9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban"

Átírás

1 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x 2,..., x k ) sorozatok halmazát, azaz 1 R k R 2 R= k := R { x = (x1, x 2,..., x k ) : x i R (i = 1, 2,..., k) }. Az x = (x 1, x 2,..., x k ) sorozatokat a tér pontjainak mondjuk, az x 1, x 2,..., x k számok az x = (x 1, x 2,..., x k ) pont koordinátái. R 1 -et természetes módon azonosíthatjuk R-rel. R 2 = R R-et egy koordinátarendszer bevezetése után egy síkra lehet bijektíven leképezni, ezért R 2 -et euklideszi síknak nevezhetjük. Hasonlóan, koordinátarendszer réven azonosíthatjuk R 3 -at a közönséges térrel. R k pontjait vektoroként is felfoghatjuk, úgy, hogy a koordinátarendszer felvétele után az egyes pontoknak a kezdőpontból hozzájuk vezető helyzetvektorukat feleltetjük meg. Ezek szabad vektorok, ömagukkal párhuzamosan eltolhatók. Műveletek R k -ban: Definíció. Az x = (x 1, x 2,..., x k ), y = (y 1, y 2,..., y k ) R k vektorok összegét és az x R k vektor λ R skalárral való szorzatát x + y : = (x 1 + y 1, x 2 + y 2,..., x k + y k ) λx : = (λx 1, λx 2,..., λx k ) -val definiáljuk. Könnyű ellenőrizni, hogy e műveletek teljesítik az alábbi tulajdonságokat: Bármely x, y, z R k mellett, a 0 = (0, 0,..., 0) zérusvektorral és x = ( 1)x vektorral teljesül, hogy x + (y + z) = (x + y) + z, x + y = y + x, x + 0 = x, x + ( x) = 0. (az összeadás előbbi 4 tulajdonságát Abel-csoport axiómáknak mondjuk). Bármely x, y R k, λ, µ, 1 R esetén, λ(x + y) = λx + λy, (λ + µ)x = λx + µx, (λµ)x = λ(µx) 1x = x. (ezek a tulajdonságok a skalárral való szorzás axiómái). Az összeadás és skalárral való szorzás axiómái együttesen alkotják a lineáris tér, vagy vektortér axiómák at. Definíció. Az x = (x 1, x 2,..., x k ), y = (y 1, y 2,..., y k ) R k vektorok skaláris vagy belső szorzatát -val definiáljuk. x, y := x 1 y 1 + x 2 y x k y k Könnyű ellenőrizni, hogy a skaláris szorzat teljesíti az alábbi tulajdonságokat. Bármely x, y, z R k és bármely λ R esetén x + y, z = x, z + y, z, λx, y = λ x, y, x, y = y, x, x, x 0 és x, x = 0 akkor és csakis akkor, ha x = 0. 1

2 2 Ez a 4 tulajdonság alkotja a skaláris szorzás axiómáit. Állítás [Cauchy-Schwarz egyenlőtlenség] Bármely két x, y R k vektor esetén érvényes a Cauchy-Schwarz egyenlőtlenség: x, y x, x y, y. Bizonyítás. A belső szorzat utolsó tulajdonsága miatt amiből a szorzás elvégzése után x + λy, x + λy 0 x, x + λ y, x + λ x, y + λ 2 y, y 0. Jelölje Q(λ) a baloldalon levő λ-ben másodfokú polinomot, akkor Q(λ) = x, x + λ y, x + λ x, y + λ 2 y, y 0. Ha y, y = 0, akkor az utolsó tulajdonság miatt y = 0, így egyenlőtlenségünk teljesül, mert mindkét oldaán zérus áll. Ha y, y = 0, akkor Q(λ) 0 miatt Q diszkriminánsa kisebb vagy egyenlő mint nulla, amiből 4 x, y 2 4 x, x y, y 0 s ebből átrendezéssel adódik a bizonyítandó egyenlőtlenség. Definíció. Az x = x, x számot az x = (x 1, x 2,..., x k ) R k vektor hosszának (vagy normájának ill. abszolút értékének) nevezzük. A norma segítségével a Cauchy-Schwarz egyenlőtlenséget alakba írhatjuk át. x, y x y (x, y R k ) A Cauchy-Schwarz egyenlőtlenség felhasználásával könnyen igazolhatjuk a norma tulajdonságait: bármely x, y R k és bármely λ R esetén Definíció. Az x, y R k pontok távolságát -nal definiáljuk. x 0 és x = 0 akkor és csakis akkor, ha x = 0 λx = λ x x + y x + y. d(x, y) = x y Definíció. Egy a R k pont ε > 0 sugarú (nyílt) környezetén a K(a, ε) := { x R k : d(x, a) = x a < ε } halmazt értjük. k = 1 esetén K(a, ε) az a pontra nézve szimmetrikus 2ε hosszúságú ]a ε, a + ε[ nyílt intervallum. k = 2 esetén K(a, ε) az a = (a 1, a 2 ) pont körüli ε sugarú nyílt körlap. k = 3 esetén K(a, ε) az a = (a 1, a 2, a 3 ) pont körüli ε sugarú nyílt gömb. Környezetek segítségével értelmezhetjük R k -ban a belső, határ, izolált, torlódási pont fogalmát, továbbá nyílt és zárt halmazokat (a definíció szó szerint ugyanaz, de benne a pont, környezet jelentése általánosabb). Sorozatok R k -ban. Definíció. Egy a : N R k függvényt R k -beli sorozatnak nevezünk.

3 3 Jelölések a(n) = a n = (a n,1, a n,2,..., a n,k ) (n N), a = (a n ). Definíció. Az (a n ) (R k -beli) sorozatot konvergensnek nevezzük, ha van olyan b R k, hogy bármely ε > 0- hoz létezik olyan N(ε) R szám, hogy a n b < ε ha b-t a sorozat határérték ének (limeszének) nevezzük és az n > N(ε). a n b (n ) vagy lim n a n = b jelölést használjuk. N(ε)-t az ε-hoz tartozó küszöbszámnak nevezzük. Egy R k -beli sorozatot divergensnek nevezünk, ha nem konvergens. Állítás [R k -beli sorozat koordinátánként konvergens] akkor és csakis akkor, ha a n = (a n,1, a n,2,..., a n,k ) b = (b 1, b 2,..., b k ) (n ) a n,i b i (n ) minden i = 1, 2,..., k mellett. Ez azt jelenti, hogy egy vektorsorozat akkor és csakis akkor konvergens, ha a sorozat minden koordinátája konvergens és határértéke a határvektor megfelelő koordinátája. Bizonyítás. Mivel minden j = 1, 2,..., k mellett a n,j b j a n b = k (a n,i b i ) 2 k max a n,j b j, 1 j k i=1 Ebből látható, hogy a n b < ε akkor a n,j b j < ε minden j = 1, 2,..., k mellett. Fordítva, ha a n,j b j < ε minden j = 1, 2,..., k mellett akkor max a n,j b j < ε így a n b = k ε 1 j k igazolva állításunkat. Példa. a n = ( 1 n, ) n 2 (0, 1) ha n. 9.2 Többváltozós függvények határértéke és folytonossága Egy D R k halmaz torlódási pontjainak halmazát D -vel jelöljük. Definíció. Legyen f : D R k R és legyen x 0 D (a D halmaz torlódási pontja). Azt mondjuk, hogy f-nek van (véges) határértéke az x 0 pontban, ha van olyan a R szám, hogy minden ɛ > 0-hoz van olyan δ(ɛ) > 0, hogy f(x) a < ɛ ha 0 < x x 0 < δ(ɛ) és x D teljesül. Az a R számot az f függvény x 0 pontbeli határértékének nevezzük, és jelölésére az a = f(x) a ( ha x x 0 )-t használjuk. lim f(x) vagy x x 0 A határérték, ha létezik, akkor egyértelmű. Átviteli elv, műveletek, egyenlőtlenségek és határérték kapcsolata most is érvényes. A határérték fogalma a R b -re hasonlóan kiterjeszthető, mint egy változónál.

4 4 Definíció. Az f : D R k R függvényt értelmezési tartományának x 0 D pontjában folytonosnak nevezzük, ha bármely ɛ > 0-hoz van olyan δ(ɛ) > 0, hogy teljesül. f(x) f(x 0 ) < ɛ ha x x 0 < δ(ɛ) és x D Itt is érvényes az átviteli elv: az f : D R k R függvény az x 0 D pontban akkor és csakis akkor folytonos, ha bármely (x n ) : N D az x 0 -hoz konvergáló sorozat esetén f(x n ) f(x 0 ) ha n. Folytonos függvények tulajdonságai ugyanazok mint az egyváltozós esetben. 9.3 Többváltozós függvények differenciálhatósága Definíció. Az f : D R k R függvényt az x 0 D belső pontban (totálisan) differenciálhatónak nevezzük, ha van olyan A R k vektor melyre f(x) f(x 0 ) A, x x 0 lim = 0. x x 0 x x 0 Az f (x 0 ):=A vektort az f függvény x 0 pontbeli deriváltjának nevezzük. Geometriai jelentés: a függvény f(x) f(x 0 ) növekményét az A, x x 0 lineáris függvény jól közelíti (mivel a definíció szerint az f(x) f(x 0 ) A, x x 0 különbség olyan kicsi hogy még x x 0 -val elosztva is nullához tart, ha x x 0 ), a függvény által meghatározott felületnek az x 0 pontban van érintősíkja, ez éppen az x k+1 = f(x 0 ) + A, x x 0 hipersík az R k+1 térben. Definíció. Az f : D R k R függvényt az x 0 D belső pontban az e (ahol e egy R k -beli egységvektor) irány mentén differenciálhatónak nevezzük, ha létezik a f(x 0 + te) f(x 0 ) lim t 0 t (véges) határérték. E határértéket D e f(x 0 )-lal jelöljük, és az f függvény e iránymenti deriváltjának nevezzük az x 0 pontban. D e f(x 0 ) jelentése: az f függvény változási sebessége az e irányában. Ha speciálisan e = u i = (0,..., 0, 1, 0,..., 0) az i-edik tengely irányába mutató egységvektor (az u i vektor i-edik koordinátája 1, a többi 0) akkor a D ui f(x 0 ) iránymenti deriváltat az f függvény i-edik változója szerinti parciális deriváltjának nevezzük az x 0 pontban. Jelölésére az i f(x 0 ) szimbólumot használjuk. Egyéb jelölések: xi f(x 0 ), f x i (x 0 ), f xi (x 0 ) Definíció. Az f : D R k R függvényt az x 0 D belső pontban parciálisan differenciálhatónak nevezzük, ha i f(x 0 ) minden i = 1,..., n-re létezik.

5 5 Mivel (x i = x 0,i + t jelöléssel) D ui f(x 0 ) f(x 0,1,..., x 0,i + t,..., x 0,k ) f(x 0,1,..., x 0,i,..., x 0,k ) = lim t 0 t f(x 0,1,..., x i,..., x 0,k ) f(x 0,1,..., x 0,i,..., x 0,k ) = lim x i x 0,i x i x 0,i így i f(x 0 )-t úgy számítjuk ki, hogy az i-edik változó szerint differenciálunk, miközben a többi változót konstansnak tekintjük. Példa parciális deriváltak kiszámítására, és a fogalmak felírására két változó esetén(ld. előadás) TÉTEL [iránymenti derivált kiszámítása] Ha f : D R n R az x 0 D belső pontban (totálisan) differenciálható, akkor bármely e = (e 1,..., e k ) R k, e = e e2 k = 1 irány mentén is differenciálható x 0 -ban, és az iránymenti deriváltjára áll fenn, ahol A = f (x 0 ). D e f(x 0 ) = A, e = A 1 e A k e k így Speciálisan, ha e = u i = (0,..., 1,..., 0) (ahol az 1 az i-edik helyen áll), akkor D ui f(x 0 ) = i f(x 0 ) = A i D e f(x 0 ) = 1 f(x 0 )e k f(x 0 )e k. Ez azt jelenti, hogy (totális) differenciálhatóság parciális differenciálhatóság. Az is következik, hogy f (x 0 ) = A = ( 1 f(x 0 ),..., k f(x 0 )) azaz az f (x 0 (totális) derivált (vektor) koordinátái a parciális deriváltak. Bizonyítás. A differenciálhatóság ε(x) := f(x) f(x 0 ) A, x x 0 jelöléssel f(x) f(x 0 ) = A, x x 0 + ε(x) ε(x) és a differenciálhatóság definíciója miatt lim x tox 0 = 0. Innen x x 0 f(x 0 + te) f(x 0 ) t ha t 0 bizonyítva állításunkat. = A, te + ε(x 0 + te) t = A, e + t t ε(x 0 + te) A, e x 0 + te x 0 TÉTEL [(totális) differenciálhatóság folytonosság] Ha f : D R k R az x 0 D belső pontban (totálisan) differenciálható, akkor f folytonos x 0 -ban. Bizonyítás. Az előző bizonyításban használt ε(x) segítségével kapjuk, hogy f(x) f(x 0 ) = A, x x 0 + ε(x) x x 0 x x 0 0 ha x x 0, mivel ekkor a jobboldali összeg mindkét tagja nullához tart. Megjegyzés. f parciális differenciálhatóságából f folytonossága. Ellenpélda a { 0 ha x1 x f(x 1, x 2 ) = ha x 1 x 2 = 0 ahol 1 f(0, 0) = 2 f(0, 0) = 0, de f nem folytonos (0, 0)-ban. A parciális deriváltak folytonossága viszont garantálja a (totális) differenciálhatóságot, így a folytonosságot is. TÉTEL [parc. deriv. folytonossága (totális) differenciálhatóság ] Ha az f : D R k R függvénynek az x 0 D belső pont egy környezetében folytonos parciális deriváltjai vannak (ekkor azt úgy mondjuk, hogy a függvény folytonosan parciálisan differenciálhato e környezetben) akkor f az x 0 pontbanban (totális) differenciálható, (így folytonos is).

6 6 Bizonyítás. Az egyszerűség kedvéért csak két változó esetén bizonyítunk. f(x 1, x 2 ) f(x 0,1, x 0,2 ) = [f(x 1, x 2 ) f(x 1, x 0,2 )] + [f(x 1, x 0,2 ) f(x 0,1, x 0,2 )]. A szögletes zárójelben levő különbségekre az egyváltozós Lagrange-féle középértéktételt használva kapjuk, hogy f(x 1, x 2 ) f(x 0,1, x 0,2 ) = 2 f(x 1, ξ 2 )(x 2 x 0,2 ) + 1 f(ξ 1, x 0,2 )(x 1 x 0,1 ) ahol ξ 1 az x 1 és x 01 közötti érték, ξ 2 pedig x 2 és x 0,2 között van. A parciális deriváltak x 0 = (x 0,1, x 0,2 ) pontbeli folytonossága miatt 1 f(ξ 1, x 0,2 ) = 1 f(x 0,1, x 0,2 ) + ε 1, 2 f(x 1, ξ 2 ) = 2 f(x 0,1, x 0,2 ) + ε 2 ahol ε i 0 (i = 1, 2) ha (x 1, x 2 ) (x 0,1, x 0,2 ). Így f(x 1, x 2 ) f(x 0,1, x 0,2 ) = 1 f(x 0,1, x 0,2 )(x 1 x 0,1 ) + 2 f(x 0,1, x 0,2 )(x 2 x 0,2 ) + ε ahol ε = ε 1 (x 1 x 0,1 ) + ε 2 (x 2 x 0,2 ). Állítśunk bizonyítva lesz, ha megmutatjuk, hogy ε (1) (x1 x 0,1 ) 2 + (x 2 x 0,2 ) 0 ha (x 1, x 2 ) (x 0,1, x 0,2 ). 2 Mivel ε (x1 x 0,1 ) 2 + (x 2 x 0,2 ) = ε x 1 x 0,1 2 1 (x1 x 0,1 ) 2 + (x 2 x 0,2 ) + ε x 2 x 0,2 2 2 (x1 x 0,1 ) 2 + (x 2 x 0,2 ) 2 ε i 0 és a ε i -k utáni törtek abszolút értéke 1, így valóban fennáll (1). TÉTEL [láncszabály: összetett függvény differenciálhatósága] Ha a g i : D R k R (i = 1, 2,..., l) függvények differenciálhatók az x 0 D belső pontban, és f : E R l R differenciálható az y 0 = g(x 0 ) E belső pontban, ahol g(x) := (g 1 (x), g 2 (x),..., g l (x)) (x D), akkor a h(x) := f(g(x)) összetett függvény (mely x 0 D egy környezetében biztosan értelmezve van) differenciálható x 0 D-ben és i h(x 0 ) = Utóbbi képletet nevezzük láncszabálynak. Bizonyítás.- l j f(g(x 0 )) i g j (x 0 ) j=1 (i = 1, 2,..., k). 9.4 Magasabbrendű parciális deriváltak Tegyük fel, hogy az f : D R k R függvénynek az x 0 D belső pont egy környezetében létezik pl. az i-edik változó szerinti i f parciális derivált. Ha ez parciálisan differenciálható pl. az j-edik változó szerint, úgy a e deriválást elvégezve kapjuk a j i f(x 0 ) := j ( i f(x 0 )) második parciális deriváltját f-nek az x 0 pontban az i-edik és j-edik váltzozók szerint (ebben a sorrendben). Hasonlóan ha a j i f(x) drivált létezik x 0 egy környezetében és ez parciálisan differenciálható pl. a l-edik változó szerint, úgy a e deriválást elvégezve kapjuk a l i j f(x 0 ) := l ( i j f(x 0 )) harmadik parciális deriváltat. Hasonlóan értelmezhetjük a negyed- és magasabbrendű parciális deriváltakat is. Egyéb jelölések a magasabbrendű deriváltakra: xj xi f(x 0 ) 2 f x j x i (x 0 ), f xix j (x 0 )

7 7 Példa. Számítsuk ki az f(x, y) = x 2 + y 2 e xy ((x, y) R 2 ) függvény összes első és másodrendű parciális deriváltját, és hasonlítsuk össze a 1 2 f(x, y) és 2 1 f(x, y) vegyes deriváltakat. TÉTEL [Young tétel: a vegyes parciális deriváltak függetlensége a deriválás sorrendjétől] Ha az f : D R k R függvénynek az x 0 D belső pont egy környezetében az összes m 2-edik parciális deriváltjai léteznek és folytonosak az x 0 pontban, akkor a függvény m-edik parciális deriváltjai az x 0 pontban a differenciálás sorrendjétől függetlenek. 9.5 Többváltozós függvények szélsőértéke Definíció. Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 ) f(x) (f(x 0 ) f(x)) teljesül minden x K(x 0, ε) D esetén. Azt mondjuk, hogy az f : D R k R függvénynek szigorú lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 ) > f(x) (f(x 0 ) < f(x)) teljesül minden x K(x 0, ε) D, x x 0 esetén. Azt mondjuk, hogy az f : D R k R függvénynek globális (vagy abszolút) maximuma (minimuma) van az x 0 D pontban, ha f(x 0 ) f(x) (f(x 0 ) f(x)) teljesül minden x D esetén. Azt mondjuk, hogy az f : D R k R függvénynek szigorú globális (vagy abszolút) maximuma (minimuma) van az x 0 D pontban, ha esetén. f(x 0 ) > f(x) (f(x 0 ) < f(x)) teljesül minden x D, x x 0 TÉTEL [a szélsőérték létezésének elegendő feltétele] Korlátos zárt halmazon folytonos függvény felveszi a függvényértékek infimumát és supremumát függvényértékként, ami azt jelenti, hogy a függvénynek van minimuma és maximuma (az illető korlátos zárt halmazon). TÉTEL [a szélsőérték elsőrendű szükséges feltétele] Ha f : D R k R f ggvénynek az x 0 D belső pontban lokális szélsőértéke van, és léteznek f első parciális deriváltjai x 0 -ban, akkor (2) 1 f(x 0 ) = 2 f(x 0 ) = = k f(x 0 ) = 0. Az (2) feltételnek elegettevő x 0 pontokat az f függvény stacionárius pontjainak nevezzük. Bizonyítás. Legyen ϕ i (t) := f(x 0,1,..., x 0,i + t,..., x 0,k ) (i = 1,..., k) ahol x 0 = (x 0,1,..., x 0,k ) és t elég kicsi. Feltevésünk szerint a ϕ i (t = 0-ban differenciálható) függvényeknek lokális szélsőértéke van t = 0 ban, így igazolva áll ításunkat. 0 = ϕ i(0) = i f(x 0 ) (i = 1,..., k) TÉTEL [a szélsőérték másodrendű elegendő feltétele] Tegyük fel, hogy az f : D R k R összes második parciális deriváltjai folytonosak az x 0 D belső pont egy környezetében, továbbá (3) 1 f(x 0 ) = 2 f(x 0 ) = = k f(x 0 ) = 0, azaz x 0 stacionárius pontja f-nek.

8 8 I. Ha a (4) Q(h) = Q(h 1,..., h k ) := k j=1 i=1 k j i f(x 0 )h i h j kvadratikus függvény pozitív definit, azaz Q(h) > 0 minden h R k, h 0 esetén, akkor f-nek szigorú lokális minimuma van x 0 -ban, II. ha a Q kvadratikus függvény negatív definit, azaz Q(h) < 0 minden h R k, h 0 esetén, akkor f-nek szigorú lokális maximuma van x 0 -ban, III. ha a Q kvadratikus függvény indefinit, azaz Q(h) felvesz pozitív és negatív értéket is, akkor f-nek nincs szélsőértéke x 0 -ban. ahol Bizonyítás.- Két változó esetén egyszerű ellenőrizni egy kvadratikus függvény pozitív vagy negatív definitségét. Ekkor Q(h 1, h 2 ) = Ah Bh 1 h 2 + Ch 2 2 A = 1 1 f(x 0 ), B = 1 2 f(x 0 ), C = 2 2 f(x 0 ). Itt már felhasználtuk azt, hogy feltételeink mellett a vegyes második parciális deriváltak az x 0 pontban egyenlők. Tegyük fel, hogy Q pozitív definit, akkor A < 0 nem lehet, mert pl. h 2 = 0-t véve Q(h 1, 0) = Ah 2 1 < 0 volna minden h 1 0 mellett. A = 0 sem lehet, mert akkor C = 0 esetén Q(h 1, h 2 ) = 2Bh 1 h 2 nyilvánvalóan felvesz pozitív és negatív értékeket is ha B 0, míg B = 0 esetén Q azonosan zérus. Ha ha C < 0, akkor Q(h 1, h 2 ) = 2Bh 1 h 2 + Ch 2 2 negatív értékeket is felvesz h 1 = 0, h 2 0 mellett. Végül, ha C > 0 volna akkor a Q(h 1, h 2 ) = 2Bh 1 h 2 + Ch 2 2 = C [ ( h 2 + B ) 2 C h 1 ( B C ) 2 h 2 1 átalakítást használva látjuk, hogy Q(h 1, h 2 ) 0 csak B = 0 esetén teljesül, ekkor viszont Q(h 1, h 2 ) = Ch 2 2 nulla lenne tetszőleges h 1 és h 2 = 0 mellett ami ellentmond a pozitív definitségnek. Így A > 0 és Q(h 1, h 2 ) = A [ ( h 1 + B ) 2 ( ) ] C A h 2 + A B2 A 2 h 2 2 mutatja, hogy a C A B2 A 2 > 0, vagy AC B2 > 0 a pozitív definitség szükséges és elegendő feltétele. Ezzel igazoltuk azt, hogy ] a Q(h 1, h 2 ) kvadratikus függvény akkor és csakis akkor pozitív definit, ha (5) 1 := 1 1 f(x 0 ) > 0, 2 := 1 1 f(x 0 ) 1 2 f(x 0 ) 1 2 f(x 0 ) 2 2 f(x 0 ) > 0. Hasonlóan bizonyíthatjuk azt, hogy Q(h 1, h 2 ) akkor és csakis akkor negatív definit, ha (6) 1 < 0, 2 > 0. Az előzőek alapján könnyű belátni, hogy a (7) 2 < 0 egyenlőtlenség elegendő Q indefinítségéhez. Példa. f(x, y) = x 3 + y 3 3xy (x, y) R 2 lokális szélsőértékeinek meghatározása.

9 9 9.6 Feltételes szélsőérték Definíció. Legyenek f : D R k+m R, h i : D R k+m R i = 1,..., m adott függvények. Azt mondjuk, hogy az f függvénynek az x 0 D pontban a h 1 (x) = 0, h 2 (x) = 0,..., h m (x) = 0 feltételek mellett lokális feltételes maximuma (minimuma) van, ha van olyan ε > 0 hogy mellett, melyre f(x 0 ) f(x) (f(x 0 ) f(x)) teljesül minden x D K(x 0, ε) h 1 (x) = = h m (x) = 0. TÉTEL [a feltételes szélsőérték szükséges feltétele] Tegyük fel, hogy az f, h i : D R k+m R (i = 1,..., m), az f függvénynek az x 0 D belső pontban a h 1 (x) = 0, h 2 (x) = 0,..., h m (x) = 0 feltételek mellett lokális feltételes szélsőértéke van, továbbá az f és h i (i = 1,..., m) parciális deriváltjai folytonosak x 0 egy környezetében és a ( j h i (x 0 )) (j = 1,..., k + m, i = 1,..., m) mátrixnak van nemzérus m-edrendű aldeterminánsa. Akkor vannak olyan λ 1,... λ m R valós számok, hogy az függvényre F (x) := f(x) + λ 1 h 1 (x) + + λ m h m (x) (x D) 1 F (x 0 ) = = k+m F (x 0 ) = 0. A λ 1,... λ m számokat Lagrange-féle multiplikátoroknak nevezzük, az F függvényt a feltételes szélsőérték probléma Lagrange-féle függvényének nevezzük. A feltételes szélsőérték probléma megoldása úgy történik, hogy a 1 F (x 0 ) = 0, 2 F (x 0 ) = 0,..., k+m F (x 0 ) = 0, h 1 (x) = 0, h 2 (x) = 0,..., h m (x) = 0 k + 2m db. egyenletből álló rendszert megoldjuk az x 1,..., x k+m, λ 1,... λ m ismeretlenekre, a kapott x 1,..., x k+m megoldások adják a feltételes szélsőérték lehetséges helyeit. Megjegyzés. Van másodrendű elegendő feltétel is a feltételes szélsőértékre, de azt nem tanuljuk. Példa. Határozza meg az feltételes szélsőértékeit a feltétel mellett. f(x, y) = x + 2y ((x, y) R 2 ) h(x, y) = x 2 + y 2 1 = 0 körvonal Megjegyzés. Érdemes a feladatot geometriailag is szemléltetni, abból leolvasható az hogy minimum vagy maximum van-e a kiszámolt pontokban.

Többváltozós, valós értékű függvények

Többváltozós, valós értékű függvények Többváltozós függvények Többváltozós, valós értékű függvények Többváltozós függvények Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza,

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

f(x) a (x x 0 )-t használjuk.

f(x) a (x x 0 )-t használjuk. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem Debrecen, 2009/2010 tanév, II. félév Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 1 / 180 Félévközi

Részletesebben

Kétváltozós függvény szélsőértéke

Kétváltozós függvény szélsőértéke Kétváltozós függvény szélsőértéke Sütő Andrea Kétváltozós függvény szélsőértéke Legyen adott f ( xy, ) kétváltozós függvény és ez legyen folytonosan totálisan differenciálható, azaz létezzenek az elsőrendű

Részletesebben

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2 Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt

Részletesebben

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák: 1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. március 17. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n.

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n. 1. Többváltozós függvények 1. Bevezetés Ennek a fejezetnek a célja a kétváltozós függvények vizsgálata, ami során a 3-dimenziós felületeket szeretnénénk megérteni. 1. definíció. Legyen D R n. Ekkor az

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

Gazdasági matematika I.

Gazdasági matematika I. Gazdasági matematika I. Losonczi László, Pap Gyula Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László, Pap Gyula (DE) Gazdasági matematika I. 1 / 123 Kötelező irodalom: LOSONCZI LÁSZLÓ,

Részletesebben

Gazdasági matematika I.

Gazdasági matematika I. Gazdasági matematika I. Losonczi László, Pap Gyula Debreceni Egyetem, Informatikai Kar I. félév Előadó: Hajdu Lajos Losonczi László, Pap Gyula (DE) Gazdasági matematika I. I. félév 1 / 124 Félévközi kötelező

Részletesebben

Tartalomjegyzék. 1. Előszó 1

Tartalomjegyzék. 1. Előszó 1 Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1 Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados

Részletesebben

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim Példák.. Geometriai sor. A aq n = a + aq + aq 2 +... 4. SOROK 4. Definíció, konvergencia, divergencia, összeg Definíció. Egy ( ) (szám)sorozat elemeit az összeadás jelével összekapcsolva kapott a + a 2

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

Matematikai alapok 1 Tantárgyi útmutató

Matematikai alapok 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdaságinformatikus szak nappali tagozat Matematikai alapok 1 Tantárgyi útmutató 2015/16 tanév II. félév 1/5 Tantárgy megnevezése Matematikai alapok 1 Tantárgy jellege/típusa:

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

DIFFERENCIÁLÁS, GRADIENS VEKTOR, HESSE MÁTRIX, LÁNCSZABÁLY,

DIFFERENCIÁLÁS, GRADIENS VEKTOR, HESSE MÁTRIX, LÁNCSZABÁLY, DIFFERENCIÁLÁS, GRADIENS VEKTOR, HESSE MÁTRIX, LÁNCSZABÁLY, IMPLICIT FÜGGVÉNY TÉTEL DR NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-B-0//KONV-00-000

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

Az R 3 tér geometriája. Összeállította: dr. Leitold Adrien egyetemi docens

Az R 3 tér geometriája. Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális vektorok:

Részletesebben

Szélsőérték-számítás

Szélsőérték-számítás Szélsőérték-számítás Jelölések A következő jelölések mind az f függvény x szerinti parciális deriváltját jelentik: Ugyanígy az f függvény y szerinti parciális deriváltja: f x = xf = f x f y = yf = f y

Részletesebben

Számítógépes programok alkalmazása az analízisben

Számítógépes programok alkalmazása az analízisben Eötvös Loránd Tudományegyetem Természettudományi Kar Számítógépes programok alkalmazása az analízisben Szakdolgozat Csillagvári Dániel Matematika BSc, elemző szakirány Témavezető: Gémes Margit Analízis

Részletesebben

Gazdasági matematika 1 Tantárgyi útmutató

Gazdasági matematika 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Emberi erőforrások, gazdálkodási és menedzsment, pénzügy és számvitel szakok nappali tagozat Gazdasági matematika 1 Tantárgyi útmutató 2016/17 tanév I. félév 1/5 Tantárgy megnevezése

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

Metrikus terek, többváltozós függvények

Metrikus terek, többváltozós függvények Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =

Részletesebben

Klár Gergely 2010/2011. tavaszi félév

Klár Gergely 2010/2011. tavaszi félév Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Pont 1 Pont 2 3 4 5 Tartalom Pont Descartes-koordináták Homogén koordináták

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

1. Sorozatok 2014.03.12.

1. Sorozatok 2014.03.12. 1. Sorozatok Azokat a függvényeket, amelyek értelmezési tartománya a pozitív egész számok halmaza ( jelölése N ), a képhalmaz a valós számok halmaza, sorozatnak nevezzük. Az a függvény n N helyen vett

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36 Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás

Részletesebben

Maple: Deriváltak és a függvény nevezetes pontjai

Maple: Deriváltak és a függvény nevezetes pontjai Maple: Deriváltak és a függvény nevezetes pontjai Bevezető Tudjuk, hogy a Maple könnyűszerrel képes végrehajtani a szimbólikus matematikai számításokat, ezért a Maple egy ideális program differenciál-

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák)

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák) Feladatok megoldásokkal az ötödik gyakorlathoz Taylor polinom, szöveges szélsőérték problémák) 1. Feladat. Írjuk fel az fx) = e x függvény a = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével

Részletesebben

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC 6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt. Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:

Részletesebben

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Gyakorló feladatok az II. konzultáció anyagához

Gyakorló feladatok az II. konzultáció anyagához Gyakorló feladatok az II. konzultáció anyagához 003/004 tanév, I. félév 1. Vizsgáljuk meg a következő sorozatokat korlátosság és monotonitás szempontjából! a n = 5n+1, b n = n + n! 3n 8, c n = 1 ( 1)n

Részletesebben

Sorozatok, sorozatok konvergenciája

Sorozatok, sorozatok konvergenciája Sorozatok, sorozatok konvergenciája Elméleti áttekintés Minden konvergens sorozat korlátos Minden monoton és korlátos sorozat konvergens Legyen a n ) n egy sorozat és ϕ : N N egy szigorúan növekvő függvény

Részletesebben

Tartalomjegyzék. 3. Elsőfokú egyenletek és egyenlőtlenségek... 8 3.1. Elsőfokú egyenletek... 8 3.2. Valós szám abszolút értéke...

Tartalomjegyzék. 3. Elsőfokú egyenletek és egyenlőtlenségek... 8 3.1. Elsőfokú egyenletek... 8 3.2. Valós szám abszolút értéke... Tartalomjegyzék 1. Műveletek valós számokkal... 1 1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 2. Függvények... 5 2.1. A függvény

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Felületek differenciálgeometriai vizsgálata

Felületek differenciálgeometriai vizsgálata Felületek differenciálgeometriai vizsgálata Felületek differenciálgeometriai értelemben Felület: Olyan alakzat, amely előállítható az (u,v) sík egy összefüggő tartományán értelmezett r(u,v) kétparaméteres

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa Hódmezővásárhelyi Városi Matematikaverseny 2003. április 14. A 11-12. osztályosok feladatainak javítókulcsa 1. feladat Egy számtani sorozatot az első eleme és különbsége egyértelműen meghatározza, azt

Részletesebben

KALKULUS INFORMATIKUSOKNAK II.

KALKULUS INFORMATIKUSOKNAK II. Írta: GYŐRI ISTVÁN PITUK MIHÁLY KALKULUS INFORMATIKUSOKNAK II. Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Győri István, Dr. Pituk Mihály, Pannon Egyetem Műszaki Informatikai Kar Matematika Tanszék

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 00-. I. Félév . fejezet Számhalmazok és tulajdonságaik.. Nevezetes számhalmazok ➀ a) jelölése: N b) elemei:

Részletesebben

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) (11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor

Részletesebben

Alkalmazott matematika és módszerei I Tantárgy kódja

Alkalmazott matematika és módszerei I Tantárgy kódja Tantárgy neve Alkalmazott matematika és módszerei I Tantárgy kódja MTB1901 Meghirdetés féléve Kreditpont 4 Összóraszám (elm+gyak) + Számonkérés módja G Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

Határérték. prezentációjából valók ((C)Pearson Education, Inc.) Összeállította: Wettl Ferenc október 11.

Határérték. prezentációjából valók ((C)Pearson Education, Inc.) Összeállította: Wettl Ferenc október 11. Határérték Thomas féle Kalkulus 1 című könyv alapján készült a könyvet használó hallgatóknak. A képek az eredeti könyv szabadon letölthető prezentációjából valók ((C)Pearson Education, Inc.) Összeállította:

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 29.

Matematika szigorlat, Mérnök informatikus szak I máj. 29. Matematika szigorlat, Mérnök informatikus szak I. 2007. máj. 29. Megoldókulcs 1. Adott az S : 3x 6y + 2z = 6 sík a három dimenziós térben. (a) Írja fel egy tetszőleges, az S-re merőleges S síknak az egyenletét!

Részletesebben