Dierenciálhatóság. Wettl Ferenc el adása alapján és
|
|
- Brigitta Bognár
- 6 évvel ezelőtt
- Látták:
Átírás
1 és és /
2 Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási szabályok Összeg, szorzat, hányados Összetett függvény dierenciálása Implicit függvény deriváltja Inverz függvény deriváltja 3 Darboux-tétel 4 Összefoglalás és /
3 A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Pontbeli dierenciálhatóság Deníció () A valós f függvény a c D f véges határérték. pontban dierenciálható, ha létezik az m = lim x c f (x) f (c) x c Ekvivalens alak x = c + h helyettesítéssel: f (x) f (c) f (c + h) f (c) m = lim = lim x c x c h 0 h Az m számot az f c-beli dierenciálhányadosának vagy c-beli deriváltjának nevezzük és /
4 A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Az el z határérték épp az f grakonjához húzott (c, f (c))-pontbeli érint meredeksége. c x x x x és /
5 A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Az f (x) = e x függvény grakonjához c = 0-ban húzott érint meredeksége az e deníciója szerint,vagyis f itt dierenciálható és a derivált értéke. Következmény e h e 0 lim h 0 h e h = lim =. h 0 h Az e x függvény tetsz. c R-ben dierenciálható, és a derivált értéke e c. e c+h e c lim h 0 h e c (e h ) = lim = e c e h lim = e c h 0 h h 0 h és /
6 A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Állítás Ha az f függvény dierenciálható a c pontban és dierenciálhányadosa itt m, akkor érint jének egyenlete y = f (c) + m(x c). Írjuk fel az f (x) = x 2 függvény (, ) pontbeli érint jének egyenletét! Az érint meredeksége (iránytangense) a dierenciálhányados c = -ben: f (x) f () x 2 m = lim = lim x x x x = lim (x + ) = 2. x Így az érint egyenlete: y = + 2(x ), azaz y = 2x és /
7 A dierenciálhatóság fogalma Jobb és bal oldali dierenciálhatóság Jobb és bal oldali dierenciálhatóság Értelemszer en módosítva a deníciót: Deníció A valós f függvény a c D f pontban dierenciálható jobbról (balról), ha létezik az véges határérték. f (x) f (c) f (c + h) f (c) m = lim = lim x c + x c h 0 + x c f (x) f (c) f (c + h) f (c) (m = lim = lim ) x c x c h 0 x c Az m számot az f c-beli jobb (bal) oldali dierenciálhányadosának vagy c-beli jobb (bal) oldali deriváltjának nevezzük és /
8 A dierenciálhatóság fogalma Jobb és bal oldali dierenciálhatóság f (x) = x h 0 h lim = lim = = jobb oldali derivált h 0 + h h 0 + h h 0 h lim = lim = = bal oldali derivált h 0 h h 0 h Mivel a két egyoldali derivált a 0-ban különböz, f nem deriválható a 0-ban. f (x) = x lim h 0 + h 0 h = lim =, h 0 + h nincs véges határérték, a függvény nem dierenciálható jobbról a 0-ban és /
9 A dierenciálhatóság fogalma Folytonosság és dierenciálhatóság Folytonosság és dierenciálhatóság Tétel (Dierenciálható függvény folytonos) Ha f dierenciálható c-ben, akkor ott folytonos is. Bizonyítás f (x) f (c) lim f (x) f (c) = lim (x c) = m 0 = 0, x c x c x c ha m az f dierenciálhányadosa c-ben.így Megjegyzés lim f (x) = f (c). x c Az állítás visszafelé nem igaz, pl. f (x) = x a c = 0 pontban és /
10 A dierenciálhatóság fogalma Deriváltfüggvény Deriváltfüggvény Deníció Az f deriváltfüggvénye az f f (x + h) f (x) : x lim h 0 h függvény,mely f dierenciálhatósági helyein van értelmezve. A deriváltfüggvényre egy másik szokásos jelölés: Deníció (Magasabbrend deriváltak) f = (f ), f = (f ),f (n) = (f (n ) ) df dx és /
11 A dierenciálhatóság fogalma Deriváltfüggvény (e x ) = e x (a) = 0 (konstansfüggvény deriváltja 0) (x n ) = nx n, ha n pozitív egész szám, ugyanis c R esetén: x n c n lim x c x c n (x c)(x + x n 2 c xc n 2 + c n ) = lim = x c x c = lim x c (x n + x n 2 c xc n 2 + c n ) = nc n és /
12 A dierenciálhatóság fogalma Deriváltfüggvény sin x = cos x, ugyanis c R esetén sin(c + h) sin(c) sin c cos h + cos c sin h sin(c) lim = lim = h 0 h h 0 h cos c sin h sin c( cos h) = lim = h 0 h = lim (cos c) sin h cos h (sin c) = (cos c) (sin c) 0 = cos c, h 0 h h ugyanis cos h ( cos h)( + cos h) cos 2 h lim = lim = lim h 0 h h 0 h( + cos h) h 0 h( + cos h) = lim h 0 sin 2 h h( + cos h) = lim sin h (sin h) h 0 h + cos = 0 2 = 0 h és /
13 Összeg, szorzat, hányados Dierenciálási szabályok Tétel Legyenek f és g c-ben dierenciálható függvények, a R konstans. (af ) (c) = af (c) 2 (f + g) (c) = f (c) + g (c) 3 (fg) (c) = f (c)g(c) + f (c)g (c) ( ) f 4 (c) = f (c)g(c) f (c)g ( ) (c), speciálisan (c) = g (c) g g 2 (c) g g 2 (c), ha g(c) 0 Bizonyítás (2) (f + g) (f (x) + g(x)) (f (c) + g(c)) (c) = lim x c x c ( ) f (x) f (c) g(x) g(c) lim x c x c + x c = = f (c) + g (c) és /
14 Összeg, szorzat, hányados Bizonyítás (3) (fg) (c) = lim x c f (x)g(x) f (c)g(c) x c f (x)g(x) f (c)g(x) + f (c)g(x) f (c)g(c) = lim x c x c ( ) f (x) f (c) g(x) g(c) = lim g(x) + f (c) x c x c x c = f (c)g(c) + f (c)g (c) (x n ) = nx n, ha n negatív egész szám, ugyanis legyen n = m N ( ) (x n ) = = (x m ) x m (x m ) = mx m = 2 x 2m mx m = nx n és /
15 Összetett függvény dierenciálása Tétel (Láncszabály) Ha g dierenciálható c-ben, és f dierenciálható g(c)-ben, akkor f g dierenciálható c-ben, és (f g) (c) = f (g(c))g (c) Bizonyítás (f g) f (g(x)) f (g(c)) (c) = lim = x c x c f (g(x)) f (g(c)) g(x) g(c) = lim = x c g(x) g(c) x c f (g(x)) f (g(c)) g(x) g(c) = lim lim = x c g(x) g(c) x c x c f (y) f (g(c)) g(x) g(c) = lim lim y g(c) y g(c) x c x c = f (g(c))g (c) és /
16 Összetett függvény dierenciálása A f kérdés mindig: melyik a küls függvény? (sin 2 x) =? Küls függvény: f (x) = x 2 f (x) = 2x Bels függvény g(x) = sin x g (x) = cos x (sin 2 x) = 2(sin x) cos x (sin x 2 ) =? Küls függvény f (x) = sin x f (x) = cos x Bels függvény: g(x) = x 2 g (x) = 2x (sin x 2 ) = cos x 2 2x és /
17 Összetett függvény dierenciálása (sin 2 x 3 ) =? Küls függvény f (x) = x 2 f (x) = 2x Bels függvény: g(x) = sin x 3 (sin 2 x 3 ) = 2 sin x 3 (sin x 3 ) (sin x 3 ) =? Küls függvény f (x) = sin x f (x) = cos x Bels függvény: g(x) = x 3 g (x) = 3x 2 Tehát: (sin x 3 ) = cos x 3 3x 2 (sin 2 x 3 ) = 2 sin x 3 cos x 3 3x és /
18 Összetett függvény dierenciálása cos x = sin x, hiszen cos x = ( sin ( π 2 x )) = = cos( π x) ( π x) = cos( π x) = sin x tg x = ( ) sin x cos, hiszen = sin x cos x sin x cos x = 2 x cos x cos 2 x cos x cos x + sin x sin x = = cos 2 x cos 2 x ctg x = ( cos x ) sin, hiszen cos x sin x cos x sin x = = 2 x sin x sin 2 x sin x sin x cos x cos x = = sin 2 x sin 2 x és /
19 Összetett függvény dierenciálása (a x ) = a x ln a, ahol a > 0,hiszen (a x ) = (e x ln a ) = e x ln a (x ln a) = e x ln a ln a = a x ln a ( (sh x) ex e x ) ( ex e x ( ) ) = = = ex + e x ( (ch x) ex + e x ) e x e x = = = sh x 2 2 ( sh (th x) x ) ( ch 2 x sh ) 2 x = = = ch x ch 2 x ch 2 x ( ch (cth x) x ) ( sh 2 x ch ) 2 x = = = sh x sh 2 x sh 2 x = ch x és /
20 Implicit függvény deriváltja Deníció (Implicit függvény) F (x, y) = 0, melyr l föltesszük, hogy F (x 0, y 0 ) = 0, és az (x 0, y 0 ) pont egy kis környezetében y kifejezhet x függvényeként, azaz van olyan f függvény és ε > 0, hogy x (x 0 ε, x 0 + ε) esetén F (x, y) = 0 y = f (x). Tekintsük a h(x) = F (x, f (x)) függvényt. x (x 0 ε, x 0 + ε) esetén h(x) = F (x, f (x)) = 0 = vagyis x 0 -ban a deriváltja is 0 lesz. = Ebb l az összefüggésb l pedig ki lehet fejezni f (x 0 )-t. f (x)-re szokás ilyenkor az y(x) jelölést is használni és /
21 Implicit függvény deriváltja Mennyi az y 2 = x 3 x görbe érint jének meredeksége a (2, 6) pontban? F (x, y) = y 2 x 3 + x y = y(x) és tekintsük a deriváltat x 0 = 2-ben: 0 = d dx F (x, y(x)) x=2= d dx y(x)2 x 3 + x x=2 = 2y(x)y (x) 3x 2 + x=2 0 = 2y(2)y (2) y (2) = y(2) = 2 6 Megjegyzés Mivel a dierenciálás lineáris m velet, ezért az egyenletet nem szükséges a deriválás el tt átrendezni és /
22 Inverz függvény deriváltja Tétel (Inverz függvény deriváltja) Ha f dierenciálható az I intervallumon, és a derivált sehol sem 0, akkor az f függvény g inverze is dierenciálható, és Bizonyítás (vázlat) x = f (g(x)), ennek implicit deriváltja g = f g. = f (g(x)) g (x) = g (x) = f (g(x)) Megjegyzés Ha a I, és b = f (a), akkor g (b) = f (g(b)) = f (a) és /
23 Inverz függvény deriváltja (ln x) = x, x > 0 g(x) = ln x az f (x) = e x függvény inverze, és f (x) = e x, így (ln x) = g (x) = f (g(x)) = e ln x = x ( ln (log a x) x ) = = ln a x ln a Ha a R, akkor az x a függvény értelmezési tartományának minden pontjában (x a ) = ax a, hiszen (x a ) = (e a ln x ) = e a ln x (a ln x) = x a a x = ax a és /
24 Inverz függvény deriváltja (arcsin x) =, x (, ) x 2 g(x) = arcsin x az f (x) = sin x [ π 2, π 2 ] függvény inverze, és f (x) = cos x, így (arcsin x) = g (x) = = sin 2 (arcsin x) f (g(x)) = cos(arcsin x) =, mert cos(arcsin x) > 0 a ( π x 2 2, π 2 )-n és /
25 Inverz függvény deriváltja (arccos x) =, x (, ), ugyanis arccos x = π arcsin x x 2 2 (arctg x) = + x 2, x R g(x) = arctg x az f (x) = tg x ( π 2, π 2 ) függvény inverze, és f (x) = (tg x) = cos = cos2 x + sin 2 x 2 x cos 2 x (arctg x) = g (x) = + tg 2 (arctg x) = + x 2 f (g(x)) = cos 2 (arctg x) = + tg 2 x, így (arcctg x) = + x 2, x R, ugyanis arcctg x = π 2 arctg x = és /
26 Inverz függvény deriváltja Hasonlóan kiszámítható az area függvények deriváltja: (arsh x) =, x R + x 2 (arch x) =, x (, + ) x 2 (arth x) =, x (, ) 2 x (arcth x) =, x (, ) (, + ) 2 x és /
27 Inverz függvény deriváltja y y arth x arcth x x 2 x x és /
28 Inverz függvény deriváltja Elemi függvények deriváltja - összesítés f (x) f (x) a a R 0 x a a R ax a sin x cos x cos x sin x tg x x π + kπ, k Z 2 cos 2 x ctg x x kπ, k Z e x sin 2 x e x a x a > 0 a x ln a sh x ch x th x cth x x 0 ch x sh x 2 ch x sh 2 x és /
29 Inverz függvény deriváltja Elemi függvények inverzeinek deriváltja - összesítés f (x) f (x) ln x x > 0 x log a x x > 0 arcsin x x (, ) arccos x x (, ) arctg x x ln a x 2 x 2 + x 2 arcctg x arsh x arch x x (, ) arth x x (, ) arcth x x (, ) (, ) + x 2 x 2 + x 2 x 2 x és /
30 Darboux-tétel Deníció f dierenciálható (deriválható) egy (a, b) nyílt intervallumon, ha annak minden pontjában dierenciálható. f dierenciálható az [a, b] zárt intervallumon, ha (a, b)-n dierenciálható, továbbá a-ban jobbról, b-ben balról dierenciálható. Tétel (Darboux-tétel) Ha a és b olyan intervallum pontjai, melyen f dierenciálható, akkor f az f (a) és f (b) között minden értéket fölvesz, azaz f Darboux-tulajdonságú. Megjegyzés A BolzanoDarboux-tételben bizonyítottuk, hogy a folytonos függvények Darboux-tulajdonságúak. Bár az el bbi tétel szerint intervallumon dierenciálható függvények deriváltfüggvénye is Darboux-tulajdonságú, a következ példa mutatja, hogy f nem feltétlenül folytonos és /
31 Darboux-tétel f (x) = { x 2 sin( x ) ha x 0 0 ha x = 0 x 0 : f (x) = (x 2 sin(x )) = = 2x sin(x ) + x 2 cos(x )( )x 2 = = 2x sin( ) cos( ) x x x = 0 : f h 2 sin( (0) = lim ) 0 h h 0 h 0 = lim h 0 h sin( ) = 0 h = y x 2 x 2 sin( ) x x x 2 = f nem folytonos a 0-ban, mert nem létezik ott határértéke és /
32 Összefoglalás Összefoglalás fogalma, deriváltfüggvény és folytonosság kapcsolata Dierenciálási szabályok (összeg, különbség, szorzat, hányados, összetett függvény, inverz függvény) Elemi függvények deriváltjai Darboux-tétel és /
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl
Határozatlan integrál
Határozatlan integrál 205..04. Határozatlan integrál 205..04. / 2 Tartalom Primitív függvény 2 Határozatlan integrál 3 Alapintegrálok 4 Integrálási szabályok 5 Helyettesítéses integrálás 6 Parciális integrálás
2014. november Dr. Vincze Szilvia
24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata
Dierenciálhányados, derivált
9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez
6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények
6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai
Inverz függvények Inverz függvények / 26
Inverz függvének 2015.10.14. Inverz függvének 2015.10.14. 1 / 26 Tartalom 1 Az inverz függvén fogalma 2 Szig. monoton függvének inverze 3 Az inverz függvén tulajdonságai 4 Elemi függvének inverzei 5 Összefoglalás
Vizsgatematika. = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika 1 / 42
Vizsgatematika = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika / 42 Bevezetés(logikai formulák és halmazok): logikai m veletek és m velettábláik,
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Elemi függvények H607, EIC 2019-03-13 Wettl Ferenc
= x2. 3x + 4 ln x + C. 2. dx = x x2 + 25x. dx = x ln 1 + x. 3 a2 x +a 3 arctg x. 3)101 + C (2 + 3x 2 ) + C. 2. 8x C.
. Határozatlan integrál megoldások.. 5. 7 5 5. t + t 5t. 8 = 7 8 = 8 5 8 5 6. e + 5 ln + tg + 7. = 8. + 5 = 5 ln + 5 9. = + 5 + 5 5 + 5 + 5 = /5 = 5 6 6/5 + 5 5 = + ln = 5 + 5 = + ln + 0.. a +a arctg a.
Egyváltozós függvények 1.
Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata
Függvény differenciálás összefoglalás
Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a
1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?
. Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,
Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás. Csomós Petra
Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 3. előadás Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus függvény
Elemi függvények. Matematika 1. előadás. ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár október 4.
Elemi függvények Matematika 1. előadás ELTE TTK Földtudomány BSc, Környezettan BSc, Környezettan tanár 2017. október 4. Csomós Petra Elemi függvények 1. Hatványfüggvények 2. Exponenciális és logaritmus
Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1
Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya
6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC
6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen
x a x, ha a > 1 x a x, ha 0 < a < 1
EL 18 Valós exponenciális függvények Definíció: Ha a R, a>0, akkor legyen a x = e x lna, x R A valós változós exponenciális függvények grafikonja: x a x, ha a > 1 x a x, ha 0 < a < 1 A szinusz függvény
I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i
I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag
VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2
1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények
1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási
Régebbi Matek B1 és A1 zh-k. deriválás alapjaival kapcsolatos feladatai. n )
Régebbi Matek B1 és A1 zh-k Sorozatok és függvények határértékével, folytonossággal és a deriválás alapjaival kapcsolatos feladatai. 1. Számítsuk ki: (a) n ( 2n 1) n+3 1 + arccos( 2n + 1 n ) (b) n ( n
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl
0, különben. 9. Függvények
9. Függvények 9.. Ábrázolja a megadott függvényeket, és vizsgálja meg a függvények korlátosságát, monotonitását, konveitását, paritását, előjelét, zérushelyeit, periodicitását és határozza meg a valós
4.1. A differenciálszámítás alapfogalmai
69 4. Egyváltozós valós függvények differenciálszámítása 4.. A differenciálszámítás alapfogalmai 4... A görbe érintője és a pillanatnyi sebesség Tekintsük az f : R + R + f) 4 függvényt. Húzzuk meg az y
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka
Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza
Határozatlan integrál
Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
Példatár Lineáris algebra és többváltozós függvények
Példatár Lineáris algebra és többváltozós függvények Simonné Szabó Klára. február 4. Tartalomjegyzék. Integrálszámítás.. Racionális törtek integrálása...................... Alapfeladatok..........................
1. Fuggveny ertekek. a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I. x = arcsin(x) ha 1 x 0 x = 1, arctg(x) ha 0 < x < + a) f (x) = 4 x 2 x+log
1. Fuggveny ertekek 1 Szamtsuk ki az alabbi fuggvenyek erteket a megadott helyeken! a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I b) f (x) = sin x 1 x = π 2, π 4, 3 3 2π, 10π I arcsin(x) ha 1 x 0 1 c) f
Matematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,
MATEMATIKA 2. dolgozat megoldása (A csoport)
MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f
f(x) a (x x 0 )-t használjuk.
5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN Készült a TÁMOP-4.1.-08//a/KMR-009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék
Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt
27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,
Függvény deriváltja FÜGGVÉNY DERIVÁLTJA - DIFFERENCIÁLHÁNYADOS. lim határértékkel egyenlő, amennyiben az létezik ( lásd Fig. 16).
FÜGGVÉNY DERIVÁLTJA - DIFFERENCIÁLHÁNYADOS Definíció Definíció Az f ( ) függvény pontban értelmezett deriváltja a f ( + ) f ( ) lim határértékkel egyenlő amennyiben az létezik ( lásd Fig 6) df A deriváltat
Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november
Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................
lim 2 2 lim 2 lim 1 lim 3 4 lim 4 FOLYTONOSSÁG 1 x helyen? ( 2 a matek világos oldala Mosóczi András 4.1.? 4.5.? 4.2.? 4.6.? 4.3.? 4 4.7. 4.4.? 4.8.?
FÜGGVÉNYEK HTÁÉTÉKE Mosóczi ndrás..?..?..?..?..?..?..?.8.? FOLYTONOSSÁG DEFINÍCIÓ. z üggvény olytonos az a helyen értelmezve van az a helyen létezik és véges a tárértéke az a helyen és a a DEFINÍCIÓ. z
I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL
A primitív függvény és a határozatlan integrál 5 I A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL Gyaorlato és feladato ( oldal) I Vizsgáld meg, hogy a övetező függvényene milyen halmazon van primitív
10. tétel Függvények lokális és globális tulajdonságai. A differenciálszámítás alkalmazása
. tétel Függvények lokális és globális tulajdonságai. A dierenciálszámítás alkalmazása FÜGGVÉNY De: A üggvény egyértelmű hozzárendelés két halmaz elemei között. A halmaz minden eleméhez B halmaz legeljebb
II. rész. Valós függvények
II. rész Valós függvények Feladatok 3 4 3.. Értelmezési tartomány Határozza meg a következ függvények értelmezési tartományát! 3.. y = + + 3.. 3.4. 3.6. y = y = 3 y = + 3 ln 5 4 3.3. 3.5. 3.7. y = 3 +
A derivált alkalmazásai
A derivált alkalmazásai Összeállította: Wettl Ferenc 2014. november 17. Wettl Ferenc A derivált alkalmazásai 2014. november 17. 1 / 57 Tartalom 1 Függvény széls értékei Abszolút széls értékek Lokális széls
[f(x) = x] (d) B f(x) = x 2 ; g(x) =?; g(f(x)) = x 1 + x 4 [
Bodó Beáta 1 FÜGGVÉNYEK 1. Határozza meg a következő összetett függvényeket! g f = g(f(x)); f g = f(g(x)) (a) B f(x) = cos x + x 2 ; g(x) = x; f(g(x)) =?; g(f(x)) =? f(g(x)) = cos( x) + ( x) 2 = cos( x)
Komplex számok. A komplex számok algebrai alakja
Komple számok A komple számok algebrai alakja 1. Ábrázolja a következő komple számokat a Gauss-féle számsíkon! Adja meg a számok valós részét, képzetes részét és számítsa ki az abszolút értéküket! a) 3+5j
n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,
205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:
4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval
4. fejezet Egyváltozós valós függvények deriválása Elm 4.. Differenciálás a definícióval A derivált definíciójával atározza meg az alábbi deriváltakat!. Feladat: f) = 6 + f 4) =? f 4) f4 + ) f4) 5 + 6
Matematika A1. 8. feladatsor. Dierenciálás 2. Trigonometrikus függvények deriváltja. A láncszabály. 1. Határozzuk meg a dy/dx függvényt.
Matematika A 8. feladatsor Dierenciálás Trigonometrikus függvények deriváltja. Határozzuk meg a dy/d függvényt. a) y = 0 + 3 cos 0 3 sin b) y = sin 4 + 7 cos sin c) y = ctg +ctg sin )+ctg ) d) y = tg cos
Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
Függvényhatárérték és folytonosság
8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak
A dierenciálszámítás alapjai és az érint
A dierenciálszámítás alapjai és az érint 205. november 7.. Alapfeladatok. Feladat: Határozzuk meg az fx) x 2 3 x függvény deriváltját! Megoldás: Deriválás el tt célszer átalakítani a függvényt. A gyök
First Prev Next Last Go Back Full Screen Close Quit. (Derivált)
Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.
Határozott integrál és alkalmazásai
Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,
2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
1. Bevezetés Differenciálegyenletek és azok megoldásai
. Bevezetés.. Differenciálegyenletek és azok megoldásai Differenciálegyenlet alatt olyan függvény egyenleteket értünk, melyekben független változók, függvények és azok deriváltjai szerepelnek. Legegyszerűbb
Kalkulus I. gyakorlat, megoldásvázlatok
Kalkulus I. gyakorlat, megoldásvázlatok Fizika BSc I/.. Ábrázoljuk a következ halmazokat a síkon! a {, y R : + y < }, b {, y R : + y < }, c {, y R : + y
Kalkulus I. gyakorlat Fizika BSc I/1.
. Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat
Határozatlan integral, primitívkeresés (Antiderivált). HATÁROZATLAN INTEGRÁL, PRIMITÍVKERESÉS (PRIMITÍV FÜGGVÉNY, ANTIDERIVÁLT FOGALMA)
Határozatlan integral primitívkeresés (Antiderivált). HATÁROZATLAN INTEGRÁL PRIMITÍVKERESÉS (PRIMITÍV FÜGGVÉNY ANTIDERIVÁLT FOGALMA). Definíció A differenciálszámítás egyik legfontosabb feladata az hogy
A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)
Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő
Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)
Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja
Analízis házi feladatok
Analízis házi feladatok Készült a PTE TTK GI szakos hallgatóinak Király Balázs 200-. I. Félév 2 . fejezet Első hét.. Házi Feladatok.. Házi Feladat. Írjuk fel a következő sorozatok 0.,., 2., 5., 0. elemét,
Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:
Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független
1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor
. Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis
Matematika I. NÉV:... FELADATOK:
24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n
Határozatlan integrál
Határozatlan integrál 05. április.. Alapfeladatok. Feladat: Határozzuk meg az alábbi határozatlan integrált! + sin ch Megoldás: Az integrálandó függvényen belül összeadás illetve kivonás m velete szerepel,
Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda
Trigonometrikus egyenletek megoldása Azonosságok és 1 mintapélda Frissítve: 01. novermber 19. :07:41 1. Azonosságok 1.1. Azonosság. A sin és cos szögfüggvények derékszög háromszögben vett, majd kiterjesztett
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten ANALÍZIS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Nevezetes halmazok
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
Függvények vizsgálata
Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =
Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz
Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},
5. fejezet. Differenciálegyenletek
5. fejezet Differenciálegyenletek 5.. Differenciálegyenletek 5... Szeparábilis differenciálegyenletek 5.. Oldjuk meg az alábbi differenciálegyenleteket, és ábrázoljunk néhány megoldást. a) y = x. b) y
Gyakorló feladatok I.
Gyakorló feladatok I. (Függvények határértéke és folytonossága) Analízis 2. (A,B, C szakirány, keresztfélév) Programtervező informatikus szak 2013-2014. tanév tavaszi félév Összeállította: Szili László
Függvények határértéke és folytonosság
Függvények határértéke és folytonosság ) Bizonyítsa be a határérték definíciója alapján, hogy teljesül! + 5 + = Megoldás Heine definíciója alapján): Igazolandó, hogy a függvény értelmezve van a egy környezetében,
Analízis példatár. Országh Tamás. v0.2. A példatár folyamatosan bővül, keresd a frissebb verziót a http://matstat.fw.hu honlapon a
Analízis példatár v0.2 A példatár folyamatosan bővül, keresd a frissebb verziót a http://matstat.fw.hu honlapon a letölthető példatárak közt. Országh Tamás Budapest, 2005-2010 1 Mottó: Ki kéne vágni minden
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
Fourier sorok február 19.
Fourier sorok. 1. rész. 2018. február 19. Függvénysor, ismétlés Taylor sor: Speciális függvénysor, melynek tagjai: cf n (x) = cx n, n = 0, 1, 2,... Állítás. Bizonyos feltételekkel minden f előállítható
Hatványsorok, elemi függvények
Hatványsorok, elemi függvények EL 1 Hatványsorok, elemi függvények Hatványsorok, elemi függvények EL Definíció: függvénysorozat Legyen A R, H { f f:a R }. (A H halmaz elemei az A halmazon értelmezett függvények)
Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait!
Elméleti kérdések: Második zárthelyi dolgozat biomatematikából * (Minta, megoldásokkal) E. Mit értünk hatványfüggvényen? Adjon példát nem invertálható hatványfüggvényre. Adjon példát mindenütt konkáv hatványfüggvényre.
Boros Zoltán február
Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n
HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai
HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;
1. Parciális függvény, parciális derivált (ismétlés)
Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt
Analízis. Ha f(x) monoton nő [a;b]-n, és difható egy (a;b)-beli c helyen, akkor f'(c) 0
Analízis A differenciálszámítás középértéktételei: 1) Rolle-tétel: Ha f folytonos a korlátos és zárt [a;b] intervallumon, f diffható [a;b]-n és f(a) = f(b), akkor van egy a < c < b belső pont, ahol f'(c)
ANALÍZIS TANÁROKNAK I.
Eötvös Loránd Tudományegyetem Informatikai Kar CSÖRGŐ ISTVÁN ANALÍZIS TANÁROKNAK I. az Informatika Minor Szak hallgatói számára nappali és levelező tagozat Budapest, 2008. november A jegyzet az ELTE IK
Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,
25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit
valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.
2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Differenciálegyenletek
DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)
Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.
Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2
Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...
= x + 1. (x 3)(x + 3) D f = R, lim. x 2. = lim. x 4
Bodó Beáta Differenciálszámítás. B Írja fel az f() = függvény az a = és az helyekhez tartozó különbségi hányadosát. f() f(a) a = = (+)( ) = +. B Számolja ki az f() = függvény a = 3 helyhez tartozó differenciálhányadosát!
Kétváltozós függvények differenciálszámítása
Kétváltozós függvények differenciálszámítása 13. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kétváltozós függvények p. 1/1 Definíció, szemléltetés Definíció. Az f : R R R függvényt
1. Bevezetés. 2. Felületek megadása térben. A fenti kúp egy z tengellyel rendelkező. ismerhető fel, hogy. 1. definíció. Legyen D R n.
1. Többváltozós függvények 1. Bevezetés Ennek a fejezetnek a célja a kétváltozós függvények vizsgálata, ami során a 3-dimenziós felületeket szeretnénénk megérteni. 1. definíció. Legyen D R n. Ekkor az
A gyakorlatok anyaga
A 7-11. gyakorlatok anyaga a Matematika A1a-Analízis nevű tárgyhoz B és D kurzusok Számhalmazok jelölésére a következő szimbólumokat használjuk: N := {1,,...}, Z, Q, Q, R. Az intervallumokat pedig így
10. Differenciálszámítás
0. Differenciálszámítás 0. Vázolja a következő függvények, és határozza meg az értelmezési tartomány azon pontjait, ahol nem differenciálhatóak: a, f() = - b, f()= sin c, f() = sin d, f () = + e, f() =
Beregszászi István Programozási példatár
Beregszászi István Programozási példatár 2 1. fejezet 1. laboratóriumi munka 1.1. Matematikai kifejezések Írja fel algoritmikus nyelven a megadott kifejezést megfelelő típusú változók segítségével! Figyeljen
Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány
Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........