9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban"

Átírás

1 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x 2,..., x k ) sorozatok halmazát, azaz 1 R k R 2 R= k := R { x = (x1, x 2,..., x k ) : x i R (i = 1, 2,..., k) }. Az x = (x 1, x 2,..., x k ) sorozatokat a tér pontjainak mondjuk, az x 1, x 2,..., x k számok az x = (x 1, x 2,..., x k ) pont koordinátái. R 1 -et természetes módon azonosíthatjuk R-rel. R 2 = R R-et egy koordinátarendszer bevezetése után egy síkra lehet bijektíven leképezni, ezért R 2 -et euklideszi síknak nevezhetjük. Hasonlóan, koordinátarendszer réven azonosíthatjuk R 3 -at a közönséges térrel. R k pontjait vektoroként is felfoghatjuk, úgy, hogy a koordinátarendszer felvétele után az egyes pontoknak a kezdőpontból hozzájuk vezető helyzetvektorukat feleltetjük meg. Ezek szabad vektorok, ömagukkal párhuzamosan eltolhatók. Műveletek R k -ban: Definíció. Az x = (x 1, x 2,..., x k ), y = (y 1, y 2,..., y k ) R k vektorok összegét és az x R k vektor λ R skalárral való szorzatát x + y : = (x 1 + y 1, x 2 + y 2,..., x k + y k ) λx : = (λx 1, λx 2,..., λx k ) -val definiáljuk. Könnyű ellenőrizni, hogy e műveletek teljesítik az alábbi tulajdonságokat: Bármely x, y, z R k mellett, a 0 = (0, 0,..., 0) zérusvektorral és x = ( 1)x vektorral teljesül, hogy x + (y + z) = (x + y) + z, x + y = y + x, x + 0 = x, x + ( x) = 0. (az összeadás előbbi 4 tulajdonságát Abel-csoport axiómáknak mondjuk). Bármely x, y R k, λ, µ, 1 R esetén, λ(x + y) = λx + λy, (λ + µ)x = λx + µx, (λµ)x = λ(µx) 1x = x. (ezek a tulajdonságok a skalárral való szorzás axiómái). Az összeadás és skalárral való szorzás axiómái együttesen alkotják a lineáris tér, vagy vektortér axiómák at. Definíció. Az x = (x 1, x 2,..., x k ), y = (y 1, y 2,..., y k ) R k vektorok skaláris vagy belső szorzatát -val definiáljuk. x, y := x 1 y 1 + x 2 y x k y k Könnyű ellenőrizni, hogy a skaláris szorzat teljesíti az alábbi tulajdonságokat. Bármely x, y, z R k és bármely λ R esetén x + y, z = x, z + y, z, λx, y = λ x, y, x, y = y, x, x, x 0 és x, x = 0 akkor és csakis akkor, ha x = 0. 1

2 2 Ez a 4 tulajdonság alkotja a skaláris szorzás axiómáit. Állítás [Cauchy-Schwarz egyenlőtlenség] Bármely két x, y R k vektor esetén érvényes a Cauchy-Schwarz egyenlőtlenség: x, y x, x y, y. Bizonyítás. A belső szorzat utolsó tulajdonsága miatt amiből a szorzás elvégzése után x + λy, x + λy 0 x, x + λ y, x + λ x, y + λ 2 y, y 0. Jelölje Q(λ) a baloldalon levő λ-ben másodfokú polinomot, akkor Q(λ) = x, x + λ y, x + λ x, y + λ 2 y, y 0. Ha y, y = 0, akkor az utolsó tulajdonság miatt y = 0, így egyenlőtlenségünk teljesül, mert mindkét oldaán zérus áll. Ha y, y = 0, akkor Q(λ) 0 miatt Q diszkriminánsa kisebb vagy egyenlő mint nulla, amiből 4 x, y 2 4 x, x y, y 0 s ebből átrendezéssel adódik a bizonyítandó egyenlőtlenség. Definíció. Az x = x, x számot az x = (x 1, x 2,..., x k ) R k vektor hosszának (vagy normájának ill. abszolút értékének) nevezzük. A norma segítségével a Cauchy-Schwarz egyenlőtlenséget alakba írhatjuk át. x, y x y (x, y R k ) A Cauchy-Schwarz egyenlőtlenség felhasználásával könnyen igazolhatjuk a norma tulajdonságait: bármely x, y R k és bármely λ R esetén Definíció. Az x, y R k pontok távolságát -nal definiáljuk. x 0 és x = 0 akkor és csakis akkor, ha x = 0 λx = λ x x + y x + y. d(x, y) = x y Definíció. Egy a R k pont ε > 0 sugarú (nyílt) környezetén a K(a, ε) := { x R k : d(x, a) = x a < ε } halmazt értjük. k = 1 esetén K(a, ε) az a pontra nézve szimmetrikus 2ε hosszúságú ]a ε, a + ε[ nyílt intervallum. k = 2 esetén K(a, ε) az a = (a 1, a 2 ) pont körüli ε sugarú nyílt körlap. k = 3 esetén K(a, ε) az a = (a 1, a 2, a 3 ) pont körüli ε sugarú nyílt gömb. Környezetek segítségével értelmezhetjük R k -ban a belső, határ, izolált, torlódási pont fogalmát, továbbá nyílt és zárt halmazokat (a definíció szó szerint ugyanaz, de benne a pont, környezet jelentése általánosabb). Sorozatok R k -ban. Definíció. Egy a : N R k függvényt R k -beli sorozatnak nevezünk.

3 3 Jelölések a(n) = a n = (a n,1, a n,2,..., a n,k ) (n N), a = (a n ). Definíció. Az (a n ) (R k -beli) sorozatot konvergensnek nevezzük, ha van olyan b R k, hogy bármely ε > 0- hoz létezik olyan N(ε) R szám, hogy a n b < ε ha b-t a sorozat határérték ének (limeszének) nevezzük és az n > N(ε). a n b (n ) vagy lim n a n = b jelölést használjuk. N(ε)-t az ε-hoz tartozó küszöbszámnak nevezzük. Egy R k -beli sorozatot divergensnek nevezünk, ha nem konvergens. Állítás [R k -beli sorozat koordinátánként konvergens] akkor és csakis akkor, ha a n = (a n,1, a n,2,..., a n,k ) b = (b 1, b 2,..., b k ) (n ) a n,i b i (n ) minden i = 1, 2,..., k mellett. Ez azt jelenti, hogy egy vektorsorozat akkor és csakis akkor konvergens, ha a sorozat minden koordinátája konvergens és határértéke a határvektor megfelelő koordinátája. Bizonyítás. Mivel minden j = 1, 2,..., k mellett a n,j b j a n b = k (a n,i b i ) 2 k max a n,j b j, 1 j k i=1 Ebből látható, hogy a n b < ε akkor a n,j b j < ε minden j = 1, 2,..., k mellett. Fordítva, ha a n,j b j < ε minden j = 1, 2,..., k mellett akkor max a n,j b j < ε így a n b = k ε 1 j k igazolva állításunkat. Példa. a n = ( 1 n, ) n 2 (0, 1) ha n. 9.2 Többváltozós függvények határértéke és folytonossága Egy D R k halmaz torlódási pontjainak halmazát D -vel jelöljük. Definíció. Legyen f : D R k R és legyen x 0 D (a D halmaz torlódási pontja). Azt mondjuk, hogy f-nek van (véges) határértéke az x 0 pontban, ha van olyan a R szám, hogy minden ɛ > 0-hoz van olyan δ(ɛ) > 0, hogy f(x) a < ɛ ha 0 < x x 0 < δ(ɛ) és x D teljesül. Az a R számot az f függvény x 0 pontbeli határértékének nevezzük, és jelölésére az a = f(x) a ( ha x x 0 )-t használjuk. lim f(x) vagy x x 0 A határérték, ha létezik, akkor egyértelmű. Átviteli elv, műveletek, egyenlőtlenségek és határérték kapcsolata most is érvényes. A határérték fogalma a R b -re hasonlóan kiterjeszthető, mint egy változónál.

4 4 Definíció. Az f : D R k R függvényt értelmezési tartományának x 0 D pontjában folytonosnak nevezzük, ha bármely ɛ > 0-hoz van olyan δ(ɛ) > 0, hogy teljesül. f(x) f(x 0 ) < ɛ ha x x 0 < δ(ɛ) és x D Itt is érvényes az átviteli elv: az f : D R k R függvény az x 0 D pontban akkor és csakis akkor folytonos, ha bármely (x n ) : N D az x 0 -hoz konvergáló sorozat esetén f(x n ) f(x 0 ) ha n. Folytonos függvények tulajdonságai ugyanazok mint az egyváltozós esetben. 9.3 Többváltozós függvények differenciálhatósága Definíció. Az f : D R k R függvényt az x 0 D belső pontban (totálisan) differenciálhatónak nevezzük, ha van olyan A R k vektor melyre f(x) f(x 0 ) A, x x 0 lim = 0. x x 0 x x 0 Az f (x 0 ):=A vektort az f függvény x 0 pontbeli deriváltjának nevezzük. Geometriai jelentés: a függvény f(x) f(x 0 ) növekményét az A, x x 0 lineáris függvény jól közelíti (mivel a definíció szerint az f(x) f(x 0 ) A, x x 0 különbség olyan kicsi hogy még x x 0 -val elosztva is nullához tart, ha x x 0 ), a függvény által meghatározott felületnek az x 0 pontban van érintősíkja, ez éppen az x k+1 = f(x 0 ) + A, x x 0 hipersík az R k+1 térben. Definíció. Az f : D R k R függvényt az x 0 D belső pontban az e (ahol e egy R k -beli egységvektor) irány mentén differenciálhatónak nevezzük, ha létezik a f(x 0 + te) f(x 0 ) lim t 0 t (véges) határérték. E határértéket D e f(x 0 )-lal jelöljük, és az f függvény e iránymenti deriváltjának nevezzük az x 0 pontban. D e f(x 0 ) jelentése: az f függvény változási sebessége az e irányában. Ha speciálisan e = u i = (0,..., 0, 1, 0,..., 0) az i-edik tengely irányába mutató egységvektor (az u i vektor i-edik koordinátája 1, a többi 0) akkor a D ui f(x 0 ) iránymenti deriváltat az f függvény i-edik változója szerinti parciális deriváltjának nevezzük az x 0 pontban. Jelölésére az i f(x 0 ) szimbólumot használjuk. Egyéb jelölések: xi f(x 0 ), f x i (x 0 ), f xi (x 0 ) Definíció. Az f : D R k R függvényt az x 0 D belső pontban parciálisan differenciálhatónak nevezzük, ha i f(x 0 ) minden i = 1,..., n-re létezik.

5 5 Mivel (x i = x 0,i + t jelöléssel) D ui f(x 0 ) f(x 0,1,..., x 0,i + t,..., x 0,k ) f(x 0,1,..., x 0,i,..., x 0,k ) = lim t 0 t f(x 0,1,..., x i,..., x 0,k ) f(x 0,1,..., x 0,i,..., x 0,k ) = lim x i x 0,i x i x 0,i így i f(x 0 )-t úgy számítjuk ki, hogy az i-edik változó szerint differenciálunk, miközben a többi változót konstansnak tekintjük. Példa parciális deriváltak kiszámítására, és a fogalmak felírására két változó esetén(ld. előadás) TÉTEL [iránymenti derivált kiszámítása] Ha f : D R n R az x 0 D belső pontban (totálisan) differenciálható, akkor bármely e = (e 1,..., e k ) R k, e = e e2 k = 1 irány mentén is differenciálható x 0 -ban, és az iránymenti deriváltjára áll fenn, ahol A = f (x 0 ). D e f(x 0 ) = A, e = A 1 e A k e k így Speciálisan, ha e = u i = (0,..., 1,..., 0) (ahol az 1 az i-edik helyen áll), akkor D ui f(x 0 ) = i f(x 0 ) = A i D e f(x 0 ) = 1 f(x 0 )e k f(x 0 )e k. Ez azt jelenti, hogy (totális) differenciálhatóság parciális differenciálhatóság. Az is következik, hogy f (x 0 ) = A = ( 1 f(x 0 ),..., k f(x 0 )) azaz az f (x 0 (totális) derivált (vektor) koordinátái a parciális deriváltak. Bizonyítás. A differenciálhatóság ε(x) := f(x) f(x 0 ) A, x x 0 jelöléssel f(x) f(x 0 ) = A, x x 0 + ε(x) ε(x) és a differenciálhatóság definíciója miatt lim x tox 0 = 0. Innen x x 0 f(x 0 + te) f(x 0 ) t ha t 0 bizonyítva állításunkat. = A, te + ε(x 0 + te) t = A, e + t t ε(x 0 + te) A, e x 0 + te x 0 TÉTEL [(totális) differenciálhatóság folytonosság] Ha f : D R k R az x 0 D belső pontban (totálisan) differenciálható, akkor f folytonos x 0 -ban. Bizonyítás. Az előző bizonyításban használt ε(x) segítségével kapjuk, hogy f(x) f(x 0 ) = A, x x 0 + ε(x) x x 0 x x 0 0 ha x x 0, mivel ekkor a jobboldali összeg mindkét tagja nullához tart. Megjegyzés. f parciális differenciálhatóságából f folytonossága. Ellenpélda a { 0 ha x1 x f(x 1, x 2 ) = ha x 1 x 2 = 0 ahol 1 f(0, 0) = 2 f(0, 0) = 0, de f nem folytonos (0, 0)-ban. A parciális deriváltak folytonossága viszont garantálja a (totális) differenciálhatóságot, így a folytonosságot is. TÉTEL [parc. deriv. folytonossága (totális) differenciálhatóság ] Ha az f : D R k R függvénynek az x 0 D belső pont egy környezetében folytonos parciális deriváltjai vannak (ekkor azt úgy mondjuk, hogy a függvény folytonosan parciálisan differenciálhato e környezetben) akkor f az x 0 pontbanban (totális) differenciálható, (így folytonos is).

6 6 Bizonyítás. Az egyszerűség kedvéért csak két változó esetén bizonyítunk. f(x 1, x 2 ) f(x 0,1, x 0,2 ) = [f(x 1, x 2 ) f(x 1, x 0,2 )] + [f(x 1, x 0,2 ) f(x 0,1, x 0,2 )]. A szögletes zárójelben levő különbségekre az egyváltozós Lagrange-féle középértéktételt használva kapjuk, hogy f(x 1, x 2 ) f(x 0,1, x 0,2 ) = 2 f(x 1, ξ 2 )(x 2 x 0,2 ) + 1 f(ξ 1, x 0,2 )(x 1 x 0,1 ) ahol ξ 1 az x 1 és x 01 közötti érték, ξ 2 pedig x 2 és x 0,2 között van. A parciális deriváltak x 0 = (x 0,1, x 0,2 ) pontbeli folytonossága miatt 1 f(ξ 1, x 0,2 ) = 1 f(x 0,1, x 0,2 ) + ε 1, 2 f(x 1, ξ 2 ) = 2 f(x 0,1, x 0,2 ) + ε 2 ahol ε i 0 (i = 1, 2) ha (x 1, x 2 ) (x 0,1, x 0,2 ). Így f(x 1, x 2 ) f(x 0,1, x 0,2 ) = 1 f(x 0,1, x 0,2 )(x 1 x 0,1 ) + 2 f(x 0,1, x 0,2 )(x 2 x 0,2 ) + ε ahol ε = ε 1 (x 1 x 0,1 ) + ε 2 (x 2 x 0,2 ). Állítśunk bizonyítva lesz, ha megmutatjuk, hogy ε (1) (x1 x 0,1 ) 2 + (x 2 x 0,2 ) 0 ha (x 1, x 2 ) (x 0,1, x 0,2 ). 2 Mivel ε (x1 x 0,1 ) 2 + (x 2 x 0,2 ) = ε x 1 x 0,1 2 1 (x1 x 0,1 ) 2 + (x 2 x 0,2 ) + ε x 2 x 0,2 2 2 (x1 x 0,1 ) 2 + (x 2 x 0,2 ) 2 ε i 0 és a ε i -k utáni törtek abszolút értéke 1, így valóban fennáll (1). TÉTEL [láncszabály: összetett függvény differenciálhatósága] Ha a g i : D R k R (i = 1, 2,..., l) függvények differenciálhatók az x 0 D belső pontban, és f : E R l R differenciálható az y 0 = g(x 0 ) E belső pontban, ahol g(x) := (g 1 (x), g 2 (x),..., g l (x)) (x D), akkor a h(x) := f(g(x)) összetett függvény (mely x 0 D egy környezetében biztosan értelmezve van) differenciálható x 0 D-ben és i h(x 0 ) = Utóbbi képletet nevezzük láncszabálynak. Bizonyítás.- l j f(g(x 0 )) i g j (x 0 ) j=1 (i = 1, 2,..., k). 9.4 Magasabbrendű parciális deriváltak Tegyük fel, hogy az f : D R k R függvénynek az x 0 D belső pont egy környezetében létezik pl. az i-edik változó szerinti i f parciális derivált. Ha ez parciálisan differenciálható pl. az j-edik változó szerint, úgy a e deriválást elvégezve kapjuk a j i f(x 0 ) := j ( i f(x 0 )) második parciális deriváltját f-nek az x 0 pontban az i-edik és j-edik váltzozók szerint (ebben a sorrendben). Hasonlóan ha a j i f(x) drivált létezik x 0 egy környezetében és ez parciálisan differenciálható pl. a l-edik változó szerint, úgy a e deriválást elvégezve kapjuk a l i j f(x 0 ) := l ( i j f(x 0 )) harmadik parciális deriváltat. Hasonlóan értelmezhetjük a negyed- és magasabbrendű parciális deriváltakat is. Egyéb jelölések a magasabbrendű deriváltakra: xj xi f(x 0 ) 2 f x j x i (x 0 ), f xix j (x 0 )

7 7 Példa. Számítsuk ki az f(x, y) = x 2 + y 2 e xy ((x, y) R 2 ) függvény összes első és másodrendű parciális deriváltját, és hasonlítsuk össze a 1 2 f(x, y) és 2 1 f(x, y) vegyes deriváltakat. TÉTEL [Young tétel: a vegyes parciális deriváltak függetlensége a deriválás sorrendjétől] Ha az f : D R k R függvénynek az x 0 D belső pont egy környezetében az összes m 2-edik parciális deriváltjai léteznek és folytonosak az x 0 pontban, akkor a függvény m-edik parciális deriváltjai az x 0 pontban a differenciálás sorrendjétől függetlenek. 9.5 Többváltozós függvények szélsőértéke Definíció. Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 ) f(x) (f(x 0 ) f(x)) teljesül minden x K(x 0, ε) D esetén. Azt mondjuk, hogy az f : D R k R függvénynek szigorú lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 ) > f(x) (f(x 0 ) < f(x)) teljesül minden x K(x 0, ε) D, x x 0 esetén. Azt mondjuk, hogy az f : D R k R függvénynek globális (vagy abszolút) maximuma (minimuma) van az x 0 D pontban, ha f(x 0 ) f(x) (f(x 0 ) f(x)) teljesül minden x D esetén. Azt mondjuk, hogy az f : D R k R függvénynek szigorú globális (vagy abszolút) maximuma (minimuma) van az x 0 D pontban, ha esetén. f(x 0 ) > f(x) (f(x 0 ) < f(x)) teljesül minden x D, x x 0 TÉTEL [a szélsőérték létezésének elegendő feltétele] Korlátos zárt halmazon folytonos függvény felveszi a függvényértékek infimumát és supremumát függvényértékként, ami azt jelenti, hogy a függvénynek van minimuma és maximuma (az illető korlátos zárt halmazon). TÉTEL [a szélsőérték elsőrendű szükséges feltétele] Ha f : D R k R f ggvénynek az x 0 D belső pontban lokális szélsőértéke van, és léteznek f első parciális deriváltjai x 0 -ban, akkor (2) 1 f(x 0 ) = 2 f(x 0 ) = = k f(x 0 ) = 0. Az (2) feltételnek elegettevő x 0 pontokat az f függvény stacionárius pontjainak nevezzük. Bizonyítás. Legyen ϕ i (t) := f(x 0,1,..., x 0,i + t,..., x 0,k ) (i = 1,..., k) ahol x 0 = (x 0,1,..., x 0,k ) és t elég kicsi. Feltevésünk szerint a ϕ i (t = 0-ban differenciálható) függvényeknek lokális szélsőértéke van t = 0 ban, így igazolva áll ításunkat. 0 = ϕ i(0) = i f(x 0 ) (i = 1,..., k) TÉTEL [a szélsőérték másodrendű elegendő feltétele] Tegyük fel, hogy az f : D R k R összes második parciális deriváltjai folytonosak az x 0 D belső pont egy környezetében, továbbá (3) 1 f(x 0 ) = 2 f(x 0 ) = = k f(x 0 ) = 0, azaz x 0 stacionárius pontja f-nek.

8 8 I. Ha a (4) Q(h) = Q(h 1,..., h k ) := k j=1 i=1 k j i f(x 0 )h i h j kvadratikus függvény pozitív definit, azaz Q(h) > 0 minden h R k, h 0 esetén, akkor f-nek szigorú lokális minimuma van x 0 -ban, II. ha a Q kvadratikus függvény negatív definit, azaz Q(h) < 0 minden h R k, h 0 esetén, akkor f-nek szigorú lokális maximuma van x 0 -ban, III. ha a Q kvadratikus függvény indefinit, azaz Q(h) felvesz pozitív és negatív értéket is, akkor f-nek nincs szélsőértéke x 0 -ban. ahol Bizonyítás.- Két változó esetén egyszerű ellenőrizni egy kvadratikus függvény pozitív vagy negatív definitségét. Ekkor Q(h 1, h 2 ) = Ah Bh 1 h 2 + Ch 2 2 A = 1 1 f(x 0 ), B = 1 2 f(x 0 ), C = 2 2 f(x 0 ). Itt már felhasználtuk azt, hogy feltételeink mellett a vegyes második parciális deriváltak az x 0 pontban egyenlők. Tegyük fel, hogy Q pozitív definit, akkor A < 0 nem lehet, mert pl. h 2 = 0-t véve Q(h 1, 0) = Ah 2 1 < 0 volna minden h 1 0 mellett. A = 0 sem lehet, mert akkor C = 0 esetén Q(h 1, h 2 ) = 2Bh 1 h 2 nyilvánvalóan felvesz pozitív és negatív értékeket is ha B 0, míg B = 0 esetén Q azonosan zérus. Ha ha C < 0, akkor Q(h 1, h 2 ) = 2Bh 1 h 2 + Ch 2 2 negatív értékeket is felvesz h 1 = 0, h 2 0 mellett. Végül, ha C > 0 volna akkor a Q(h 1, h 2 ) = 2Bh 1 h 2 + Ch 2 2 = C [ ( h 2 + B ) 2 C h 1 ( B C ) 2 h 2 1 átalakítást használva látjuk, hogy Q(h 1, h 2 ) 0 csak B = 0 esetén teljesül, ekkor viszont Q(h 1, h 2 ) = Ch 2 2 nulla lenne tetszőleges h 1 és h 2 = 0 mellett ami ellentmond a pozitív definitségnek. Így A > 0 és Q(h 1, h 2 ) = A [ ( h 1 + B ) 2 ( ) ] C A h 2 + A B2 A 2 h 2 2 mutatja, hogy a C A B2 A 2 > 0, vagy AC B2 > 0 a pozitív definitség szükséges és elegendő feltétele. Ezzel igazoltuk azt, hogy ] a Q(h 1, h 2 ) kvadratikus függvény akkor és csakis akkor pozitív definit, ha (5) 1 := 1 1 f(x 0 ) > 0, 2 := 1 1 f(x 0 ) 1 2 f(x 0 ) 1 2 f(x 0 ) 2 2 f(x 0 ) > 0. Hasonlóan bizonyíthatjuk azt, hogy Q(h 1, h 2 ) akkor és csakis akkor negatív definit, ha (6) 1 < 0, 2 > 0. Az előzőek alapján könnyű belátni, hogy a (7) 2 < 0 egyenlőtlenség elegendő Q indefinítségéhez. Példa. f(x, y) = x 3 + y 3 3xy (x, y) R 2 lokális szélsőértékeinek meghatározása.

9 9 9.6 Feltételes szélsőérték Definíció. Legyenek f : D R k+m R, h i : D R k+m R i = 1,..., m adott függvények. Azt mondjuk, hogy az f függvénynek az x 0 D pontban a h 1 (x) = 0, h 2 (x) = 0,..., h m (x) = 0 feltételek mellett lokális feltételes maximuma (minimuma) van, ha van olyan ε > 0 hogy mellett, melyre f(x 0 ) f(x) (f(x 0 ) f(x)) teljesül minden x D K(x 0, ε) h 1 (x) = = h m (x) = 0. TÉTEL [a feltételes szélsőérték szükséges feltétele] Tegyük fel, hogy az f, h i : D R k+m R (i = 1,..., m), az f függvénynek az x 0 D belső pontban a h 1 (x) = 0, h 2 (x) = 0,..., h m (x) = 0 feltételek mellett lokális feltételes szélsőértéke van, továbbá az f és h i (i = 1,..., m) parciális deriváltjai folytonosak x 0 egy környezetében és a ( j h i (x 0 )) (j = 1,..., k + m, i = 1,..., m) mátrixnak van nemzérus m-edrendű aldeterminánsa. Akkor vannak olyan λ 1,... λ m R valós számok, hogy az függvényre F (x) := f(x) + λ 1 h 1 (x) + + λ m h m (x) (x D) 1 F (x 0 ) = = k+m F (x 0 ) = 0. A λ 1,... λ m számokat Lagrange-féle multiplikátoroknak nevezzük, az F függvényt a feltételes szélsőérték probléma Lagrange-féle függvényének nevezzük. A feltételes szélsőérték probléma megoldása úgy történik, hogy a 1 F (x 0 ) = 0, 2 F (x 0 ) = 0,..., k+m F (x 0 ) = 0, h 1 (x) = 0, h 2 (x) = 0,..., h m (x) = 0 k + 2m db. egyenletből álló rendszert megoldjuk az x 1,..., x k+m, λ 1,... λ m ismeretlenekre, a kapott x 1,..., x k+m megoldások adják a feltételes szélsőérték lehetséges helyeit. Megjegyzés. Van másodrendű elegendő feltétel is a feltételes szélsőértékre, de azt nem tanuljuk. Példa. Határozza meg az feltételes szélsőértékeit a feltétel mellett. f(x, y) = x + 2y ((x, y) R 2 ) h(x, y) = x 2 + y 2 1 = 0 körvonal Megjegyzés. Érdemes a feladatot geometriailag is szemléltetni, abból leolvasható az hogy minimum vagy maximum van-e a kiszámolt pontokban.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

Nemlineáris optimalizálás Dr. Házy, Attila

Nemlineáris optimalizálás Dr. Házy, Attila Nemlineáris optimalizálás Dr. Házy, Attila Nemlineáris optimalizálás Dr. Házy, Attila Miskolci Egyetem Kelet-Magyarországi Informatika Tananyag Tárház Kivonat Kivonat Nemzeti Fejlesztési Ügynökség http://ujszechenyiterv.gov.hu/

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Szakdolgozat. Miskolci Egyetem. Nemlineáris programozás. Készítette: Horváth Gábor Programtervező informatikus hallgató

Szakdolgozat. Miskolci Egyetem. Nemlineáris programozás. Készítette: Horváth Gábor Programtervező informatikus hallgató Szakdolgozat Miskolci Egyetem Nemlineáris programozás Készítette: Horváth Gábor Programtervező informatikus hallgató Témavezető: Dr. Nagy Tamás egyetemi docens, Alkalmazott Matematikai Tanszék Miskolc,

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Analízis Gyakorlattámogató jegyzet

Analízis Gyakorlattámogató jegyzet Analízis Gyakorlattámogató jegyzet Király Balázs. március. Tartalomjegyzék Előszó 7 I. Analízis I. 9. Számhalmazok tulajdonságai.. Gyakorlat.......................................... Házi Feladatok.....................................

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja) Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

Többváltozós széls érték számítás és alkalmazásai

Többváltozós széls érték számítás és alkalmazásai Eötvös Loránd Tudományegyetem Természettudományi Kar Többváltozós széls érték számítás és alkalmazásai BSc Szakdolgozat Készítette: Prikkel Anett Matematika BSc Matematikai elemz szakirány Témavezet :

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Lajk o K aroly Kalkulus II. Debreceni Egyetem Matematikai es Informatikai Int ezet 2003 1

Lajk o K aroly Kalkulus II. Debreceni Egyetem Matematikai es Informatikai Int ezet 2003 1 Ljkó Károly Klkulus II. Debreceni Egyetem Mtemtiki és Informtiki Intézet 2003 1 c Ljkó Károly ljko @ mth.klte.hu Amennyiben hibát tlál jegyzetben, kérjük jelezze szerzőnek! A jegyzet dvi, pdf és ps formátumbn

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat

Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat ANALÍZIS FELADATGYŰJTEMÉNY I Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat Algoritmuselmélet Algoritmusok bonyolultsága Analitikus módszerek a pénzügyben és a közgazdaságtanban Analízis

Részletesebben

A hiperbolikus síkgeometria Poincaré-féle körmodellje

A hiperbolikus síkgeometria Poincaré-féle körmodellje A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április Hány osztója van egy adott számnak? Hány osztója van egy adott számnak? Dr. Tóth László http://www.ttk.pte.hu/matek/ltoth előadásanyag, Pécsi Tudományegyetem, TTK 2008. április. Bevezetés Lehetséges válaszok:

Részletesebben

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

1. Algebrai alapok: Melyek műveletek az alábbiak közül? 1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Nemlineáris optimalizálás

Nemlineáris optimalizálás Nemlineáris optimalizálás Rapcsák Tamás 2007. 3 Előszó A Nemlineáris optimalizálás című anyag a gazdaságmatematikai elemző közgazdász hallgatók számára készült és egyrészt a matematikai alapozó kurzusokra

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Geometriai alapok Felületek

Geometriai alapok Felületek Geometriai alapok Felületek Geometriai alapok Felületek matematikai definíciója A háromdimenziós tér egy altere Függvénnyel rögzítjük a pontok helyét Parabolavezérgörbéjű donga 4 f z x + a C Elliptikus

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége LINEÁRIS VEKTORTÉR Kiegészítő anyag (Bércesné Noák Ágnes előadása) Vektorok függetlensége, függősége Vektortér V 0 Halmaz T test : + ; + ; Abel csoport V elemeit ektoroknak neezzük. Abel - csoport Abel

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

Partíció probléma rekurzíómemorizálással

Partíció probléma rekurzíómemorizálással Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok.

A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. ZÁRÓVIZSGA TÉMAKÖRÖK egyetemi szintű közgazdasági programozó matematikus szakon A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. 2. Függvények, függvények folytonossága.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

Newton módszer. az F(x) = 0 egyenlet x* gyökének elég jó közelítése. Húzzuk meg az F(x) függvény (x 0. )) pontbeli érintőjét, és jelölje x 1

Newton módszer. az F(x) = 0 egyenlet x* gyökének elég jó közelítése. Húzzuk meg az F(x) függvény (x 0. )) pontbeli érintőjét, és jelölje x 1 Newton módszer A húrmódszernél és a szelőmódszernél az F(x) függvény gyökének közelítéséhez a függvény húrját használtuk. Hatásosabb a módszer akkor, ha érintőkkel dolgozunk. Def.: Legyen x 0 az F(x) =

Részletesebben

Programozási Módszertan definíciók, stb.

Programozási Módszertan definíciók, stb. Programozási Módszertan definíciók, stb. 1. Bevezetés Egy adat típusát az adat által felvehető lehetséges értékek halmaza (típusérték halmaz, TÉH), és az ezen értelmezett műveletek (típusműveletek) együttesen

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 005. május 0. MATEMATIKA EMELT SZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 40 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

A prímszámok eloszlása, avagy az első 50 millió

A prímszámok eloszlása, avagy az első 50 millió Bevezetés Pímszámok A prímszámok eloszlása, avagy az első 50 millió prímszám. Klukovits Lajos TTIK Bolyai Intézet 2014. április 8. Néhány definíció. 1 A klasszikus számelméleti. p N prím, ha a p a = ±1,

Részletesebben

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék

DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék FELTÉTELES OPTIMALIZÁLÁS DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-4...B-0//KONV-00-000 jel½u projekt részeként az Európai Unió támogatásával,

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

KALKULUS II. PÉLDATÁR

KALKULUS II. PÉLDATÁR Lajkó Károly KALKULUS II. PÉLDATÁR mobidiák könyvtár Lajkó Károly KALKULUS II. PÉLDATÁR mobidiák könyvtár SOROZATSZERKESZTŽ Fazekas István Lajkó Károly KALKULUS II. PÉLDATÁR Programozó és programtervez

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

ALGORITMUSAI DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék

ALGORITMUSAI DR. NAGY TAMÁS. egyetemi docens. Miskolci Egyetem Alkalmazott Matematikai Tanszék FELTÉTEL NÉLKÜLI OPTIMALIZÁLÁS ALGORITMUSAI DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-4...B-0//KONV-00-000 jel½u projekt részeként

Részletesebben

Állandó együtthatós lineáris rekurziók

Állandó együtthatós lineáris rekurziók 1. fejezet Állandó együtthatós lineáris rekurziók 1.1. A megoldás menete. Mese. Idézzük fel a Fibonacci-számokat! Az F n sorozatot a következő módon definiáltuk: legyen F 0 = 0, F 1 = 1, és F n+2 = F n+1

Részletesebben

Diszkrét matematika II., 1. el adás. Lineáris leképezések

Diszkrét matematika II., 1. el adás. Lineáris leképezések 1 Diszkrét matematika II., 1. el adás Lineáris leképezések Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. február 6 Gyakorlati célok Ezen el adáson,

Részletesebben

12. Trigonometria I.

12. Trigonometria I. Trigonometria I I Elméleti összefoglaló Szögmérés A szög mérésének két gyakran használt módja van: fokban, illetve radiánban (ívmértékben) mérünk A teljesszög 0, ennek a 0-ad része az A szög nagyságát

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

Közönséges differenciálegyenletek megoldása Mapleben

Közönséges differenciálegyenletek megoldása Mapleben Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen

Részletesebben

I. Vektor fogalma, tulajdonságai

I. Vektor fogalma, tulajdonságai 6 MATEMATIKA A 9. ÉVFOLYAM Tanári útmutató I. Vektor fogalma, tulajdonságai Módszertani megjegyzés: Az 1. és. fejezet az eddig tanultak rendszerezett és kibővített átismétlése. Bevezetőként kereshetünk

Részletesebben

MATEMATIKA II. FELADATGY JTEMÉNY

MATEMATIKA II. FELADATGY JTEMÉNY MATEMATIKA II. FELADATGY JTEMÉNY KÉZI CSABA Date: today. KÉZI CSABA ELŽSZÓ Ez a feladatgy jtemény a Debreceni Egyetem M szaki Karának Matematika II. tantárgyának tematikájához szorosan illeszkedik. Célja

Részletesebben

16. Sorozatok. I. Elméleti összefoglaló. A sorozat fogalma

16. Sorozatok. I. Elméleti összefoglaló. A sorozat fogalma 16. Sorozatok I. Elméleti összefoglaló A sorozat fogalma Sorozatnak nevezzük az olyan függvényt, amelynek értelmezési tartománya a pozitív egész számok halmaza. Számsorozat olyan sorozat, amelynek értékkészlete

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

Görbe- és felületmodellezés. Szplájnok Felületmodellezés

Görbe- és felületmodellezés. Szplájnok Felületmodellezés Görbe- és felületmodellezés Szplájnok Felületmodellezés Spline (szplájn) Spline: Szakaszosan, parametrikus polinomokkal leírt görbe A spline nevét arról a rugalmasan hajlítható vonalzóról kapta, melyet

Részletesebben

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:...

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:... 1. Feladat. Döntse el, hogy igaz vagy hamis. Név:........................................... (1) (1 3) = (3 1). (hamis) () (1 ) = ( 1). (igaz). Feladat. Döntse el, hogy igaz vagy hamis. Név:...........................................

Részletesebben

I. feladatsor. (t) z 1 z 3

I. feladatsor. (t) z 1 z 3 I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

Analízis II. gyakorlat

Analízis II. gyakorlat Analízis II. gyakorlat Németh Adrián 4. január 7. Tartalomjegyzék Előszó.................................................... Ismétlés................................................... Integrálás...............................................

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

EuroOffice Optimalizáló (Solver)

EuroOffice Optimalizáló (Solver) 1. oldal EuroOffice Optimalizáló (Solver) Az EuroOffice Optimalizáló egy OpenOffice.org bővítmény, ami gyors algoritmusokat kínál lineáris programozási és szállítási feladatok megoldására. Szimplex módszer

Részletesebben

Nagy Ilona 2013.06.01.

Nagy Ilona 2013.06.01. Bevezető matematika példatár Kádasné Dr. V. Nagy Éva Nagy Ilona 0.06.0. Tartalomjegyzék Bevezető. Gyakorlatok.. Műveletek törtekkel, hatványokkal, gyökökkel................. A logaritmus fogalma; arány-

Részletesebben