1 /11 (C) http://kgt.bme.hu/ A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése Varian 20.3-6. 21. fejezet Termelési és hasznossági függvény (ismétlés

Részletesebben

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:...

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:... 1. Feladat. Döntse el, hogy igaz vagy hamis. Név:........................................... (1) (1 3) = (3 1). (hamis) () (1 ) = ( 1). (igaz). Feladat. Döntse el, hogy igaz vagy hamis. Név:...........................................

Részletesebben

Harmonikus rezgések összetevése és felbontása

Harmonikus rezgések összetevése és felbontása TÓTH.: Rezgésösszetevés (kibővített óravázlat) 30 005.06.09. Harmonikus rezgések összetevése és felbontása Gyakran előfordul hogy egy rezgésre képes rendszerben több közelítőleg harmonikus rezgés egyszerre

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

Képrekonstrukció 3. előadás

Képrekonstrukció 3. előadás Képrekonstrukció 3. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Computed Tomography (CT) Elv: Röntgen-sugarak áthatolása 3D objektum 3D térfogati kép Mérések

Részletesebben

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma A Riemann-Siegel zeta függvény kiugró értékeinek keresése A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma 2013 A probléma fontossága és hatása a hétköznapi életre A prímszámok

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

Késleltetett differenciálegyenletek periodikus pályái és globális dinamikája

Késleltetett differenciálegyenletek periodikus pályái és globális dinamikája Késleltetett differenciálegyenletek periodikus pályái és globális dinamikája Doktori értekezés tézisei Vas Gabriella Témavezető: Dr. Krisztin Tibor egyetemi tanár Matematika- és Számítástudományok Doktori

Részletesebben

Szakdolgozat. Miskolci Egyetem. Nemlineáris programozás. Készítette: Horváth Gábor Programtervező informatikus hallgató

Szakdolgozat. Miskolci Egyetem. Nemlineáris programozás. Készítette: Horváth Gábor Programtervező informatikus hallgató Szakdolgozat Miskolci Egyetem Nemlineáris programozás Készítette: Horváth Gábor Programtervező informatikus hallgató Témavezető: Dr. Nagy Tamás egyetemi docens, Alkalmazott Matematikai Tanszék Miskolc,

Részletesebben

Nagyon sokféle berendezés van, ami villamos energiát alakít mechanikai energiává és

Nagyon sokféle berendezés van, ami villamos energiát alakít mechanikai energiává és 1. fejezet Az elektromechanikai energiaátalakítás Nagyon sokféle berendezés van, ami villamos energiát alakít mechanikai energiává és fordítva. Ezeknek a berendezéseknek a felépítése különböző lehet, a

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Eötvös Loránd Tudományegyetem Természettudományi Kar

Eötvös Loránd Tudományegyetem Természettudományi Kar Eötvös Loránd Tudományegyetem Természettudományi Kar Közönséges differenciálegyenletek numerikus megoldása Szakdolgozat Soós Ivett Matematika B.Sc., Matematikai elemz szakirány Témavezet : Mincsovics Miklós

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

I. feladatsor. (t) z 1 z 3

I. feladatsor. (t) z 1 z 3 I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.

Részletesebben

és a hozzájuk tartozó modellezési és matematikai módszereket egyaránt jelölik. A

és a hozzájuk tartozó modellezési és matematikai módszereket egyaránt jelölik. A BEVEZETÉS A NEM-EGYENSÚLYI TERMODINAMIKÁBA ÍRTA: VÁN PÉTER Kivonat. Figyelem! A jegyzet az előadástól és az előző változattól tisztább formában használja az egyensúly fogalmát! 1. Bevezetés A nemegyensúlyi

Részletesebben

Villamosmérnök A4 4. gyakorlat (2012. 10. 01.-02.) Várható érték, szórás, módusz

Villamosmérnök A4 4. gyakorlat (2012. 10. 01.-02.) Várható érték, szórás, módusz Villamosmérnök A4 4. gyakorlat (0. 0. 0.-0.) Várható érték, szórás, módusz. A k 0, (k,,, 4) diszkrét eloszlásnak (itt P(X k)) mennyi a (a) várható értéke, (b) módusza, (c) második momentuma, (d) szórása?

Részletesebben

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak... Biztos, hogy titkos? Szabó István előadása Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...) Története Az ókortól kezdve rengeteg feltört titkosírás létezik. Monoalfabetikus

Részletesebben

Válasz Dr. Abonyi János bírálatára

Válasz Dr. Abonyi János bírálatára Válasz Dr. Abonyi János bírálatára Tisztelt Professzor Úr! Fodor Attila: Model analysis, Parameter Estimation and Control of a Synchronous Generator című doktori értekezéséről Ezúton is szeretném megköszönni,

Részletesebben

Analízis Gyakorlattámogató jegyzet

Analízis Gyakorlattámogató jegyzet Analízis Gyakorlattámogató jegyzet Király Balázs. március. Tartalomjegyzék Előszó 7 I. Analízis I. 9. Számhalmazok tulajdonságai.. Gyakorlat.......................................... Házi Feladatok.....................................

Részletesebben

4. Jellemző pontok kinyerése és megfeleltetése

4. Jellemző pontok kinyerése és megfeleltetése 4. Jellemző pontok kinyerése és megfeleltetése Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Jellemzők és megfeleltetésük A képfeldolgozás,

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

Kárszámeloszlások modellezése

Kárszámeloszlások modellezése Kárszámeloszlások modellezése DIPLOMAMUNKA Írta: Talabér Dóra Edit Biztosítási és pénzügyi matematika MSc Aktuárius szakirány Témavezető: Prokaj Vilmos egyetemi docens ELTE TTK Valószínűségelméleti és

Részletesebben

Feltételes és feltétel nélküli optimalizálás Microsoft O ce EXCEL szoftver segítségével

Feltételes és feltétel nélküli optimalizálás Microsoft O ce EXCEL szoftver segítségével Feltételes és feltétel nélküli optimalizálás Microsoft O ce EXCEL szoftver segítségével Az Excel Solver programcsomagjának bemutatásaként két feltételes és egy feltétel nélküli optimalizálási feladatot

Részletesebben

Feladatok: a huszadik vagy valamely későbbi dobásban jelenik meg. n 1 5. hatos dobás a 20. dobásban vagy azután jelenik meg egyenlő annak a

Feladatok: a huszadik vagy valamely későbbi dobásban jelenik meg. n 1 5. hatos dobás a 20. dobásban vagy azután jelenik meg egyenlő annak a Feladatok:. Dobjunk fel egy szabályos dobókockát egymás után egymástól függetlenül végtelen sokszor. Számítsuk ki annak a valószínűségét, hogy a harmadik hatos dobás vagy a huszadik vagy valamely későbbi

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Mérd fel magad könnyedén!

Mérd fel magad könnyedén! Mérd fel magad könnyedén! 1. Töltsük ki arab számokkal a kipontozott helyeket úgy, hogy igaz legyen az alábbi mondat: Ebben a mondatban... db 1-es,... db 2-es,... db 3-as,... db 4-es,... db 5-ös,... db

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek.

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek. A Valószínűségszámítás II. előadássorozat második témája. A CENTRÁLIS HATÁRELOSZLÁSTÉTEL A valószínűségszámítás legfontosabb eredménye a centrális határeloszlástétel. Ez azt mondja ki, hogy független valószínűségi

Részletesebben

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ.

A változó költségek azon folyó költségek, amelyek nagysága a termelés méretétől függ. Termelői magatartás II. A költségfüggvények: A költségek és a termelés kapcsolatát mutatja, hogyan változnak a költségek a termelés változásával. A termelési függvényből vezethető le, megkülönböztetünk

Részletesebben

Pere Balázs. a fizikában

Pere Balázs. a fizikában Pere Balázs Variációs elvek és módszerek a fizikában Győr, 1998 2 3 Tartalomjegyzék Előszó 5 1. Variációszámítás 7 1.1. A brachisztochron-probléma................... 7 1.2. A legegyszerűbb variációs probléma...............

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

LIKVIDITÁSI KOCKÁZATOK

LIKVIDITÁSI KOCKÁZATOK LIKVIDITÁSI KOCKÁZATOK SZAKDOLGOZAT Írta: Kiss Blanka Biztosítási és pénzügyi matematika MSc Kvantitatív pénzügyek szakirány Témavezet : Prokaj Vilmos egyetemi docens Valószín ségelméleti és Statisztika

Részletesebben

Dinamikus modellek felállítása mérnöki alapelvek segítségével

Dinamikus modellek felállítása mérnöki alapelvek segítségével IgyR - 3/1 p. 1/20 Integrált Gyártórendszerek - MSc Dinamikus modellek felállítása mérnöki alapelvek segítségével Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék IgyR - 3/1 p. 2/20

Részletesebben

EMELT SZINTŰ ÍRÁSBELI VIZSGA

EMELT SZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

Integrál a relativisztikus kvantummechanikában

Integrál a relativisztikus kvantummechanikában EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Integrál a relativisztikus kvantummechanikában Szakdolgozat Témavezető: Mezei István adjunktus ELTE TTK Alkalmazott Analízis és Számításmatematikai

Részletesebben

Páczelt István Szabó Tamás Baksa Attila. A végeselem-módszer alapjai

Páczelt István Szabó Tamás Baksa Attila. A végeselem-módszer alapjai Páczelt István Szabó Tamás Baksa Attila A végeselem-módszer alapjai Készült a HEFOP 3.3.1-P.-004-09-010/1.0 pályázat támogatásával Szerzők: Lektor: Dr. Páczelt István Dr. Szabó Tamás Dr. Baksa Attila Dr.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben