Többváltozós, valós értékű függvények

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Többváltozós, valós értékű függvények"

Átírás

1 Többváltozós függvények Többváltozós, valós értékű függvények

2 Többváltozós függvények Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza, n változós függvényeknek nevezzük. Példák. A gazdasági eredetű problémák matematikai modelljében gyakoriak a sokváltozós függvények (például: termelési függvény. Az R R típusú függvényeket szokás skalármezőnek nevezni. Ilyenek például a skalár jellegű fizikai mennyiségeknek (tömegsűrűség, töltéssűrűség, hőmérséklet, potenciál, stb. a helytől való függését kifejező függvények.. A geográfiában használt domborzati térképek tekinthetők R R típusú (kétváltozós függvényeknek.

3 Többváltozós függvények Kétváltozós függvények ábrázolása A többváltozós függvények közül csak a kétváltozósakat tudjuk ábrázolni. Ekkor is egy háromdimenziós kép térhatású síkbeli ábrázolásáról van szó. Az ábrázolásnak két esetben van szerepe: a többváltozós függvényekkel kapcsolatos fogalmak tartalmának speciálisan kétváltozós függvényeken való bemutatásakor olyan esetekben, amikor egy kétváltozós függvény egy felület megadására szolgál

4 Többváltozós függvények 4 Kétváltozós függvények ábrázolása (,y f (,y Példa f (,y + y

5 Többváltozós függvények 5 Definíció: szintvonalak Ha c eleme az (,y f(,y függvény értékkészletének, akkor az { (,y R f(,y c } síkgörbét c értékhez tartozó szintvonalnak nevezzük. A definíció szerint egy szintvonal pontjaihoz a függvény ugyanazt az értéket rendeli. Megjegyzés A domborzati térképek szintvonalainak jelentése ugyanez.

6 Többváltozós függvények 6 Definíció: paramétervonalak A kétváltozós függvények paramétervonalai síkgörbék, a függvényfelületnek a függőleges koordinátasíkokkal párhuzamos síkokkal való síkmetszetei. A paramétervonalak olyan egyváltozós függvények grafikonjaként állnak elő, melyek az eredeti kétváltozós függvény egyik változójának rögzítésével keletkeznek.

7 Többváltozós függvények 7 A második változó rögzítésével keletkező paramétervonalak Az első változó rögzítésével keletkező paramétervonalak f(,y y f(,y Példa (,y + y y + 4 y 9+ y

8 Többváltozós függvények 8 Többváltozós függvények határértéke és folytonossága Emlékeztető: egyváltozós függvény határértéke Az f:d R függvény határértéke a D egy torlódási pontjában A R, ha bármely D-beli ( n, n sorozat esetén, melyre n fennáll, hogy f( n A Jelölés lim f ( A Példa lim 9

9 Többváltozós függvények 9 Definíció: többváltozós függvény határértéke Tekintsük az f:d( R n R függvényt, és r legyen torlódási pontja az f értelmezési tartományának. Ha van olyan A R, melyre fennáll, hogy bármely D-beli sorozat esetén r n r, (r n r, n N f (r n A, akkor azt mondjuk, hogy az f függvény határértéke a r helyen A. Jelölés: lim f (r r r A

10 Többváltozós függvények Példa y, ha (, y (, (, y + y, ha (, y (, f Az f függvénynek a (, helyen nem létezik határértéke (és így nem is folytonos. Indoklás: n n,, n n (, (, sorozat esetén: sorozat esetén: lim f n lim f n n n,, n n lim n lim n n n n n 5 lim n lim n 5 5

11 Többváltozós függvények Emlékeztető: egyváltozós függvény folytonossága Az f:d R függvény folytonos az D helyen, ha bármely ( n :N D, sorozat esetén fennáll, hogy n f ( n f (. Példa Az f( függvény folytonos az helyen, mert ha n, akkor f( n ( n 9 f(

12 Többváltozós függvények Definíció: többváltozós függvény folytonossága Az f : D ( R n R függvény folytonos az r D helyen, ha bármely D-beli sorozat esetén r n r f (r n f (r. Megjegyzés: folytonosság és határérték létezésének kapcsolata Legyen D R n nyílt halmaz. A definíciókból látható, hogy az f:d R függvény pontosan akkor folytonos az r D helyen, ha f-nek létezik határértéke r -ban, és az éppen f(r.

13 Többváltozós függvények Definíció Lineáris függvények Az (,,, n k + k + + k n n k függvényeket, ahol k, k,, k n valós számok, n változós lineáris függvényeknek nevezzük. Az egyváltozós lineáris függvények: k A kétváltozós lineáris függvények: (, k + k k

14 Többváltozós függvények 4 Megjegyzés A lineáris függvények alapvető szerepet játszanak a differenciálszámításban, hiszen a differenciálás valójában lineáris függvénnyel való közelítést jelent: Egyváltozós (differenciálható függvény lineáris közelítése az ún. érintő egyenessel való közelítést jelenti, ennek meredeksége az adott pontbeli differenciálhányados. Kétváltozós (differenciálható függvény lineáris közelítése az ún. érintő síkkal való közelítést jelenti, melynek normálvektorát az adott pontbeli ún. parciális differenciálhányadosok határozzák meg.

15 Többváltozós függvények 5 Többváltozós függvények differenciálása Emlékeztető: egyváltozós függvények differenciálhányadosa Az f:d( R R függvény differenciálható az értelmezési tartományának egy belső pontjában, ha van olyan k R szám, melyre ahol f ( f ( k ( + ε( ( lim ε( Ekkor a k számot az f függvény helyen vett differenciálhányadosának nevezzük. Jelölés: k f (

16 Többváltozós függvények 6 Megjegyzés A Δ Δf f ( f ( jelölésekkel a differenciálhatóság feltétele szemléletesebb alakot ölt: Δf k Δ + ε( Δ Δ ahol lim ε( Δ Δ

17 Többváltozós függvények 7 Definíció: többváltozós függvények differenciálhányadosa Az f:d( R n R függvény differenciálható a D értelmezési tartomány r belső pontjában, ha van olyan k R n vektor, melyre ahol f (r f (r k (r r + ε(r r (r r lim ε(r r r r Ekkor a k vektort az f függvény r helyen vett differenciálhányadosának, vagy gradiensének nevezzük. Jelölés: f (r grad f (r k k

18 Többváltozós függvények 8 Megjegyzések. A Δr r r Δf f (r f (r jelölésekkel a differenciálhatóság feltétele szemléletesebb alakot ölt: ahol Δf k Δr + ε( Δr Δr lim Δr ε( Δr. Ha differenciálhányados létezik, akkor egyértelmű.. Ha D R n nyílt halmaz (minden pontja belső pont és az f:d R függvény differenciálható a D minden pontjában, akkor azt mondjuk, hogy f differenciálható a D halmazon.

19 Többváltozós függvények 9 Definíció: iránymenti derivált Legyen f:d( R n R, r a D értelmezési tartomány belső pontja, v R n legyen rögzített vektor, és v jelölje a v irányú, egységnyi nagyságú vektort. Az f függvény r pontbeli, v irányban vett iránymenti deriváltján a f f (r + λ v f (r (r lim v λ λ határértéket értjük, amennyiben létezik és valós. Megjegyzés Vegyük észre, hogy a definícióban egy egyváltozós függvény határértékéről van szó! Az egyetlen változó: λ.

20 Többváltozós függvények Az iránymenti derivált jelentése A v irányban vett iránymenti derivált szemléletesen azt fejezi ki, hogy az értelmezési tartományban az r pontból a v irányban haladva mennyi a függvényértékek változásának gyorsasága. Megjegyzés Ahol az f függvény differenciálható, ott létezik az összes iránymenti deriváltja is, az iránymenti deriváltak létezéséből viszont nem következik a differenciálhatóság.

21 Többváltozós függvények Parciális derivált Definíció Legyen f:d( R n R, r a D értelmezési tartomány belső pontja, továbbá az e,e,,e n vektorok legyenek az R n természetes bázisának bázisvektorai. Az f függvény r pontbeli, e i irányban vett iránymenti deriváltját az f függvény r pontbeli i-edik (vagy i-edik változó szerinti parciális differenciálhányadosának, vagy röviden parciális deriváltjának nevezzük (i,,n. Megjegyzés A parciális deriváltak tehát speciális iránymenti deriváltak.

22 Többváltozós függvények Jelölések Az f függvény r pontbeli i-edik változó szerinti parciális deriváltjának jelölései: i f (r vagy f (r i Szokás a változó sorszáma helyett magát a változót szerepeltetni a parciális derivált jelölésénél: például az változó szerinti parciális derivált lehetséges jelölései: f (r f (r f (r

23 Többváltozós függvények Megjegyzés: a differenciálhányados és a parciális deriváltak A parciális deriváltak létezéséből általában nem következik a differenciálhatóság, de igaz a következő tétel: Ha az r hely valamely környezetében az f függvénynek minden változó szerint létezik parciális deriváltja, továbbá ezek folytonosak r -ban, akkor f differenciálható r -ban. Az előbbiekben a parciális deriváltat, mint speciális irányban vett iránymenti deriváltat értelmeztük. Most megadjuk a parciális derivált közvetlen definícióját. (Az egyszerűség kedvéért a definíciókat csak a kétváltozós esetre írjuk fel, de ezzel analóg módon lehet eljárni kettőnél több változós esetben is.

24 Többváltozós függvények 4 A parciális deriváltak közvetlen értelmezése (kétváltozós függvény esetére Definíció: első változó szerinti parciális derivált Legyen f:d( R R, (,y a D belső pontja. Az f függvény (,y helyen vett, első változó szerinti parciális differenciálhányadosán (vagy röviden parciális deriváltján a f (, y lim f (, y f ( határértéket értjük, amennyiben ez létezik és véges., y

25 Többváltozós függvények 5 Az első változó szerinti parciális derivált geometriai jelentése kétváltozós függvény esetén Az első változó szerinti parciális derivált az y változó rögzítésével előálló felületi görbe érintőjének meredekségét adja.

26 Többváltozós függvények 6 Definíció: második változó szerinti parciális derivált y f (, A parciális deriváltak közvetlen értelmezése (kétváltozós függvény esetére Legyen f:d( R R, (,y a D belső pontja. Az f függvény (,y helyen vett, második változó szerinti parciális differenciálhányadosán (vagy röviden parciális deriváltján a y lim y y f ( határértéket értjük, amennyiben ez létezik és véges., y y f ( y, y

27 Többváltozós függvények 7 A második változó szerinti parciális derivált geometriai jelentése kétváltozós függvény esetén A második változó szerinti parciális derivált az változó rögzítésével előálló felületi görbe érintőjének meredekségét adja.

28 Többváltozós függvények 8 Megjegyzés: gradiens vektor komponensei Ha az f:d( R n R függvény differenciálható a D értelmezési tartomány r belső pontjában, akkor r -ban léteznek a parciális deriváltak. Az r helyen vett gradiens vektor komponensei az ottani parciális deriváltak: ( f (r, f (r,..., f (r gradf (r n

29 Többváltozós függvények 9 Tétel: az iránymenti deriváltak és a gradiens vektor Legyen az f:d( R n R függvény differenciálható a D értelmezési tartomány r belső pontjában, v R n legyen rögzített vektor, és v jelölje a v irányú, egységnyi nagyságú vektort. A v irányban vett iránymenti derivált kiszámítható a gradiens vektor és a v vektor skaláris szorzataként: f v (r gradf (r v

30 Többváltozós függvények Példa f (,, r (,4, v (,, Határozzuk meg az f függvény elsőrendű parciális derivált függvényeit gradiens vektorát az r helyen iránymenti deriváltját a r helyen, a v irányban!

31 Többváltozós függvények ,, ( f ,, ( f + + +,, ( f Az elsőrendű parciális derivált függvények: 4,, ( f + + +!!!a számolás közben és konstans!!!!!!a számolás közben és konstans!!!!!!a számolás közben és konstans!!!

32 Többváltozós függvények Az elsőrendű parciális derivált függvények értéke az r helyen: f (,, 4 f (r f (,4, f (,, f (r f (,4, 7 4 f (,, f (r f (,4, A gradiens vektor: grad f (r 7 grad f (,4,,, 4

33 Többváltozós függvények grad f (r 7 grad f (,4,,, 4 v (,, v v v (,,,, Az iránymenti derivált: f (r grad f (r v 7 v,,,, 4

34 Többváltozós függvények 4 Definíció: differenciál Tekintsük az f:d( R n R függvényt. Legyen r (,,, n a D egy belső pontja, legyen továbbá a D egy pontja és r (,,, n Δ -, Δ -,, Δ n n - n. Δr r r ( Δ, Δ,, Δ n Ha f differenciálható az r helyen, akkor az f függvény r pontbeli, a Δr eltéréshez tartozó (első differenciálja: f (r Δ + f (r Δ nf (r Δ n

35 Többváltozós függvények 5 f (r Δ + f (r Δ nf (r Δ n Megjegyzés A differenciál röviden felírható a gradiens vektor segítségével: gradf (r Δr

36 Többváltozós függvények 6 Definíció: lineáris közelítés Ha az f:d( R n R függvény differenciálható a D értelmezési tartomány r belső pontjában, akkor az f függvény r pontbeli lineáris közelítésén azt értjük, hogy a függvény Δ f f (r f (r megváltozását a differenciállal közelítjük: Δf f (r f (r gradf (r Δr f (r Δ + f (r Δ nf (r Δ n avagy: f (r f (r + gradf (r r Δ

37 Többváltozós függvények 7 Lineáris közelítés kétváltozós függvény esetén Kétváltozós differenciálható függvény esetén a lineáris közelítés az ún. érintősíkkal való közelítést jelenti.

38 Többváltozós függvények 8 Definíció: érintősík Ha az (,y f(,y kétváltozós függvény differenciálható a r (,y helyen, akkor az f függvény r pontbeli érintősíkján a következő függvényt (annak grafikonját értjük: S(, y f (r + f (r ( + yf (r (y y Az f függvény r pontbeli lineáris közelítése: f(,y S(,y

39 Többváltozós függvények 9 Példa f (,, r (,4, Határozzuk meg az f függvény lineáris közelítését az r helyen közelítő értékét az helyen! r (.,.98,.95

40 Többváltozós függvények 4 f (,, 4 f (r f (,4, f (,, f (r f (,4, 7 4 f (,, f (r f (,4, grad f (r 7 grad f (,4,,, 4

41 Többváltozós függvények 4 f (,, r (,4, r (,, f(r 7 A lineáris közelítés: grad f (r 7 grad f (,4,,, 4 f (r f (r f (r + + f (r grad f (r Δ 7 ( Δr + f (r Δ +.75 ( + f (r 4 + Δ.5 (

42 Többváltozós függvények 4 f (r 7 ( +.75 ( ( A függvény közelítő értéke az r (.,.98,.95 helyen: f (r f (.,.98,.95 7 ( ( ( (. +.5 (

43 Többváltozós függvények 4 Definíció: másodrendű parciális deriváltak Legyen f:b(r,r( R n R, i {,,n}, j {,,n}. Ha f-nek minden r B(r,r pontban létezik az i-edik változó szerinti i f(r parciális deriváltja a r i f(r parciális derivált függvénynek az r pontban létezik a j-edik változó szerinti parciális deriváltja akkor ezt az f függvény j és i változók szerinti másodrendű parciális deriváltjának nevezzük. Jelölés j i f (r

44 Többváltozós függvények 44 Megjegyzés A másodrendű parciális deriváltak jelölésére szokásosak még az alábbi jelölések is: ji f (r " ji f (r A jelölésben utalhatunk közvetlenül azokra a változókra, melyek szerint a deriválást végeztük. Például az, majd az változó szerinti deriválás jelölése: (r (r f f f (r " f (r

45 Többváltozós függvények 45 Definíció Ha f:b(r,r( R n R függvénynek B(r,r-ban léteznek az elsőrendű parciális derivált függvényei, és ezek újra minden változó szerint parciálisan differenciálhatók az r pontban, akkor azt mondjuk, hogy f kétszer differenciálható r -ban. Definíció Ha f:b(r,r( R n R függvénynek B(r,r-ban léteznek az másodrendű parciális derivált függvényei és ezek folytonosak r -ban, akkor azt mondjuk, hogy f kétszer folytonosan differenciálható r -ban.

46 Többváltozós függvények 46 Megjegyzés: Young tétel (a deriválások sorrendjének felcserélhetősége Ha az f:b(r,r( R n R függvény kétszer differenciálható r -ban, akkor az r pontbeli másodrendű parciális deriváltak kiszámításakor a deriválások sorrendje felcserélhető, azaz j i f (r f (r i j i {,,n}, j {,,n}.

47 Többváltozós függvények 47 Kvadratikus függvények Definíció Legyen n pozitív egész szám. A Q(h n n,...,h n aijhih j i j alakú függvényeket, ahol A(a ij egy n-edrendű szimmetrikus mátri, kvadratikus függvényeknek (vagy kvadratikus formának nevezzük. Az A mátri a Q kvadratikus függvény mátria.

48 Többváltozós függvények 48 Példa A 4 Az A mátrihoz tartozó ( változós kvadratikus függvény: Q(h, h, h h + h h + h h + + h h + h h h + + h h h h + 4h h + h + 4h +h h 4h h + 6h h

49 Többváltozós függvények 49 Megjegyzés Nyilvánvaló, hogy bármely Q kvadratikus függvényre Q(. Definíció A Q:R n R kvadratikus függvény pozitív definit, ha Q(h >, amikor h negatív definit, ha Q(h <, amikor h indefinit, ha Q fölvehet pozitív és negatív értéket egyaránt.

50 Többváltozós függvények 5 Példa A Q(h, h, h h + h + 4h + h h 4h h + 6h h függvény pozitív definit. Ez az alábbi egyszerű átalakításból könnyen levezethető: h + h + 4h + h h 4h h + 6h h (h +h + (h h + (h +h

51 Többváltozós függvények 5 Definíció: sarokdeterminánsok Egy n-edrendű kvadratikus mátri sarokdeterminánsai az első k sorban és az első k oszlopban lévő elemekből álló k-adrendű mátriok determinánsai (k,,n. Példa A 4 mátri sarokdeterminánsai: ( D det D det D det 4

52 Többváltozós függvények 5 Tétel: a definitség megállapítása sarokdeterminánsokkal Egy kvadratikus függvény pontosan akkor pozitív definit, ha mátriának bal felső sarokdeterminánsai pozitívak: D >, D >,, D n > Egy kvadratikus függvény pontosan akkor negatív definit, ha mátriának bal felső sarokdeterminánsai váltakozó előjelűek úgy, hogy D negatív: D <, D >, D <, D 4 >, Egy kvadratikus függvény mátriának bal felső sarokdeterminánsai nullától különbözőek, és a fenti két eset nem áll fenn, akkor a kvadratikus függvény indefinit.

53 Többváltozós függvények 5 Példa 4 ( det D > det D > 4 det D > Q(h, h, h h + h + 4h +h h 4h h + 6h h Így Q pozitív definit.

54 Többváltozós függvények 54 Többváltozós differenciálható függvények szélsőérték-számítása Tétel: a helyi szélsőérték létezésének szükséges feltétele Ha az f:d( R n R differenciálható függvénynek helyi szélsőértéke van a D értelmezési tartomány r belső pontjában, akkor az r pontbeli elsőrendű parciális deriváltak értéke : f (r f (r n f(r Megjegyzés Kétváltozós differenciálható függvény esetén ott lehet helyi szélsőérték, ahol az érintő sík vízszintes.

55 Többváltozós függvények 55 Következmény Differenciálható függvény esetén a helyi szélsőértékek keresésekor elsőként azokat r helyeket kell meghatározni, ahol a parciális deriváltak értéke, az előző tétel szerint ui. helyi szélsőérték csak ezeken a helyeken lehet. Megjegyzés Helyi szélsőérték létezéséhez nem elegendő, hogy az elsőrendű parciális deriváltak értéke. Az elegendőséghez további feltételt kell megfogalmazni a másodrendű parciális deriváltakra vonatkozóan.

56 Többváltozós függvények 56 Definíció Legyen az f:b(r,r( R n R függvény kétszer folytonosan differenciálható r -ban, és definiáljuk a Q:R n R függvényt a következőképpen: Q(h n n,...,h n i jf (rhih i j j Megjegyzés Az így definiált Q függvény kvadratikus.

57 Többváltozós függvények 57 Tétel: a helyi szélsőérték létezésének elegendő feltétele. ESET Legyen az f:b(r,r( R n R függvény kétszer folytonosan differenciálható r -ban. Ha és a f (r f (r n f(r Q(h n n,...,h n i jf (rhih j i j kvadratikus függvény pozitív definit, akkor f-nek r -ban helyi minimuma van.

58 Többváltozós függvények 58 Tétel: a helyi szélsőérték létezésének elegendő feltétele. ESET Legyen az f:b(r,r( R n R függvény kétszer folytonosan differenciálható r -ban. Ha és a f (r f (r n f(r Q(h n n,...,h n i jf (rhih j i j kvadratikus függvény negatív definit, akkor f-nek r -ban helyi maimuma van.

59 Többváltozós függvények 59 Tétel: a helyi szélsőérték létezésének elegendő feltétele. ESET Legyen az f:b(r,r( R n R függvény kétszer folytonosan differenciálható r -ban. Ha és a f (r f (r n f(r Q(h n n,...,h n i jf (rhih j i j kvadratikus függvény indefinit, akkor f-nek r -ban nincs helyi szélsőértéke.

60 Többváltozós függvények 6 Példa Határozzuk meg a következő függvény helyi szélsőérték-helyeit és a szélsőértékeket!. lépés,,, 4,, ( f > > > ,, ( f,, ( f,, ( f Az elsőrendű parciális derivált függvények meghatározása:

61 Többváltozós függvények 6. lépés A f f n f egyenletrendszer megoldása: f (,, 4 f (,, f (,, r,,

62 Többváltozós függvények 6 A másodrendű parciális derivált függvények meghatározása (A könnyebb áttekinthetőség kedvéért a függvényeket táblázatba írjuk. Az első sorban a f, a második sorban f, a harmadik sorban a f függvény deriváltjai vannak.. lépés 4,, ( f,, ( f,, ( f

63 Többváltozós függvények A A másodrendű parciális derivált függvények értékének meghatározása ott, ahol az elsőrendű deriváltak értéke egyszerre volt nulla. Most egy ilyen pont van az r :,, r 4. lépés + + 4

64 Többváltozós függvények lépés Meg kell állapítani, hogy az A mátri milyen definitségű Q kvadratikus függvényhez tartozik, ebből megállapítható, hogy a vizsgált pontban van-e helyi szélsőérték, és milyen jellegű. A 4 6 D det(4 4 4 D det 8 4 D det 6 D 6 >, D 8 >, D 4 > vagyis az A mátri pozitív definit kvadratikus függvényhez tartozik. Ebből következik, hogy az f-nek P-ben helyi minimuma van.

65 Többváltozós függvények 65 Megjegyzés A fentiekből látható, hogy a Q(h n n,...,h n i jf (rhih j i j kvadratikus függvényt nem szükséges felírni, elegendő csak a mátriával számolni. A fent megoldott feladatban a kvadratikus függvény a következő alakú lett volna: A 4 6 Q(h, h, h 4 h 4 h h + h 4 h h + 6 h

66 Többváltozós függvények 66 Többváltozós Taylor polinomok A

A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris

A legjobb közeĺıtés itt most azt jelentette, hogy a lineáris Többváltozós függvények differenciálhatósága f(x) f(x Az egyváltozós függvények differenciálhatóságát a lim 0 ) x x0 x x 0 függvényhatárértékkel definiáltuk, s szemléletes jelentése abban mutatkozott meg,

Részletesebben

Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar

Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Szélsőértékszámítás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Szélsőértékszámítás 1 / 21 2. SZÉLSOÉRTÉKSZÁMÍTÁS 2.1 A szélsőérték fogalma, létezése Azt

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Lengyelné Dr. Szilágyi Szilvia április 7.

Lengyelné Dr. Szilágyi Szilvia április 7. ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:

Részletesebben

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

Kétváltozós függvény szélsőértéke

Kétváltozós függvény szélsőértéke Kétváltozós függvény szélsőértéke Sütő Andrea Kétváltozós függvény szélsőértéke Legyen adott f ( xy, ) kétváltozós függvény és ez legyen folytonosan totálisan differenciálható, azaz létezzenek az elsőrendű

Részletesebben

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n.

1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n. 1. Többváltozós függvények 1. Bevezetés Ennek a fejezetnek a célja a kétváltozós függvények vizsgálata, ami során a 3-dimenziós felületeket szeretnénénk megérteni. 1. definíció. Legyen D R n. Ekkor az

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

Egyváltozós függvények differenciálszámítása

Egyváltozós függvények differenciálszámítása Egyváltozós függvények differenciálszámítása Egyváltozós függvények differenciálszámítása Ebben a részben I egy tetszőleges, pozitív hosszúságú, intervallumot jelöl. Egyváltozós függvények differenciálszámítása

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1 Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

Matematikai alapok 1 Tantárgyi útmutató

Matematikai alapok 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdaságinformatikus szak nappali tagozat Matematikai alapok 1 Tantárgyi útmutató 2015/16 tanév II. félév 1/5 Tantárgy megnevezése Matematikai alapok 1 Tantárgy jellege/típusa:

Részletesebben

Gazdasági matematika 1 Tantárgyi útmutató

Gazdasági matematika 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Emberi erőforrások, gazdálkodási és menedzsment, pénzügy és számvitel szakok nappali tagozat Gazdasági matematika 1 Tantárgyi útmutató 2016/17 tanév I. félév 1/5 Tantárgy megnevezése

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

Számítógépes programok alkalmazása az analízisben

Számítógépes programok alkalmazása az analízisben Eötvös Loránd Tudományegyetem Természettudományi Kar Számítógépes programok alkalmazása az analízisben Szakdolgozat Csillagvári Dániel Matematika BSc, elemző szakirány Témavezető: Gémes Margit Analízis

Részletesebben

Kétváltozós függvények ábrázolása síkmetszetek képzése által

Kétváltozós függvények ábrázolása síkmetszetek képzése által Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

Gazdasági matematika II.

Gazdasági matematika II. Gazdasági matematika II. Losonczi László, Pap Gyula Debreceni Egyetem Debrecen, 2009/2010 tanév, II. félév Losonczi László, Pap Gyula (DE) Gazdasági matematika II. 2009/2010 tanév, II. félév 1 / 180 Félévközi

Részletesebben

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

Felületek differenciálgeometriai vizsgálata

Felületek differenciálgeometriai vizsgálata Felületek differenciálgeometriai vizsgálata Felületek differenciálgeometriai értelemben Felület: Olyan alakzat, amely előállítható az (u,v) sík egy összefüggő tartományán értelmezett r(u,v) kétparaméteres

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

f(x) a (x x 0 )-t használjuk.

f(x) a (x x 0 )-t használjuk. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények Függvények 1. oldal Készítette: Ernyei Kitti Függvények DEFINÍCIÓ: Ha adott két nemüres halmaz: és, továbbá minden eleméhez hozzárendeljük a valamely elemét, akkor ezt a hozzárendelést függvénynek nevezzük.

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Többváltozós függvények Feladatok

Többváltozós függvények Feladatok Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

Analízis tételek alkalmazása KöMaL és más versenyfeladatokon

Analízis tételek alkalmazása KöMaL és más versenyfeladatokon EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Analízis tételek alkalmazása KöMaL és más versenyfeladatokon Lukács Imola Matematika BSc Szakdolgozat Témavezető: Gémes Margit Műszaki gazdasági tanár

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek 1. MAEMAIKAI ÖSSZEFOGLALÓ 1.1. Vektorok közötti műveletek Azok a fizikai mennyiségek, melyeknek nagyságukon kívül irányuk is van, vektoroknak nevezzük. A vektort egyértelműen megadhatjuk a hosszával és

Részletesebben

7. Kétváltozós függvények

7. Kétváltozós függvények Matematika segédanag 7. Kétváltozós függvének 7.. Alapfogalmak Az A és B halmazok A B-vel jelölt Descartes-szorzatán azt a halmazt értjük, melnek elemei mindazon a, b) rendezett párok, amelekre a A és

Részletesebben

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) (11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)

Részletesebben

Maple: Deriváltak és a függvény nevezetes pontjai

Maple: Deriváltak és a függvény nevezetes pontjai Maple: Deriváltak és a függvény nevezetes pontjai Bevezető Tudjuk, hogy a Maple könnyűszerrel képes végrehajtani a szimbólikus matematikai számításokat, ezért a Maple egy ideális program differenciál-

Részletesebben

Tartalomjegyzék. 1. Előszó 1

Tartalomjegyzék. 1. Előszó 1 Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete

Részletesebben

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2 Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.

Részletesebben

YBL - SGYMMAT2012XA Matematika II.

YBL - SGYMMAT2012XA Matematika II. YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. tanulmányokhoz TÁVOKTATÁS 2015/2016-os tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika I. (Analízis) Tanszék: Módszertani

Részletesebben

Függvényhatárérték és folytonosság

Függvényhatárérték és folytonosság 8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak

Részletesebben

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4 Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos

Részletesebben

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

Vektoranalízis Vektor értékű függvények

Vektoranalízis Vektor értékű függvények Vektoranalízis VS Vektoranalízis Vektor értékű üggvények A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK engedélyével használhatók el! Vektoranalízis VS A korábbi ejezetekben tanulmányoztuk

Részletesebben

Szélsőérték-számítás

Szélsőérték-számítás Szélsőérték-számítás Jelölések A következő jelölések mind az f függvény x szerinti parciális deriváltját jelentik: Ugyanígy az f függvény y szerinti parciális deriváltja: f x = xf = f x f y = yf = f y

Részletesebben

1. Sorozatok 2014.03.12.

1. Sorozatok 2014.03.12. 1. Sorozatok Azokat a függvényeket, amelyek értelmezési tartománya a pozitív egész számok halmaza ( jelölése N ), a képhalmaz a valós számok halmaza, sorozatnak nevezzük. Az a függvény n N helyen vett

Részletesebben

Ez a fejezet az eddig tanult lineáris algebra tananyag alkalmazásaként megmutatja,

Ez a fejezet az eddig tanult lineáris algebra tananyag alkalmazásaként megmutatja, 8 Fejezet Differenciálszámítás Ez a fejezet az eddig tanult lineáris algebra tananyag alkalmazásaként megmutatja, hogy hogyan vihető át a derivált fogalma többváltozós függvényekre Látni fogjuk, hogy a

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt. Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.

Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió. YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

A kiadásért felel dr. Táncos László, a Semmelweis Kiadó igazgatója Nyomda alá rendezte Békésy János Borítóterv: Táncos László SKD: SKD043-e

A kiadásért felel dr. Táncos László, a Semmelweis Kiadó igazgatója Nyomda alá rendezte Békésy János Borítóterv: Táncos László SKD: SKD043-e Dr. Gergó Lajos elõadásjegyzetei alapján készítették: Dr. Gergó Lajos Dr. Meskó Attiláné Gillemotné Dr. Orbán Katalin Semmelweis Egyetem, Gyógyszerésztudományi Kar, Egyetemi Gyógyszertár, Gyógyszerügyi

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja

Részletesebben

Többváltozós függvények Jegyzet. Pap Margit, Tóth László Pécsi Tudományegyetem

Többváltozós függvények Jegyzet. Pap Margit, Tóth László Pécsi Tudományegyetem Többváltozós függvények Jegyzet Pap Margit, Tóth László Pécsi Tudományegyetem 11 Tartalomjegyzék El szó 5 1. Többváltozós függvények 7 1.1. Metrika és topológia R n -ben..............................

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC 6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. március 17. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2 Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

DIFFERENCIÁLÁS, GRADIENS VEKTOR, HESSE MÁTRIX, LÁNCSZABÁLY,

DIFFERENCIÁLÁS, GRADIENS VEKTOR, HESSE MÁTRIX, LÁNCSZABÁLY, DIFFERENCIÁLÁS, GRADIENS VEKTOR, HESSE MÁTRIX, LÁNCSZABÁLY, IMPLICIT FÜGGVÉNY TÉTEL DR NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-B-0//KONV-00-000

Részletesebben

Hatványsorok, elemi függvények

Hatványsorok, elemi függvények Hatványsorok, elemi függvények EL 1 Hatványsorok, elemi függvények Hatványsorok, elemi függvények EL Definíció: függvénysorozat Legyen A R, H { f f:a R }. (A H halmaz elemei az A halmazon értelmezett függvények)

Részletesebben

4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval

4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval 4. fejezet Egyváltozós valós függvények deriválása Elm 4.. Differenciálás a definícióval A derivált definíciójával atározza meg az alábbi deriváltakat!. Feladat: f) = 6 + f 4) =? f 4) f4 + ) f4) 5 + 6

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

I. Gondolkodási műveletek

I. Gondolkodási műveletek I. Gondolkodási műveletek 1. Halmazok 1.1. A halmaz mint alapfogalom A halmaz és annak eleme a matematikában alapfogalmak, azaz nem definiáljuk őket. Akkor mondhatjuk, hogy adott tulajdonságú dolgok együttese,

Részletesebben

Matematikai analízis II.

Matematikai analízis II. Matematikai analízis II. Feladatgyűjtemény GEMAN6-B Gazdaságinformatikus, Programtervező informatikus és Mérnökinformatikus hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . feladatlap Implicit függvények

Részletesebben

KALKULUS INFORMATIKUSOKNAK II.

KALKULUS INFORMATIKUSOKNAK II. Írta: GYŐRI ISTVÁN PITUK MIHÁLY KALKULUS INFORMATIKUSOKNAK II. Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Győri István, Dr. Pituk Mihály, Pannon Egyetem Műszaki Informatikai Kar Matematika Tanszék

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Ipari matematika 2. gyakorlófeladatok

Ipari matematika 2. gyakorlófeladatok Ipari matematika. gyakorlófeladatok. december 5. A feladatok megoldása általában többféle úton is kiszámítató. Interpoláció a. Polinom-interpoláció segítségével adjunk közelítést sin π értékére a sin =,

Részletesebben

MÉSZÁROS JÓZSEFNÉ, NUMERIKUS MÓDSZEREK

MÉSZÁROS JÓZSEFNÉ, NUMERIKUS MÓDSZEREK MÉSZÁROS JÓZSEFNÉ, NUmERIKUS módszerek 9 FÜGGVÉNYKÖZELÍTÉSEK IX. SPLINE INTERPOLÁCIÓ 1. SPLINE FÜGGVÉNYEK A Lagrange interpolációnál említettük, hogy az ún. globális interpoláció helyett gyakran célszerű

Részletesebben