f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva"

Átírás

1 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási pontja). Azt mondjuk, hogy f-nek van (véges) határértéke az x 0 pontban, ha van olyan a R szám, hogy minden ɛ > 0-hoz van olyan δ(ɛ) > 0, hogy f(x) a < ɛ ha 0 < x x 0 < δ(ɛ) és x D Az a R számot az f függvény x 0 pontbeli határértékének nevezzük, és jelölésére az a = f(x) vagy f(x) a (x x 0 )-t használjuk. Állítás. A határérték, ha létezik, akkor egyértelmű. Bizonyítás. Tegyük fel, hogy f-nek létezik véges határértéke x 0 -ban, de nem egyértelmű. Akkor van két olyan szám a, a R, a a hogy minden ɛ > 0-hoz vannak olyan δ(ɛ), δ (ɛ) > 0 számok, melyekre f(x) a < ɛ ha 0 < x x 0 < δ(ɛ) és x D f(x) a < ɛ ha 0 < x x 0 < δ (ɛ) és x D. Ebből 0 a a = a f(x) + f(x) a < 2ɛ ha 0 < x x 0 < min{δ(ɛ), δ (ɛ)} és x D. Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva állításunkat. Megjegyzés. Határérték létezhet az x 0 pontban akkor is, ha a függvény nincs értelmezve a pontban de torlódási pontja annak (egy halmaz torlódási pontja ui. nem feltétlenül pontja a halmaznak). Éppen emiatt lényeges a definícióban a 0 < x x 0 feltétel, ez biztosítja azt, hogy x x 0. Átviteli elv. Legyen f : D R R és x 0 D. f(x) = a akkor és csakis akkor, ha x x0 bármely (x n ) : N D, x 0 x n x 0 (n ) sorozat esetén f(x n ) a (n ). Másképpen megfogalmazva: az f függvény értelmezési tartományának egy x 0 torlódási pontjában akkor és csakis akkor lesz f határértéke az a szám, ha az értelmezési tartományból bármely x 0 - hoz konvergáló x n sorozatot véve, melynek elemei x 0 -tól különbözőek, a függvényértékek f(x n ) sorozata a hoz konvergál. Bizonyítás. Ha a definíció teljesül és x 0 x n x 0 (n ), akkor δ(ɛ) > 0-hoz van olyan N (δ(ɛ)) > 0, hogy x n x 0 < δ(ɛ) ha n > N (δ(ɛ)), 1

2 2 így f(x n ) a < ɛ ha n > N (δ(ɛ)), ami azt jelenti, hogy f(x n ) a (n. Indirekt bizonyítást használunk. Tegyük fel, hogy bármely (x n ) : N D, x 0 x n x 0 (n ) sorozat esetén f(x n ) a (n ), de a definíció nem A definíció (ɛ > 0) (δ(ɛ) > 0) (x D) [(0 < x x 0 < δ(ɛ)) ( f(x) a < ɛ)] tagadása azt jelenti, hogy (ɛ > 0) (δ(ɛ ) > 0) (x D) [(0 < x x 0 < δ(ɛ )) ( f(x) a ɛ )]. Innen δ(ɛ ) = 1 -t véve n (x n D) [( 0 < x n x 0 < 1 ) ] ( f(x n ) a ɛ ) n de akkor x 0 x n x 0 (n ) és f(x n ) a (n ), ami ellentmondás. Megjegyezzük, hogy a P Q implikáció ekvivalens ( P ) Q-val, így tagadása (P Q) = (( P ) Q) = P ( Q) lesz (itt a tagadás műveletének logikai jele). Példák. ld. előadás. Átfogalmazás. f(x) a < ɛ f(x) G(a, ɛ) 0 < x x 0 < δ(ɛ) x D x G(x 0, δ) (D \ {x 0 }) ahol G(a, ɛ) az a pont ɛ sugarú környezetét jelöli. Ennek segítségével a definíció átfogalmazható: f(x) = a, ha a bármely G(a, ɛ) környezetéhez van x 0 -nak olyan G(x 0, δ) környezete, hogy ha x G(x 0, δ) (D \ {x 0 }), akkor f(x) G(a, ɛ). Ez az átfogalmazás lehetőséget ad a határérték definíciójának kiterjesztésére. Azt mondjuk, hogy ( ) torlódási pontja D R-nek, ha ( ) bármely környezetében van D-beli pont (ami nyilvánvalóan mindig különböző ( )-től). 1. A definíció kiterjeszthető arra az esetre, amikor x 0, a R b. Például, az x 0 =, a = esetben a határérték definíciója: legyen x 0 = torlódási pontja D-nek, akkor f(x) = x azt jelenti, hogy hogy bármely környezetéhez van -nek olyan környezete, hogy ha x-et ezen utóbbi környezet és D közös részéből vesszük, akkor f(x) benne lesz előbbi környezetében. Vagy, ami ugyanaz, bármely K < 0 számhoz van olyan δ(k) > 0 szám, hogy f(x) < K ha x > δ(k), és x D. 2. Jobb- és baloldali határérték (csak x 0 R-ben).

3 Tegyük fel, x 0 a D [x 0, [ (illetve a D ], x 0 ]) halmaz torlódási pontja. Ha a D [x 0, [ (illetve D ], x 0 ]) halmazra leszűkitett függvény határértéke az x 0 pontban az a szám, akkor azt mondjuk, hogy f jobboldali (ill. baloldali) határértéke a, és ezt f(x) = a (ill. f(x) = +0 0 a)-val jelöljük. Másképpen fogalmazva, legyen x 0 a D [x 0, [ halmaz torlódási pontja. Akkor mondjuk, hogy az f : D R R függvénynek az a szám a jobboldali határértéke az x 0 pontban, ha minden ɛ > 0-hoz van olyan δ(ɛ) > 0, hogy f(x) a < ɛ ha 0 < x x 0 < δ(ɛ) és x D Legyen most x 0 a D ], x 0 ] halmaz torlódási pontja. Akkor mondjuk, hogy az f : D R R függvénynek az a szám a baloldali határértéke az x 0 pontban, ha minden ɛ > 0-hoz van olyan δ(ɛ) > 0, hogy f(x) a < ɛ ha δ(ɛ) < x x 0 < 0 és x D Definíció. Legyenek f, g : D R R, akkor e függvények (pontonkénti) összegét, f c R- szeresét, szorzatukat, hányadosukat az (f + g)(x) : = f(x) + g(x) (x D) (cf)(x) : = cf(x) (x D) (fg)(x) : = f(x)g(x) (x D) (f/g)(x) : = f(x)/g(x) (x D, g(x) 0) képletekkel értelmezzük. 1. TÉTEL[határérték, monotonitás és műveletek] Legyenek f, g : D R R, x 0 D, és tegyük fel, hogy Akkor bármely c R mellett f(x) = a, x x0 g(x) = b. (f + g)(x) = a + b, (cf)(x) = ca, (fg)(x) = ab, (f/g)(x) = a/b, ha b 0. Ha f(x) g(x) (x D), akkor a b. Ha f(x) h(x) g(x) (x D), és a = b, akkor h(x) = a. x x0 Bizonyítás. Az átviteli elv alapján sorozatok határértékének tulajdonságaiból következik. A tétel akkor is igaz, ha a, b R b, x 0 R b, de ekkor meg kell követelnünk, hogy a jobboldali kifejezések (a + b, ca, ab, a/b) értelmezve legyenek. Definíció. A h(x) := g (f(x)) (x D) függvényt, ahol f : D R R, g : f(d) R, az f és g függvényekből összetett függvénynek nevezzük, f a belső, g a külső függvény. h jelölésére használjuk h = f g-t is (itt f(d) = { f(x) :], ], x D } az f függvény értékkészlete). 3

4 4 2. TÉTEL[összetett függvény határértéke] Legyen f : D R R, g : f(d) R, és h(x) := g (f(x)) (x D). Ha x 0 D, f(x) = a, a / f (D \ {x 0 }), és g(x) = b y a akkor h(x) = b. Bizonyítás. Legyen x 0 x n x 0 (n ) akkor y n := f(x n ) a (n ) és y n f (D \ {x 0 }) ezért y n a, így h(x n ) = g(y n ) b (n.) 6.2 Függvény folytonossága Definíció. Az f : D R R függvényt értelmezési tartományának x 0 D pontjában folytonosnak nevezzük, ha bármely ɛ > 0-hoz van olyan δ(ɛ) > 0, hogy f(x) f(x 0 ) < ɛ ha x x 0 < δ(ɛ) és x D Ha x 0 D D akkor f folytonos x 0 -ban akkor, és csakis akkor, ha x x0 f(x) = f(x 0 ). Ha x 0 D x 0 / D akkor x 0 a D izolált pontja, izolált pontokban f a definíció alapján mindig folytonos. Átviteli elv függvény folytonosságára. Az f : D R R függvény folytonos az x 0 D pontban akkor és csakis akkor, ha bármely (x n ) : N D, x n x 0 (n ) sorozat esetén f(x n ) f(x 0 ) (n ). Környezetes átfogalmazás. Az f : D R R függvény folytonos az x 0 D pontban akkor és csakis akkor, ha f(x 0 ) bármely G(f(x 0 ), ɛ) környezetéhez van x 0 -nak olyan G(x 0, δ) környezete, hogy ha x 0 G(x 0, δ), akkor f(x) G(f(x 0 ), ɛ). 2. TÉTEL[folytonosság es műveletek] Ha f, g : D R R folytonosak az x 0 D pontban, akkor f + g, cf, fg, f/g (ha g(x 0 ) 0) is folytonosak x 0 -ban. Továbbá, a h(x) = g (f(x)) (x D) összetett függvény (ahol f : D R R, g : f(d) R) folytonos x 0 -ban, ha f folytonos x 0 -ban és g folytonos az y 0 := f(x 0 ) pontban. 6.3 Folytonos függvények globális tulajdonságai Definíció. Az f : D R R függvényt alulról (felülről) korlátosnak nevezzük, ha értékkészlete alulról (felülről) korlátos.

5 Definíció. Az f : D R R függvényt monoton növekvőnek (csökkenőnek) nevezzük D n, ha bármely x 1 < x 2, x 1, x 2 D esetén f(x 1 ) f(x 2 ) ( f(x 1 ) f(x 2 )). Ha bármely x 1 < x 2, x 1, x 2 D esetén f(x 1 ) < f(x 2 ) ( f(x 1 ) > f(x 2 )) teljesül, akkor az f : D R R függvényt szigorúan monoton növekvő (csökkenő) függvénynek nevezzük. Definíció. Azt mondjuk, hogy az f : D R R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ɛ > 0 hogy f(x 0 ) f(x) (f(x 0 ) f(x)) teljesül minden x G(x 0, ɛ) D esetén. Azt mondjuk, hogy az f : D R R függvénynek szigorú lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ɛ > 0 hogy f(x 0 ) > f(x) (f(x 0 ) < f(x)) teljesül minden x G(x 0, ɛ) D, x x 0 esetén. Azt mondjuk, hogy az f : D R R függvénynek globális (abszolút) maximuma (minimuma) van az x 0 D pontban, ha f(x 0 ) f(x) (f(x 0 ) f(x)) teljesül minden x D esetén. Azt mondjuk, hogy az f : D R R függvénynek szigorú globális (abszolút) maximuma (minimuma) van az x 0 D pontban, ha 5 esetén. (x 0 ) > f(x) (f(x 0 ) < f(x)) teljesül minden x D, x x 0 Állítás. Folytonos függvény jeltartó, azaz ha f : D R R folytonos az x 0 D pontban, és f(x 0 ) 0 akkor van olyan δ > 0 hogy sg f(x) = sg f(x 0 ) ha x G(x 0, δ) D, ahol sg a szignum (előjel) függvényt jelöli, melynek definíciója 1 ha x > 0 sg x = 0 ha x = 0 1 ha x < 0 Bizonyítás. A folytonosság miatt ɛ := f(x 0 ) /2-höz van olyan δ > 0, hogy f(x) f(x 0 ) < f(x 0 ) /2 ha x x 0 < δ(ɛ) és x D. Legyen pl. f(x 0 ) > 0, akkor az előző egyenlőtlenséget részletesen kiírva kapjuk, hogy f(x 0 )/2 < f(x) f(x 0 ) < f(x 0 )/2, vagy f(x 0 )/2 < f(x) (< 3f(x 0 )/2), ha x G(x 0, δ) D, ami mutatja állításunk helyességét. Definíció. Azt mondjuk, hogy az f : D R R függvény folytonos az A D halmazon, ha f az A halmaz minden pontjában folytonos. 1. TÉTEL. Korlátos zárt intervallumon folytonos függvény korlátos. Azaz ha f : [a, b] R folytonos [a, b]-n, akkor vannak olyan k, K R amelyekre k f(x) K minden x [a, b] mellett.

6 6 Bizonyítás. Tegyük fel állításunkkal ellentétben, hogy pl. f nem korlátos felülről. Akkor minden n N-hez van olyan x n [a, b], hogy f(x n ) > n. Tekintsük az A := { x n : n N } halmazt. Ha A véges halmaz, akkor van olyan x k0 eleme A-nak, hogy x n = x k0 véges sok n index kivételével, azaz, x n = x k0 ha n > n 0. Ha A végtelen halmaz, akkor a Bolzano-Weierstrass tétel alapján A-nak van (legalább egy) x 0 torlódási pontja. x n [a, b] és [a, b] zártsága miatt x 0 [a, b]. Vegyünk az x 0 pont G(x 0, 1) környezetéből egy x 0 -tól különböző A-beli x n1 pontot. Ezután az x 0 pont G(x 0, d 1 ) környezetéből, ahol d 1 = x n1 x 0, válasszunk egy olyan x 0 -tól különböző x n2 A pontot melyre n 2 > n 1 legyen (ilyen biztosan van, mert az x 0 pont bármely környezete végtelen sok A-beli pontot tartalmaz, egyébként x 0 nem lehetne A torlódási pontja). Az x n3 pontot a G(x 0, d 2 ) környezetéből választjuk, ahol d 2 = x n2 x 0, úgy, hogy x n3 x 0, és n 3 > n 2 legyen. Hasonlóan folytatva, egy olyan x nk A (k N) sorozatot kapunk mely x 0 -hoz konvergál. (Az x nk (k N) sorozatot az x n (n N) sorozat részsorozatának nevezzük). Mivel véges A esetén x nk := x k (k N), x 0 := x k0 -t véve ugyanez a helyzet, így mondhatjuk, hogy az x n (n N) sorozatból mind véges, mind végtelen A esetén kiválasztható egy x 0 [a, b]-hez konvergáló részsorozat. Mivel feltevésünk szerint f(x nk ) > n k (k N) így k -vel f x 0 -beli folytonossága miatt kapjuk, hogy f(x 0 ), ami ellentmondás, bizonyítva állításunkat. 2. TÉTEL. Korlátos zárt intervallumon folytonos függvény felveszi a függvényértékek szuprémumát és infimumát függvényértékként. Azaz ha f : [a, b] R folytonos [a, b]-n, és m := inf{ f(x) : x [a, b] }, M := sup{ f(x) : x [a, b] } akkor vannak olyan x m, x M [a, b] amelyekre f(x m ) = m, f(x M ) = M. Azt is mondhatjuk, hogy korlátos zárt intervallumon folytonos függvénynek van maximuma és minimuma ezen az intervallumon. Bizonyítás. Azt mutatjuk meg, hogy van olyan x M [a, b] melyre f(x M ) = M, a másik állítás igazolása hasonló. Tetszőleges n N esetén M 1 n nem felső korlátja a függvényértékeknek, igy van olyan x n [a, b], hogy M 1 n < f(x n) M (n N). Az előző tétel bizonyításához hasonlóan, kiválasztható az x n (n N) sorozatból egy olyan x nk (k N) részsorozat, mely valamely x M [a, b] elemhez konvergál. De akkor M 1 n k < f(x nk ) M (k N), amiből k -vel a folytonosság miatt M f(x M ) M

7 7 adódik, azaz f(x M ) = M. Definíció. Azt mondjuk, hogy az f : D R R függvény egyenletesen folytonos a D 1 D halmazon, ha bármely ɛ > 0-hoz van olyan (csak ɛ-tól függő) δ(ɛ) > 0 amelyre f(x) f(y) < ɛ ha x y < δ(ɛ) és x, y D 1 Ha f csupán folytonos D 1 -en akkor a bármely ɛ > 0-hoz és bármely y D 1 -hez van olyan (y-tól is függő) δ(ɛ, y) > 0 amelyre f(x) f(y) < ɛ ha x y < δ(ɛ, y) és x D 1 3. TÉTEL. [Cantor tétele] Korlátos zárt intervallumon folytonos függvény ott egyenletesen folytonos. Bizonyítás.- 4. TÉTEL. Egy intervallumon folytonos függvény felvesz bármely két függvényérték közötti értéket is függvényértékként. Azaz, ha f : I R folytonos az I intervallumon, és f(α) y 0 f(β) valamely α, β I-re, akkor van olyan x 0 az α, β között, amelyre f(x 0 ) = y 0. Ebből következik, hogy egy intervallumon folytonos függvény értékkészlete is egy intervallum. Bizonyítás. Feltehető, hogy f(α) < y 0 < f(β). A határozottság miatt tegyük fel, hogy α < β és legyen A = { x [α, β] : f(x) < y 0 }. A felülről korlátos, nemüres halmaz, így van pontos felső korlátja: sup A = x 0 [α, β]. Megmutatjuk, hogy f(x 0 ) = y 0. Ha f(x 0 ) > y 0 volna, akkor az x f(x) y 0 függvény x 0 -beli jeltartósága miatt x 0 egy [α, β]- ba eső környezetében is f(x) > y 0 volna, de akkor x 0 csak ugy lehetne felső korlátja A-nak, ha x 0 = α, amiből f(α) = f(x 0 ) > y 0 adódik, ami ellentmond feltételezésünknek. Ha f(x 0 ) < y 0 volna, akkor az x f(x) y 0 függvény x 0 -beli jeltartósága miatt x 0 egy [α, β]-ba eső környezetében is f(x) < y 0 volna, de akkor x 0 csak ugy lehetne felső korlátja A-nak, ha x 0 = β, amiből f(β) = f(x 0 ) < y 0 adódik, ami ismét ellentmond feltételezésünknek. Így csak f(x 0 ) = y 0 lehet, bizonyítva állításunkat. 5. TÉTEL. Egy intervallumon folytonos, szigorúan monoton függvény injektív, és inverze is folytonos, és szigorúan monoton (ugyanolyan értelemben mint az eredeti függvény).

8 8 Azaz ha f : I R folytonos, szigorúan monoton az I intervallumon akkor f injektív, és az f 1 : J I (létező) inverz függvény folytonos J-n, és ugyanolyan értelemben monoton, mint f (ahol J := f(i) = { f(x) : x I } az f függvény értékkészlete). Szigorú monotonitás helyett injektivitást feltéve is folytonos az inverz függvény. 6. TÉTEL. Egy intervallumon folytonos és injektív függvény inverze is folytonos. Azaz ha f : I R folytonos és injektív az I intervallumon és J := f(i) = { f(x) : x I } az f függvény értékkészlete, akkor az f 1 : J I inverz függvény folytonos J-n. Bizonyítás.- Bizonyítás Az elemi függvények folytonossága Definíció. Az f(x) = c (x R), (ahol c R tetszőleges konstans), f(x) = x (x R), f(x) = e x (x R), f(x) = sin x (x R) függvényeket, és ezekből a 4 alapművelet (összeadás, kivonás, szorzás, osztás), inverz és összetett függvény képzése, leszűkítés egy intervallumra operációk véges sokszori alkalmazásával keletkező függvényeket elemi függvényeknek nevezzük. Példák. ln x := az e x függvény inverze, ln :]0, [ R, a x := e x ln a (x R) ahol a > 0, log a x := az a x függvény inverze, ahol 0 < a 1, log a :]0, [ R, arcsin x := a sin [ π 2, π 2 ] x függvény inverze, arcsin : [ 1, 1] [ π, ] π 2 2, arccos x := a cos [0,π] x függvény inverze, arccos : [ 1, 1] [0, π], arctan x := a tan ] π 2, π 2 [ x függvény inverze, arctan : R ] π 2, π 2 [, arcctg x := a ctg ]0,π[ x függvény inverze, arcctg : R ]0, π[ TÉTEL. Az elemi függvények folytonosak. Bizonyítás. Elég az f(x) = c, x, e x, sin x függvények folytonosságát igazolni. Ez az első két függvény esetén a definíció alapján nyilvánvaló.

9 9 A sin függvény folytonossága sin x sin x 0 = 2 sin x x 0 2 cos x + x 0 2 x x 0 < ɛ ha x x 0 < δ(ɛ) = ɛ miatt következik. Az exponenciális függvény folytonosságat nehezebb igazolni, itt nem bizonyitjuk. 6.5 Nevezetes függvényhatárértékek TÉTEL. (1 + x) 1 x = e, x 0 e x 1 x 0 x = 1, sin x x 0 x = 1. Bizonyítás. Az első állítás a sorozatok határértékére vonatkozó (1 + x n) 1 xn = e ha 0 xn 0 (n ) n egyenlőségből következik. A másodikat úgy igazolhatjuk, hogy y = e x 1 transzformációval y 0 ha x 0, így e x 1 y = x 0 x y 0 ln(y + 1) = 1 = 1 y 0 ln(1 + y) 1 y ln e = 1. Az utolsó igazolásához felhasználjuk a geometriai meggondolásból adódó sin x < x < tg x ha 0 < x < π 2 egyenlőtlenséget. Ebből sin x-szel való osztással 1 < x sin x < 1 cos x, és x 0-val a rendőrtétel alapján adódik állításunk.

f(x) a (x x 0 )-t használjuk.

f(x) a (x x 0 )-t használjuk. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének. Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

MATEMATIKA 2. dolgozat megoldása (A csoport)

MATEMATIKA 2. dolgozat megoldása (A csoport) MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

Analízis I. Vizsgatételsor

Analízis I. Vizsgatételsor Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2

Részletesebben

Analízis I. beugró vizsgakérdések

Analízis I. beugró vizsgakérdések Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók

Részletesebben

Függvény határérték összefoglalás

Függvény határérték összefoglalás Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis

Részletesebben

Gazdasági matematika I.

Gazdasági matematika I. Gazdasági matematika I. Losonczi László, Pap Gyula Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László, Pap Gyula (DE) Gazdasági matematika I. 1 / 123 Kötelező irodalom: LOSONCZI LÁSZLÓ,

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

Gazdasági matematika I.

Gazdasági matematika I. Gazdasági matematika I. Losonczi László, Pap Gyula Debreceni Egyetem, Informatikai Kar I. félév Előadó: Hajdu Lajos Losonczi László, Pap Gyula (DE) Gazdasági matematika I. I. félév 1 / 124 Félévközi kötelező

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

EGYVÁLTOZÓS FÜGGVÉNYEK FOLYTONOSSÁGA ÉS HATÁRÉRTÉKE

EGYVÁLTOZÓS FÜGGVÉNYEK FOLYTONOSSÁGA ÉS HATÁRÉRTÉKE EGYVÁLTOZÓS FÜGGVÉNYEK FOLYTONOSSÁGA ÉS HATÁRÉRTÉKE BÁTKAI ANDRÁS Ennek a jegyzetnek az elsődleges célja, hogy a matematika tanárszakos analízis előadást kísérje és a vizsgára készülést segítse. A jegyzet

Részletesebben

Komplex számok. A komplex számok algebrai alakja

Komplex számok. A komplex számok algebrai alakja Komple számok A komple számok algebrai alakja 1. Ábrázolja a következő komple számokat a Gauss-féle számsíkon! Adja meg a számok valós részét, képzetes részét és számítsa ki az abszolút értéküket! a) 3+5j

Részletesebben

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Függvények folytonosságával kapcsolatos tételek és ellenpéldák

Függvények folytonosságával kapcsolatos tételek és ellenpéldák Eötvös Loránd Tudományegyetem Természettudományi Kar Függvények folytonosságával kapcsolatos tételek és ellenpéldák BSc Szakdolgozat Készítette: Nagy-Lutz Zsaklin Matematika BSc, Matematikai elemz szakirány

Részletesebben

2012. október 2 és 4. Dr. Vincze Szilvia

2012. október 2 és 4. Dr. Vincze Szilvia 2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl

Részletesebben

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt 27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Egyváltozós függvények 1.

Egyváltozós függvények 1. Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata

Részletesebben

[f(x) = x] (d) B f(x) = x 2 ; g(x) =?; g(f(x)) = x 1 + x 4 [

[f(x) = x] (d) B f(x) = x 2 ; g(x) =?; g(f(x)) = x 1 + x 4 [ Bodó Beáta 1 FÜGGVÉNYEK 1. Határozza meg a következő összetett függvényeket! g f = g(f(x)); f g = f(g(x)) (a) B f(x) = cos x + x 2 ; g(x) = x; f(g(x)) =?; g(f(x)) =? f(g(x)) = cos( x) + ( x) 2 = cos( x)

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx.

Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx. 1. Archimedesz tétele. Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx. Legyen y > 0, nx > y akkor és csak akkor ha n > b/a. Ekkor elég megmutatni, hogy létezik minden

Részletesebben

Molnár Bence. 1.Tétel: Intervallumon értelmezett folytonos függvény értékkészlete intervallum. 0,ami ellentmondás uis. f (x n ) f (y n ) ε > 0

Molnár Bence. 1.Tétel: Intervallumon értelmezett folytonos függvény értékkészlete intervallum. 0,ami ellentmondás uis. f (x n ) f (y n ) ε > 0 Anlízis. Írásbeli tételek-bizonyítások Molnár Bence 1.Tétel: Intervllumon értelmezett folytonos függvény értékkészlete intervllum Legyen I R tetszőleges intervllum és f I R folytonos függvény R f intervllum

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN Készült a TÁMOP-4.1.-08//a/KMR-009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék

Részletesebben

2010. október 12. Dr. Vincze Szilvia

2010. október 12. Dr. Vincze Szilvia 2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének

Részletesebben

2014. november 5-7. Dr. Vincze Szilvia

2014. november 5-7. Dr. Vincze Szilvia 24. november 5-7. Dr. Vincze Szilvia A differenciálszámítás az emberiség egyik legnagyobb találmánya és ez az állítás nem egy matek-szakbarbár fellengzős kijelentése. A differenciálszámítás segítségével

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. március 17. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt, 205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:

Részletesebben

SHk rövidítéssel fogunk hivatkozni.

SHk rövidítéssel fogunk hivatkozni. Nevezetes függvény-határértékek Az alábbiakban a k sorszámú függvény-határértékek)re az FHk rövidítéssel, a kompozíció határértékéről szóló első, illetve második tételre a KL1, illetve a KL rövidítéssel,

Részletesebben

2014. november Dr. Vincze Szilvia

2014. november Dr. Vincze Szilvia 24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata

Részletesebben

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C, 25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit

Részletesebben

Programtervező informatikus I. évfolyam Analízis 1

Programtervező informatikus I. évfolyam Analízis 1 Programtervező informatikus I. évfolyam Analízis 1 2012-2013. tanév, 2. félév Tételek, definíciók (az alábbi anyag csupán az előadásokon készített jegyzetek mellékletéül szolgál) 1. Mit jelent az asszociativitás

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Dierenciálhatóság. Wettl Ferenc el adása alapján és

Dierenciálhatóság. Wettl Ferenc el adása alapján és 205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási

Részletesebben

SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, SZAKDOLGOZAT ELLENPÉLDÁK. TÉMAVEZETŐ: Gémes Margit. Matematika Bsc, tanári szakirány

SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, SZAKDOLGOZAT ELLENPÉLDÁK. TÉMAVEZETŐ: Gémes Margit. Matematika Bsc, tanári szakirány SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, ELLENPÉLDÁK SZAKDOLGOZAT KÉSZÍTETTE: Kovács Dorottya Matematika Bsc, tanári szakirány TÉMAVEZETŐ: Gémes Margit Műszaki gazdasági tanár Analízis tanszék Eötvös

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Kiegészítő jegyzet a valós analízis előadásokhoz

Kiegészítő jegyzet a valós analízis előadásokhoz Kiegészítő jegyzet a valós analízis előadásokhoz (Utolsó frissítés: 011. január 8., 0:30) Az előadásokon alapvetően a Laczkovich T. Sós könyvet követjük, de több témát nem úgy adtam elő, mint ahogy a könyvben

Részletesebben

Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus

Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus Függvények Mi a függvény? A függvény egy hozzárendelési szabály. Egy valós függvény a valós számokhoz, esetleg egy részükhöz rendel hozzá pontosan egy valós számot valamilyen szabály (nem feltétlen képlet)

Részletesebben

Gyakorló feladatok I.

Gyakorló feladatok I. Gyakorló feladatok I. (Függvények határértéke és folytonossága) Analízis 2. (A,B, C szakirány, keresztfélév) Programtervező informatikus szak 2013-2014. tanév tavaszi félév Összeállította: Szili László

Részletesebben

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex

Részletesebben

Metrikus terek, többváltozós függvények

Metrikus terek, többváltozós függvények Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész

Részletesebben

Függvények határértéke és folytonosság

Függvények határértéke és folytonosság Függvények határértéke és folytonosság ) Bizonyítsa be a határérték definíciója alapján, hogy teljesül! + 5 + = Megoldás Heine definíciója alapján): Igazolandó, hogy a függvény értelmezve van a egy környezetében,

Részletesebben

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2

Részletesebben

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon. 215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Részletesebben

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás,

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, 3... Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg az f() = 4 deriváltját az = helyen.pt. Határozzuk meg a következő határértékeket: pt lim n 8n 5

Részletesebben

Függvény differenciálás összefoglalás

Függvény differenciálás összefoglalás Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Elemi függvények H607, EIC 2019-03-13 Wettl Ferenc

Részletesebben

Gyakorló feladatok az II. konzultáció anyagához

Gyakorló feladatok az II. konzultáció anyagához Gyakorló feladatok az II. konzultáció anyagához 003/004 tanév, I. félév 1. Vizsgáljuk meg a következő sorozatokat korlátosság és monotonitás szempontjából! a n = 5n+1, b n = n + n! 3n 8, c n = 1 ( 1)n

Részletesebben

Kalkulus I. gyakorlat Fizika BSc I/1.

Kalkulus I. gyakorlat Fizika BSc I/1. . Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat

Részletesebben

Debreceni Egyetem. Kalkulus I. Gselmann Eszter

Debreceni Egyetem. Kalkulus I. Gselmann Eszter Debreceni Egyetem Természettudományi és Technológiai Kar Kalkulus I. Gselmann Eszter Debrecen, 2011 A matematikában a gondolat, ami számít. (Szofja Vasziljevna Kovalevszkaja) Tartalomjegyzék 1. Halmazok,

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2 Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt

Részletesebben

Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK

Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

Függvényhatárérték és folytonosság

Függvényhatárérték és folytonosság 8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak

Részletesebben

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim Példák.. Geometriai sor. A aq n = a + aq + aq 2 +... 4. SOROK 4. Definíció, konvergencia, divergencia, összeg Definíció. Egy ( ) (szám)sorozat elemeit az összeadás jelével összekapcsolva kapott a + a 2

Részletesebben

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L

Részletesebben

Pécsi Tudományegyetem Természettudományi Kar Matematika Tanszék. Kalkulus 1. Dr Simon Ilona, PTE TTK

Pécsi Tudományegyetem Természettudományi Kar Matematika Tanszék. Kalkulus 1. Dr Simon Ilona, PTE TTK Pécsi Tudományegyetem Természettudományi Kar Matematika Tanszék Kalkulus Dr Simon Ilona, PTE TTK Pécs, 206 Tartalomjegyzék. Bevezető 4.. Az abszolút érték........................... 4.2. Halmazok, intervallumok,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Függvények csoportosítása, függvénytranszformációk

Függvények csoportosítása, függvénytranszformációk Függvények csoportosítása, függvénytranszformációk 4. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények csoportosítása p. 1/2 Függvények nevezetes osztályai Algebrai függvények

Részletesebben

FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI

FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI FÜGGVÉNY: Adott két halmaz, H és K. Ha a H halmaz minden egyes eleméhez egyértelműen hozzárendeljük a K halmaznak egy-egy elemét, akkor a hozzárendelést

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

Matematika I. NÉV:... FELADATOK:

Matematika I. NÉV:... FELADATOK: 24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n

Részletesebben

Hatványsorok, elemi függvények

Hatványsorok, elemi függvények Hatványsorok, elemi függvények EL 1 Hatványsorok, elemi függvények Hatványsorok, elemi függvények EL Definíció: függvénysorozat Legyen A R, H { f f:a R }. (A H halmaz elemei az A halmazon értelmezett függvények)

Részletesebben

2012. október 9 és 11. Dr. Vincze Szilvia

2012. október 9 és 11. Dr. Vincze Szilvia 2012. október 9 és 11. Dr. Vincze Szilvia Egyváltozós valós függvények nevezetes osztályai I. Algebrai függvények Racionális egész függvények (polinomok) Racionális törtfüggvények Irracionális függvények

Részletesebben

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának

Részletesebben

10. tétel Függvények lokális és globális tulajdonságai. A differenciálszámítás alkalmazása

10. tétel Függvények lokális és globális tulajdonságai. A differenciálszámítás alkalmazása . tétel Függvények lokális és globális tulajdonságai. A dierenciálszámítás alkalmazása FÜGGVÉNY De: A üggvény egyértelmű hozzárendelés két halmaz elemei között. A halmaz minden eleméhez B halmaz legeljebb

Részletesebben

Matematika A1a - Analízis elméleti kérdései

Matematika A1a - Analízis elméleti kérdései Mtemtik A1 - Anlízis elméleti kérdései (műszki menedzser szk, 2018. ősz) Kör egyenlete Az (x 0, y 0 ) középpontú, R sugrú kör egyenlete síkon (x x 0 ) 2 + (y y 0 ) 2 = R 2. Polinom Az x n x n + n 1 x n

Részletesebben

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén

Részletesebben

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 3. Fuzzy aritmetika Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Intervallum-aritmetika 2 Fuzzy intervallumok és fuzzy számok Fuzzy intervallumok LR fuzzy intervallumok

Részletesebben

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC 6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen

Részletesebben

Kalkulus MIA. Galambos Gábor JGYPK

Kalkulus MIA. Galambos Gábor JGYPK Kalkulus MIA Műszaki informatikus asszisztens http://jgypk.u-szeged.hu/tanszek/szamtech/oktatas/kalkulus.pdf Galambos Gábor JGYPK 2013-2014 Kalkulus MIA 1 A Kalkulus főbb témái: Intervallum, távolság,

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

Vizsgatematika. = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika 1 / 42

Vizsgatematika. = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika 1 / 42 Vizsgatematika = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika / 42 Bevezetés(logikai formulák és halmazok): logikai m veletek és m velettábláik,

Részletesebben

Kalkulus MIA. Galambos Gábor JGYPK

Kalkulus MIA. Galambos Gábor JGYPK Kalkulus MIA Műszaki informatikus asszisztens http://jgypk.u-szeged.hu/tanszek/szamtech/oktatas/kalkulus.pdf Galambos Gábor JGYPK 2013-2014 Kalkulus MIA 1 1 A Kalkulus főbb témái: Intervallum, távolság,

Részletesebben

A valós számok halmaza 5. I. rész MATEMATIKAI ANALÍZIS

A valós számok halmaza 5. I. rész MATEMATIKAI ANALÍZIS A valós számok halmaza 5 I rész MATEMATIKAI ANALÍZIS 6 A valós számok halmaza A valós számok halmaza 7 I A valós számok halmaza A valós számokra vonatkozó axiómák A matematika lépten-nyomon felhasználja

Részletesebben

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy: Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független

Részletesebben

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2 Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...

Részletesebben

Gyakorló feladatok I.

Gyakorló feladatok I. Gyakorló feladatok I. a Matematika A1a-Analízis nevű tárgyhoz Számhalmazok jelölésére a következő szimbólumokat használjuk: N := 1, 2,...}, Z, Q, Q, R. Az intervallumokat pedig így jelöljük: [a, b], (a,

Részletesebben

A derivált alkalmazásai

A derivált alkalmazásai A derivált alkalmazásai Összeállította: Wettl Ferenc 2014. november 17. Wettl Ferenc A derivált alkalmazásai 2014. november 17. 1 / 57 Tartalom 1 Függvény széls értékei Abszolút széls értékek Lokális széls

Részletesebben

Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész

Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész Mintakérdések a 2. ZH elméleti részéhez. Nem csak ezek a kérdések szerepelhetnek az elméleti részben, de azért hasonló típusú kérdések

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

2014. szeptember 24. és 26. Dr. Vincze Szilvia

2014. szeptember 24. és 26. Dr. Vincze Szilvia 2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai

Részletesebben

Egészrészes feladatok

Egészrészes feladatok Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

1. Fuggveny ertekek. a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I. x = arcsin(x) ha 1 x 0 x = 1, arctg(x) ha 0 < x < + a) f (x) = 4 x 2 x+log

1. Fuggveny ertekek. a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I. x = arcsin(x) ha 1 x 0 x = 1, arctg(x) ha 0 < x < + a) f (x) = 4 x 2 x+log 1. Fuggveny ertekek 1 Szamtsuk ki az alabbi fuggvenyek erteket a megadott helyeken! a) f (x) = 3x 3 2x 2 + x 15 x = 5, 10, 5 B I b) f (x) = sin x 1 x = π 2, π 4, 3 3 2π, 10π I arcsin(x) ha 1 x 0 1 c) f

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál

Részletesebben

Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait!

Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait! Elméleti kérdések: Második zárthelyi dolgozat biomatematikából * (Minta, megoldásokkal) E. Mit értünk hatványfüggvényen? Adjon példát nem invertálható hatványfüggvényre. Adjon példát mindenütt konkáv hatványfüggvényre.

Részletesebben

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák: 1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre

Részletesebben

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma? . Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,

Részletesebben