Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar"

Átírás

1 Szélsőértékszámítás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Szélsőértékszámítás 1 / 21

2 2. SZÉLSOÉRTÉKSZÁMÍTÁS 2.1 A szélsőérték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek az x 0 D pontban lokális/helyi maximuma (minimuma) van, ha ε > 0, hogy f (x 0 ) f (x) (f (x 0 ) f (x)) x K (x 0, ε) D esetén. szigorú lokális/helyi maximuma (minimuma) van, ha ε > 0, hogy f (x 0 ) > f (x) (f (x 0 ) < f (x)) x K (x 0, ε) D, x x 0 esetén. globális/abszolút maximuma (minimuma) van, ha f (x 0 ) f (x) (f (x 0 ) f (x)) x D esetén. szigorú globális/abszolút maximuma (minimuma) van, ha f (x 0 ) > f (x) (f (x 0 ) < f (x)) x D, x x 0 esetén. Losonczi László (DE) Szélsőértékszámítás 2 / 21

3 2.1 A szélsőérték fogalma, létezése Lokális/globális (szigorú) szélsőérték alatt lokális/globális (szigorú) maximumot, vagy lokális/globális (szigorú) minimumot értünk. Globális szélsőérték létezése: Ha f : D R k R folytonos a korlátos és zárt D halmazon, akkor f -nek van globális maximuma és minimuma D-n. Ha D nem korlátos, vagy korlátos de nem zárt, vagy f nem folytonos, akkor előfordulhat, hogy f -nek van szélsőértéke D-n. Losonczi László (DE) Szélsőértékszámítás 3 / 21

4 2.2 Egyváltozós függvények szélsőértékszámítása Lokális szélsőérték szükséges feltétele Ha f : I R differenciálható az I intervallum x 0 ott lokális szélsőértéke van, akkor f (x 0 ) = 0. Stacionárius pont belső pontjában, és Azokat az x 0 pontokat, amelyekre f (x 0 ) = 0 teljesül, az f függvény stacionárius pontjainak nevezzük. Stacionárius pontban az érintő párhuzamos az x tengellyel, és ott lehet lokális szélsőérték, de nem biztos, hogy van! Milyen x 0 I pontokban lehet egy f : I R függvénynek lokális szélsőértéke? x 0 I belső pont, ahol f (x 0 ) = 0, x 0 x 0 az I intervallum valamely végpontja (ha az I-hez tartozik), az I-nek olyan pontja, ahol f nem differenciálható. Losonczi László (DE) Szélsőértékszámítás 4 / 21

5 2.2 Egyváltozós függvények szélsőértékszámítása Elsőrendű elegendő feltétel lokális szélsőértékre Tegyük fel, hogy f : I R differenciálható az I intervallum x 0 belső pontjának egy környezetében, és x 0 stacionárius pontja f -nek (azaz f (x 0 ) = 0). Ha van olyan r > 0, hogy f (x) 0 ha x ]x 0 r, x 0 [ I, és f (x) 0 ha x ]x 0, x 0 + r[ I, akkor f -nek lokális maximuma van x 0 -ban. Ha van olyan r > 0, hogy f (x) 0, ha x ]x 0 r, x 0 [ I, és f (x) 0 ha x ]x 0, x 0 + r[ I, akkor f -nek lokális minimuma van x 0 -ban. Ha van olyan r > 0, hogy f (x) > 0 ha x ]x 0 r, x 0 + r[ I, x x 0, vagy f (x) < 0 ha x ]x 0 r, x 0 + r[ I, x x 0, akkor f -nek nincs lokális szélsőértéke x 0 -ban, x 0 inflexiós helye f -nek. Losonczi László (DE) Szélsőértékszámítás 5 / 21

6 2.2 Egyváltozós függvények szélsőértékszámítása n-edrendű elegendő feltétel lokális szélsőértékre Tegyük fel, hogy f : I R n-szer folytonosan differenciálható az x 0 I belső pont egy környezetében (azaz f (n) folytonos e környezetben), és f (x 0 ) = f (x 0 ) = = f (n 1) (x 0 ) = 0, de f (n) (x 0 ) 0. Ha n páros, akkor f -nek szigorú lokális szélsőértéke van x 0 -ban, maximum, ha f (n) (x 0 ) < 0, minimum, ha f (n) (x 0 ) > 0. Ha n páratlan, akkor f -nek nincs szélsőértéke x 0 -ban. Losonczi László (DE) Szélsőértékszámítás 6 / 21

7 2.3 Többváltozós függvények szélsőértékszámítása A szélsőérték létezésének szükséges feltétele Ha az f : D R k R függvénynek az x 0 D belső pontban lokális szélsőértéke van, és léteznek f első parciális deriváltjai x 0 -ban, akkor 1 f (x 0 ) = 2 f (x 0 ) = = k f (x 0 ) = 0. (E feltételnek eleget tevő x 0 pontokat az f függvény stacionárius pontjainak nevezzük.) Losonczi László (DE) Szélsőértékszámítás 7 / 21

8 2.3 Többváltozós függvények szélsőértékszámítása A szélsőérték létezésének másodrendű elegendő feltétele Tegyük fel, hogy az f : D R k R összes második parciális deriváltja folytonos az x 0 D belső pont egy környezetében, továbbá 1 f (x 0 ) = 2 f (x 0 ) = = k f (x 0 ) = 0. 1 Ha a k k Q : R k R, Q(h) = Q(h 1,..., h k ) := j i f (x 0 )h i h j j=1 i=1 kvadratikus függvény pozitív definit, azaz Q(h) > 0 ha h R k és h 0, akkor f -nek szigorú lokális minimuma van x 0 -ban. 2 Ha Q negatív definit, azaz Q(h) < 0 minden h R k, h 0 esetén, akkor f -nek szigorú lokális maximuma van x 0 -ban. 3 Ha Q indefinit, azaz Q(h) felvesz pozitív és negatív értéket is, akkor f -nek nincs szélsőértéke x 0 -ban. Losonczi László (DE) Szélsőértékszámítás 8 / 21

9 2.3 Többváltozós függvények szélsőértékszámítása Másodrendű elegendő feltétel, determinánsokkal Tegyük fel, hogy az f : D R k R összes második parciális deriváltja folytonos az x 0 D belső pont egy környezetében, továbbá 1 f (x 0 ) = 2 f (x 0 ) = = k f (x 0 ) = 0. Legyen A = ( i j f (x 0 ) ) R k k az f függvény x 0 pontbeli második parciális deriváltjaiból álló mátrix, és legyen j (j = 1,..., k) az A bal felső j-edrenű sarokdeterminánsa, azaz 1 := 1 1 f (x 0 ), 2 := 1 1 f (x 0 ) 1 2 f (x 0 ) 2 1 f (x 0 ) 2 2 f (x 0 ),..., k := A. 1 Ha 1 > 0, 2 > 0, 3 > 0,..., k > 0, akkor f -nek szigorú lokális minimuma van x 0 -ban, 2 ha 1 < 0, 2 > 0, 3 < 0,..., ( 1) k k > 0, akkor f -nek szigorú lokális maximuma van x 0 -ban, 3 ha k 0 és az előző két feltétel egyike sem teljesül, akkor akkor f -nek nincs szélsőértéke x 0 -ban. Losonczi László (DE) Szélsőértékszámítás 9 / 21

10 2.4 Kétváltozós függvények szélsőértékszámítása Kétváltozós szélsőérték, elegendő feltétel, determinánsokkal Tegyük fel, hogy az f : D R 2 R összes második parciális deriváltja folytonos az x 0 D belső pont egy környezetében, továbbá 1 f (x 0 ) = 2 f (x 0 ) = 0. 1 Ha 1 = 1 1 f (x 0 ) > 0, 2 = 1 1 f (x 0 ) 1 2 f (x 0 ) 1 2 f (x 0 ) 2 2 f (x 0 ) > 0, akkor f -nek szigorú lokális minimuma van x 0 -ban, 2 ha 1 = 1 1 f (x 0 ) < 0, 2 = 1 1 f (x 0 ) 1 2 f (x 0 ) 1 2 f (x 0 ) 2 2 f (x 0 ) > 0, akkor f -nek szigorú lokális maximuma van x 0 -ban, 3 ha 2 = 1 1 f (x 0 ) 1 2 f (x 0 ) 1 2 f (x 0 ) 2 2 f (x 0 ) < 0, akkor f -nek nincs szélsőértéke x 0 -ban. Losonczi László (DE) Szélsőértékszámítás 10 / 21

11 2.5 Globális szélsőérték Tanultuk, hogy korlátos, zárt halmazon folytonos függvény felveszi a függvényértékek infimumát és szuprémumát függvényértékként, ami azt jelenti, hogy a függvénynek van minimuma és maximuma (az illető korlátos, zárt halmazon). Globális szélsőérték megkeresése. Tegyük fel, hogy f : D R k R összes másodrendű parciális deriváltjai folytonosak a korlátos ás zárt D halmazon (ekkor f is folytonos D-n), akkor megkeressük f lokális szélsőértékeit D belső pontjaiban; megkeressük f lokális szélsőértékeit D határán; a lokális szélsőértékek és a határon vett lokális szélsőértékek közül a legnagyobb adja a globális maximum értékét, a legkisebb pedig a globális minimum értékét. Losonczi László (DE) Szélsőértékszámítás 11 / 21

12 2.6 Feltételes szélsőérték fogalma Többváltozós függvények feltételes szélsőértéke Legyenek f : D R k R, g i : D R k R i = 1,..., l, l < k adott függvények. Azt mondjuk, hogy az f függvénynek az x 0 D pontban a g 1 (x) = 0, g 2 (x) = 0,..., g l (x) = 0 feltételek mellett lokális/helyi feltételes maximuma (minimuma) van, ha g 1 (x 0 ) = = g l (x 0 ) = 0, és van olyan ε > 0 hogy f (x 0 ) f (x) (f (x 0 ) f (x)) teljesül minden x D K (x 0, ε) mellett, melyre g 1 (x) = = g l (x) = 0. Ha g 1 (x 0 ) = = g l (x 0 ) = 0, és f (x 0 ) > f (x) (f (x 0 ) < f (x)) teljesül minden x 0 x D K (x 0, ε) mellett, melyre g 1 (x) = = g l (x) = 0, akkor szigorú lokális feltételes maximum (minimum)-ról beszélünk. Losonczi László (DE) Szélsőértékszámítás 12 / 21

13 2.7 Feltételes szélsőértékszámítás A feltételes szélsőérték szükséges feltétele Tegyük fel, hogy az f, g i : D R k R (i = 1,..., l, l < k), az f függvénynek az első parciális deriváltjai folytonosak az x 0 D belső egy környezetében f -nek az x 0 D pontban a g 1 (x) = 0, g 2 (x) = 0,..., g l (x) = 0 feltételek mellett lokális feltételes szélsőértéke van, 1 g 1 (x 0 ) k g 1 (x 0 ) a..... R l k mátrix rangja l. 1 g l (x 0 ) k g l (x 0 ) Akkor van olyan λ 0 = (λ 01,..., λ 0l ) R l pont, hogy az L(λ, x) := f (x) + λ 1 g 1 (x) + + λ l g l (x) (λ R l, x D) függvényre 1 L(λ 0, x 0 ) = = l+k L(λ 0, x 0 ) = 0. Losonczi László (DE) Szélsőértékszámítás 13 / 21

14 2.7 Feltételes szélsőértékszámítás, Lagrange módszer A λ 1,..., λ l számokat Lagrange-féle multiplikátoroknak nevezzük, az L függvényt pedig a feltételes szélsőérték probléma Lagrange-féle függvényének nevezzük. A feltételes szélsőérték probléma megoldása úgy történik, hogy a 1 L(λ, x) = = l+k L(λ, x) = 0 l + k egyenletből álló rendszert (melynek első l db. egyenlete éppen g 1 (x) = = g l (x) = 0) megoldjuk a λ 1,..., λ l, x 1,..., x k, ismeretlenekre, a (λ 0, x 0 ) = (λ 01,..., λ 0l, x 01,..., x 0k ) R l D megoldások a Lagrange függvény stacionárius pontjai. Ennek az x 0 = (x 01,..., x 0k ) koordinátái adják a feltételes szélsőérték lehetséges helyeit. Losonczi László (DE) Szélsőértékszámítás 14 / 21

15 2.7 Feltételes szélsőértékszámítás, Lagrange módszer A feltételes szélsőérték elegendő feltétele Tegyük fel, hogy az f, g i : D R k R (i = 1,..., l, l < k), második parciális deriváltjai folytonosak az x 0 D belső pont egy környezetében, (λ 0, x 0 ) R l D a Lagrange függvény stacionárius pontja, azaz a 1 L(λ 0, x 0 ) = = l+k L(λ 0, x 0 ) = 0 rendszer megoldása, k l+1 g 1 (x 0 ) k g 1 (x 0 ) és k l+1 g l (x 0 ) k g l (x 0 ) Ha k k i=1 j=1 h ih j i j f (x 0 ) > 0 (< 0) minden olyan h = (h 1,..., h k ) R k, h 0 esetén, melyre k j=1 h j j g i (x 0 ) = 0 minden i = 1,..., l mellett, akkor f -nek szigorú lokális feltételes minimuma (maximuma) van x 0 -ban. Losonczi László (DE) Szélsőértékszámítás 15 / 21

16 2.7 Feltételes szélsőértékszámítás, elegendő feltételek A feltételes szélsőérték elégséges feltétele determinánsokkal Legyen j, (j = 2l + 1,..., l + k) a g 1 (x 0 ) k g 1 (x 0 ) g l (x 0 ) k g l (x 0 ) 1 g 1 (x 0 ) 1 g l (x 0 ) l+1 l+1 L(λ 0, x 0 ) l+1 l+k L(λ 0, x 0 ) k g 1 (x 0 ) k g l (x 0 ) l+k l+1 L(λ 0, x 0 ) l+k l+k L(λ 0, x 0 ) szimmetrikus blokkmátrix bal felső j j-s sarokmátrixának determinánsa. 1 Ha ( 1) l j > 0 minden j = 2l + 1,..., l + k esetén, akkor f -nek szigorú lokális feltételes minimuma van x 0 -ban. 2 Ha ( 1) l+j j > 0 minden j = 2l + 1,..., l + k esetén, akkor f -nek szigorú lokális feltételes maximuma van x 0 -ban. Losonczi László (DE) Szélsőértékszámítás 16 / 21

17 2.7 Feltételes szélsőértékszámítás, példa A blokkmátrix másik alakja Vegyük észre, hogy blokkmátrixunk éppen az L(λ, x) Lagrange függvény összes második parciális deriváltjaiból álló mátrix a (λ 0, x 0 ) stacionárius pontban véve, azaz a ( i j L(λ 0, x 0 )) R (l+k) (l+k) mátrix. Példa. Határozzuk meg az f : R 2 R, feltételes szélsőértékeit a feltétel mellett. g(x, y) = x 2 + y 2 1 = 0 f (x, y) := x + 2y körvonal Losonczi László (DE) Szélsőértékszámítás 17 / 21

18 2.7 Feltételes szélsőértékszámítás, példa megoldása Megoldás. A probléma Lagrange függvénye L(λ, x, y) = x + 2y + λ(x 2 + y 2 1) ((λ, x, y) R 3 ). A lehetséges szélsőértékhelyeket a λ L(λ, x, y) = x 2 + y 2 1 = 0, x L(λ, x, y) = 1 + 2λx = 0, y L(λ, x, y) = 2 + 2λy = 0 megoldásai adják. Könnyű kiszámolni, hogy a megoldások: λ 1 = 5 2, x 1 = 5 5, y 1 = 2 5 5, λ 2 = 5 2, x 2 = 5 5, y 2 = a feltételes szélsőérték lehetséges helyei. Losonczi László (DE) Szélsőértékszámítás 18 / 21

19 2.7 Feltételes szélsőértékszámítás, példa megoldása Azt, hogy feltételes maximum vagy minimum van-e ezen pontokban a fenti tétel alapján döntjük el. Az L második parciális deriváltjaiból felépített a blokkmátix (a (λ, x, y) pontban) 0 2x 2y 2x 2λ 0 2y 0 2λ. Losonczi László (DE) Szélsőértékszámítás 19 / 21

20 2.7 Feltételes szélsőértékszámítás, példa megoldása Most k = 2, l = 1, mivel 2l + 1 = 3 = k + l így csak az blokkmátrix determinánsának előjelét kell meghatározni. Egyszerű számítás mutatja, hogy ez 3 (λ 1, x 1, y 1 ) = = 100 < és hasonlóan 3 (λ 2, x 2, y 2 ) = 100 vagyis a 5 3 ( 1) l k+l = ( 1) 3 (λ 1, x 1, y 1 ) > 0 feltétel teljesül, (x 1, y 1 )-ben szigorú feltételes lokális minimum van, míg a ( 1) l+(l+k) 3 (λ 2, x 2, y 2 ) = ( 1) 4 3 (λ 2, x 2, y 2 ) > 0 ezért (x 2, y 2 )-ben szigorú feltételes lokális maximum van. Losonczi László (DE) Szélsőértékszámítás 20 / 21

21 2.7 Feltételes szélsőértékszámítás, példa megoldása Megjegyzés. Érdemes a feladatot geometriailag is szemléltetni: az f (x, y) = x + 2y sík és az x 2 + y 2 = 1 által meghatározott hengerfelület metszésvonalának (mely egy az R 3 térbeli ellipszis) melyik pontja van legmagasabban és legalacsonyabban (a magasságot a z tengely irányában mérve) Losonczi László (DE) Szélsőértékszámítás 21 / 21

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése 2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 3. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 19 Skalármezők

Részletesebben

MATEMATIKA 2. dolgozat megoldása (A csoport)

MATEMATIKA 2. dolgozat megoldása (A csoport) MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris

A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris Többváltozós függvények differenciálhatósága f(x) f(x Az egyváltozós függvények differenciálhatóságát a lim 0 ) x x0 x x 0 függvényhatárértékkel definiáltuk, s szemléletes jelentése abban mutatkozott meg,

Részletesebben

Kétváltozós függvények differenciálszámítása

Kétváltozós függvények differenciálszámítása Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar 2014. február 16. Losonczi László, Pap Gyula (DE, KTK) Gazdasági matematika II. 2014. február

Részletesebben

Kétváltozós függvény szélsőértéke

Kétváltozós függvény szélsőértéke Kétváltozós függvény szélsőértéke Sütő Andrea Kétváltozós függvény szélsőértéke Legyen adott f ( xy, ) kétváltozós függvény és ez legyen folytonosan totálisan differenciálható, azaz létezzenek az elsőrendű

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem Debrecen, 2007/8 tanév, II. félév Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2007/8 tanév, II. félév 1 / 186 Félévközi

Részletesebben

Többváltozós, valós értékű függvények

Többváltozós, valós értékű függvények TÖ Többváltozós, valós értékű függvények TÖ Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza, n változós függvényeknek nevezzük. TÖ Példák:.

Részletesebben

Többváltozós, valós értékű függvények

Többváltozós, valós értékű függvények Többváltozós függvények Többváltozós, valós értékű függvények Többváltozós függvények Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza,

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem Debrecen, 2009/10 tanév, II. félév Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/10 tanév, II. félév 1 / 187 Félévközi

Részletesebben

FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI

FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI FÜGGVÉNY: Adott két halmaz, H és K. Ha a H halmaz minden egyes eleméhez egyértelműen hozzárendeljük a K halmaznak egy-egy elemét, akkor a hozzárendelést

Részletesebben

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

Nemlineáris programozás 2.

Nemlineáris programozás 2. Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Boros Zoltán február

Boros Zoltán február Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem Debrecen, 2009/2010 tanév, II. félév Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 1 / 180 Félévközi

Részletesebben

SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, SZAKDOLGOZAT ELLENPÉLDÁK. TÉMAVEZETŐ: Gémes Margit. Matematika Bsc, tanári szakirány

SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, SZAKDOLGOZAT ELLENPÉLDÁK. TÉMAVEZETŐ: Gémes Margit. Matematika Bsc, tanári szakirány SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, ELLENPÉLDÁK SZAKDOLGOZAT KÉSZÍTETTE: Kovács Dorottya Matematika Bsc, tanári szakirány TÉMAVEZETŐ: Gémes Margit Műszaki gazdasági tanár Analízis tanszék Eötvös

Részletesebben

EGYVÁLTOZÓS FÜGGVÉNYEK DERIVÁLÁSÁNAK ALKALMAZÁSAI

EGYVÁLTOZÓS FÜGGVÉNYEK DERIVÁLÁSÁNAK ALKALMAZÁSAI EGYVÁLTOZÓS FÜGGVÉNYEK DERIVÁLÁSÁNAK ALKALMAZÁSAI I.Feladat: Egyváltozós függvény grafikonjához húzható érintőkkel kapcsolatos feladatok. 1.feladat: Határozza meg az függvény x = 1 abszcisszájú pontjába

Részletesebben

Tartalomjegyzék Feltétel nélküli szélsőérték számítás

Tartalomjegyzék Feltétel nélküli szélsőérték számítás Dr. Vincze Szilvia Példa Egy adott talajtípuson az átlagosnak megelelő időjárási viszonyok között a búza hozamát hektáronként a elhasznált nitrogén és oszor hatóanyag erősen beolyásolja. A hektáronként

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy

Részletesebben

11. gyakorlat megoldásai

11. gyakorlat megoldásai 11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozza meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 3y + x 2 y + 2xy, (c) f(x,

Részletesebben

2012. október 2 és 4. Dr. Vincze Szilvia

2012. október 2 és 4. Dr. Vincze Szilvia 2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex

Részletesebben

Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész

Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész Mintakérdések a 2. ZH elméleti részéhez. Nem csak ezek a kérdések szerepelhetnek az elméleti részben, de azért hasonló típusú kérdések

Részletesebben

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L

Részletesebben

Maple: Deriváltak és a függvény nevezetes pontjai

Maple: Deriváltak és a függvény nevezetes pontjai Maple: Deriváltak és a függvény nevezetes pontjai Bevezető Tudjuk, hogy a Maple könnyűszerrel képes végrehajtani a szimbólikus matematikai számításokat, ezért a Maple egy ideális program differenciál-

Részletesebben

Matematika elméleti összefoglaló

Matematika elméleti összefoglaló 1 Matematika elméleti összefoglaló 2 Tartalomjegyzék Tartalomjegyzék... 2 1. Sorozatok jellemzése, határértéke... 3 2. Függvények határértéke és folytonossága... 5 3. Deriválás... 6 4. Függvényvizsgálat...

Részletesebben

11. gyakorlat megoldásai

11. gyakorlat megoldásai 11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozzuk meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 y + x 2 y + 2xy, (c) f(x,

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2

Részletesebben

Függvények szélsőérték vizsgálata

Függvények szélsőérték vizsgálata Eötvös Loránd Tudományegyetem Természettudományi Kar Függvények szélsőérték vizsgálata BSc Szakdolgozat Készítette: Sághy Enikő Kata Matematika BSc, Matematikai elemző szakirány Témavezető: Gémes Margit

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?

Részletesebben

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében? Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!

Részletesebben

A gyakorlatok anyaga

A gyakorlatok anyaga A 7-11. gyakorlatok anyaga a Matematika A1a-Analízis nevű tárgyhoz B és D kurzusok Számhalmazok jelölésére a következő szimbólumokat használjuk: N := {1,,...}, Z, Q, Q, R. Az intervallumokat pedig így

Részletesebben

Szélsőérték-számítás

Szélsőérték-számítás Szélsőérték-számítás Jelölések A következő jelölések mind az f függvény x szerinti parciális deriváltját jelentik: Ugyanígy az f függvény y szerinti parciális deriváltja: f x = xf = f x f y = yf = f y

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák)

Feladatok megoldásokkal az ötödik gyakorlathoz (Taylor polinom, szöveges szélsőérték problémák) Feladatok megoldásokkal az ötödik gyakorlathoz Taylor polinom, szöveges szélsőérték problémák) 1. Feladat. Írjuk fel az fx) = e x függvény a = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével

Részletesebben

Analízis tételek alkalmazása KöMaL és más versenyfeladatokon

Analízis tételek alkalmazása KöMaL és más versenyfeladatokon EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Analízis tételek alkalmazása KöMaL és más versenyfeladatokon Lukács Imola Matematika BSc Szakdolgozat Témavezető: Gémes Margit Műszaki gazdasági tanár

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Gazdasági matematika I.

Gazdasági matematika I. Gazdasági matematika I. Losonczi László, Pap Gyula Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László, Pap Gyula (DE) Gazdasági matematika I. 1 / 123 Kötelező irodalom: LOSONCZI LÁSZLÓ,

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

Számítógépes programok alkalmazása az analízisben

Számítógépes programok alkalmazása az analízisben Eötvös Loránd Tudományegyetem Természettudományi Kar Számítógépes programok alkalmazása az analízisben Szakdolgozat Csillagvári Dániel Matematika BSc, elemző szakirány Témavezető: Gémes Margit Analízis

Részletesebben

Függvények határértéke, folytonossága FÜGGVÉNYEK TULAJDONSÁGAI, SZÉLSŐÉRTÉK FELADATOK MEGOLDÁSA

Függvények határértéke, folytonossága FÜGGVÉNYEK TULAJDONSÁGAI, SZÉLSŐÉRTÉK FELADATOK MEGOLDÁSA Függvények határértéke, folytonossága FÜGGVÉNYEK TULAJDONSÁGAI, SZÉLSŐÉRTÉK FELADATOK MEGOLDÁSA Alapvető fogalmak: Függvény fogalma Függvény helyettesítési értéke (függvényérték) Függvény grafikonja A

Részletesebben

A függvényekről tanultak összefoglalása /9. évfolyam/

A függvényekről tanultak összefoglalása /9. évfolyam/ A függvényekről tanultak összefoglalása /9. évfolyam/ Készítette: Almási István almasi84@gmail.com Lineáris függvény A függvény általános alakja: f (x):= m 1 m 2 x+b m a meredekség b a tengelymetszet 2/42

Részletesebben

Gazdasági matematika I.

Gazdasági matematika I. Gazdasági matematika I. Losonczi László, Pap Gyula Debreceni Egyetem, Informatikai Kar I. félév Előadó: Hajdu Lajos Losonczi László, Pap Gyula (DE) Gazdasági matematika I. I. félév 1 / 124 Félévközi kötelező

Részletesebben

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon. 215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Részletesebben

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja

Részletesebben

Óravázlatok: Matematika 2.

Óravázlatok: Matematika 2. Óravázlatok: Matematika 2. Bartha Ferenc készültség: March 4, 2003 1. VEKTOR-SKALÁR FÜGGVÉNYEK DIFFERENCIÁLÁSA Legyen a továbbiakban M R n nyílt halmaz és f : M R valós függvény, x (x 1,.., x n ) M Ha

Részletesebben

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;

Részletesebben

Szélsőérték-számítás

Szélsőérték-számítás Szélsőérték-számítás Csikó Csaba László matematika tanári szakirányos hallgató ELTE TTK Témavezető: Dr. Mezei István adjunktus ELTE TTK Alkalmazott Analízis és Számításmatematikai Tanszék Eötvös Loránd

Részletesebben

Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait!

Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait! Elméleti kérdések: Második zárthelyi dolgozat biomatematikából * (Minta, megoldásokkal) E. Mit értünk hatványfüggvényen? Adjon példát nem invertálható hatványfüggvényre. Adjon példát mindenütt konkáv hatványfüggvényre.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Kalkulus I. gyakorlat Fizika BSc I/1.

Kalkulus I. gyakorlat Fizika BSc I/1. . Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat

Részletesebben

Lagrange-féle multiplikátor módszer és alkalmazása

Lagrange-féle multiplikátor módszer és alkalmazása Eötvös Loránd Tudományegyetem Természettudományi Kar Nemesné Jónás Nikolett Lagrange-féle multiplikátor módszer és alkalmazása Matematika BSc, Matematikai elemz szakirány Témavezet : Szekeres Béla János,

Részletesebben

MÉSZÁROS JÓZSEFNÉ, NUMERIKUS MÓDSZEREK

MÉSZÁROS JÓZSEFNÉ, NUMERIKUS MÓDSZEREK MÉSZÁROS JÓZSEFNÉ, NUmERIKUS módszerek 9 FÜGGVÉNYKÖZELÍTÉSEK IX. SPLINE INTERPOLÁCIÓ 1. SPLINE FÜGGVÉNYEK A Lagrange interpolációnál említettük, hogy az ún. globális interpoláció helyett gyakran célszerű

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x

Részletesebben

Descartes-féle, derékszögű koordináta-rendszer

Descartes-féle, derékszögű koordináta-rendszer Descartes-féle, derékszögű koordináta-rendszer A derékszögű koordináta-rendszerben a sík minden pontjához egy rendezett valós számpár rendelhető. A számpár első tagja (abszcissza) a pont y tengelytől mért

Részletesebben

KONVEXITÁS, SZÉLSŐÉRTÉK

KONVEXITÁS, SZÉLSŐÉRTÉK KONVEXITÁS, SZÉLSŐÉRTÉK SZAKDOLGOZAT Készítette: Babák Bence Matematika Bsc, Matematika tanári szakirány Témavezető: Sigray István, műszaki gazdasági tanár Analízis Tanszék Eötvös Loránd Tudományegyetem

Részletesebben

r a sugara, h a magassága a hengernek a maximalizálandó függvényünk a V (r, h) = πr 2 h. Az érintkezési pontokban x 2 + y 2 = r 2 és z = h/2.

r a sugara, h a magassága a hengernek a maximalizálandó függvényünk a V (r, h) = πr 2 h. Az érintkezési pontokban x 2 + y 2 = r 2 és z = h/2. Feltételes szélsőérték Keressük úgy egy kétváltozós f (x, y) függvény szélsőértékét, hogy közben eleget tegyünk egy másik, g(x, y) = 0 típusú megszorításnak. Példa Határozzuk meg egy forgásellipszoidba

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Matematika A1a - Analízis elméleti kérdései

Matematika A1a - Analízis elméleti kérdései Mtemtik A1 - Anlízis elméleti kérdései (műszki menedzser szk, 2018. ősz) Kör egyenlete Az (x 0, y 0 ) középpontú, R sugrú kör egyenlete síkon (x x 0 ) 2 + (y y 0 ) 2 = R 2. Polinom Az x n x n + n 1 x n

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

Matematika I. NÉV:... FELADATOK:

Matematika I. NÉV:... FELADATOK: 24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n

Részletesebben

Differenciaegyenletek

Differenciaegyenletek Differenciaegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2009/10 tanév, I. félév Losonczi László (DE) Differenciaegyenletek 2009/10 tanév, I. félév 1 / 11

Részletesebben

Függvény határérték összefoglalás

Függvény határérték összefoglalás Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

Nagy Krisztián Analízis 2

Nagy Krisztián Analízis 2 Nagy Krisztián Analízis 2 Segédanyag a második zárthelyi dolgozathoz Tartalomjegyzék Deriválási alapok... 3 Elemi függvények deriváltjai... 3 Deriválási szabályok műveletekre... 4 Első feladat típus...

Részletesebben

10. tétel Függvények lokális és globális tulajdonságai. A differenciálszámítás alkalmazása

10. tétel Függvények lokális és globális tulajdonságai. A differenciálszámítás alkalmazása . tétel Függvények lokális és globális tulajdonságai. A dierenciálszámítás alkalmazása FÜGGVÉNY De: A üggvény egyértelmű hozzárendelés két halmaz elemei között. A halmaz minden eleméhez B halmaz legeljebb

Részletesebben

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

Függvény differenciálás összefoglalás

Függvény differenciálás összefoglalás Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a

Részletesebben

GPK M1 (BME) Interpoláció / 16

GPK M1 (BME) Interpoláció / 16 Interpoláció Matematika M1 gépészmérnököknek 2017. március 13. GPK M1 (BME) Interpoláció 2017 1 / 16 Az interpoláció alapfeladata - Példa Tegyük fel, hogy egy ipari termék - pl. autó - előzetes konstrukciójának

Részletesebben

A lineáris programozás alapjai

A lineáris programozás alapjai A lineáris programozás alapjai A konvex analízis alapjai: konvexitás, konvex kombináció, hipersíkok, félterek, extrém pontok, Poliéderek, a Minkowski-Weyl tétel (a poliéderek reprezentációs tétele) Lineáris

Részletesebben

Differenciálegyenlet rendszerek

Differenciálegyenlet rendszerek Differenciálegyenlet rendszerek (A kezdeti érték probléma. Lineáris differenciálegyenlet rendszerek, magasabb rendű lineáris egyenletek.) Szili László: Modellek és algoritmusok ea+gyak jegyzet alapján

Részletesebben

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2 Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt

Részletesebben

Többváltozós analízis gyakorlat, megoldások

Többváltozós analízis gyakorlat, megoldások Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

Lineáris algebra numerikus módszerei

Lineáris algebra numerikus módszerei Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben