Molnár Bence. 1.Tétel: Intervallumon értelmezett folytonos függvény értékkészlete intervallum. 0,ami ellentmondás uis. f (x n ) f (y n ) ε > 0

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Molnár Bence. 1.Tétel: Intervallumon értelmezett folytonos függvény értékkészlete intervallum. 0,ami ellentmondás uis. f (x n ) f (y n ) ε > 0"

Átírás

1 Anlízis. Írásbeli tételek-bizonyítások Molnár Bence 1.Tétel: Intervllumon értelmezett folytonos függvény értékkészlete intervllum Legyen I R tetszőleges intervllum és f I R folytonos függvény R f intervllum Továbbá legyen M : sup {R f }, M : inf {R f }. Igzoljzuk, hogy (m, M) R f. Legyen y 0 (m, M) x 0 < x 1 I : f(x 0 ) < y 0 < f(x 1 ) f : [x 0, x 1 ] R folytonos Bolzno tetel ρ (x 0, x 1 ) : f(ρ) y 0 y 0 R f R f (m, M).Tétel: Heine tétele Legyen f [, b] R folytonos függvény [, b] korlátos és zárt intervllumon. Ekkor f egynelegesen folytonos [, b] intervllumon. indirekt: Tfh. ε > 0, δ > 0, x, y [, b] : x y < δ és f(x) f(y) ε (δ ) 1 n (n N) x n, y n : x n y n < 1 n és f(x n) y n ε (X n ) : N [, b] korlátos sorozt Bolzno W eierstrss kiv. tetel (X nk ) konvergens részsorozt Legyen x nk : α Ekkor α [, b] (indirekt) De ekkor: y nk α y nk x nk + x nk α Mivel y nk x nk 1 n k De α [, b] és f C {α} és x nk α 0, tehát y nk x nk + x nk α n k + tviteli elv (1) x nk α f (x nk ) f (α) és () y nk α f (y nk ) f (α) Tehát: f (x nk ) f (y nk ) n k + 0,mi ellentmondás uis. f (x n ) f (y n ) ε > 0 3.Tétel: A differenciálhtóság átfoglmzás lineáris közelítéssel. f R R, int {R f } f D {} A R és ε : D f R, ε 0 esetén x D f : f (x) f () A (x ) + ε (x) (x ) Ekkor: A f () : f( + h) f() f(x) f() f D {} f () ( R) h 0 h x f( + h) f() ε ( + h) : A 0 h 0 h ε ( + h) ε(x) 0 h 0 x f ( + h) f() A h + ε ( + h) h f(x) f() A(x ) + ε(x)(x ) 1 α (y nk ) α

2 : Tfh. A R és ε : D f R, ε 0 Ekkor f(x) f() A(x ) + ε(x)(x ) f(x) f() x A + ε(x) (x D f, x ) f(x) f() A f D {} x x 4.Tétel: Kpcsolt folytonosság és differenciálhtóság között. f R R, inf {D f } () f D {} f C {} (b) f D {} f C {} : f D {} A R és ε : D f R, ε 0 f(x) f() A(x ) + ε(x)(x ) ( x D f ) (f(x) f()) 0, x f(x) f() f C {} (ellenpéld): bs C {0}, de bs / D {0} 5.Tétel: Differenciálhtó függvények összege és szorzt Legyen f, g R R, inf {D f D g }, f, g D {} Ekkor: 1. f + g D {} és (f + g) () f () + g (). f g D {} és (f g) () f () g () 1.:.: (f + g)(x) (f + g)() x (fg)(x) (fg)() x inf {D f D g } inf {D f+g } f(x) + g(x) f() g() x (f + g) () f () + g () inf {D f D g } inf {D f g } f(x)g(x) f()g() x g(x) f(x) f() x (g (x)) x g() (ui.g C {}), g(x) g() x f(x) f() g(x) g() + f ()+g () x x f(x)g(x) f()g(x) + f()g(x) f()g() x g(x) g() + f() x ( ) f(x) f() x x g () x f (), (fg) (fg)(x) (fg)() () f ()g() + f()g () x x

3 6.Tétel: A differenciálszámítás középértéktételei (Rolle-,Cuchy-,Lgrnge-tétel). 1.Rolle-tétel: f R R, f C[, b], f D(, b) és f() f(b) ρ (, b), f (ρ) 0.Cuchy-féle középértéktétel: f, g R R, f, g C[, b], f, g D(, b) és g (x) 0 ( x (, b)) ρ (, b), f(b) f() g(b) g() f (ρ) g (ρ) 3.Lngrnge-féle középértéktétel: f R R, f C[, b], f D(, b) ρ (, b), f (ρ) f(b) f() b 1.Rolle-tétel: f C[, b] W eierstrss α [, b] : f(α) min [, b] f : m β [, b] : f(β) mx [, b] f : M 1.eset: m M f áll f 0.eset: m < M és f() f(b) H m f() f(b) α (, b) α lokális min is f (x) 0 H M f() f(b) β (, b) β lokális mx is f (x) 0.Cuchy-féle középértéktétel: 1.: g(b) g(), ugynis h g() g(b) Rolle tetel ρ (, b) : g (ρ) 0, mi ellentmondás..: F (x) : f(x) λg(x) (x [, b]) és λ megválszthtó úgy, hogy Rolle tétel feltételei teljesüljenek. F C[, b], F D[, b] és F () F (b) is teljesül, h: f() λg() f(b) λg(b) 0 F (ρ) f (ρ) λ 3.Lngrnge-féle középértéktétel: Lásd Cuchy-középértéktételt. (g(x) x) f(b) f() g(b) g() Rolle tetel ρ (, b) f(b) f() g(b) g() g (ρ) ρ (, b), 7.Tétel: A monotonitásr vontkozó elégséges, szükséges és elégséges feltételek. Elégséges feltételek: f(b) f() g(b) g() f (ρ) g (ρ) Legyen f : (, b) R, f D(, b) 1.:.) H f 0(, b)-n f monton növekedő (, b)-n b.) H f > 0(, b)-n f szigorún monton növekedő (, b)-n.:.) H f 0(, b)-n f monton csökkenő (, b)-n b.) H f < 0(, b)-n f szigorún monton csökkenő (, b)-n Szükséges és elégséges feltételek: Legyen f : [, b] R, f C[, b], f D(, b) 1.:.) f monoton növekedő [, b]-n f 0(, b) n b.) f monoton csökkenő [, b]-n f 0(, b) n.: f szigorún monoton növekedő [, b]-n (I) és (II) (I):f 0[, b]-n (II): (c, d) [, b] : f (x) 0 3

4 Elégséges feltételek: Lgrnge középértéktétel ( x 1 < x b) [x 1, x ] : ρ (, b) : f(x 1 ) f(x ) f (ρ)(x 1 x ) előjelviszonyiból. Szükséges és elégséges feltételek: Bizonyítás nélkül megfontolhtó. 8.Tétel: A lokális szélsőérték létezésére vontkozó elsőrendű szükséges feltétel és elsőrendű elégséges feltétel. Szükséges: f R R, inf {D f }, f D, f-nek -bn lokális szélső értéke vn f () 0 Elégséges: f : (, b) R, f D(, b) és c (, b)-n z f (c) előjelet vált c lokális szélsőérték. Szükséges: Lokális mximumr: Tekintsük f(x) f() x x > : x < : f(x) f() 0 és x > 0 f(x) f() 0 és x < 0 f(x) f() x f(x) f() x 0 0 De: f D f +() f () f () f () 0 f(x) f() f x +0 x +() 0 f(x) f() f x +0 x () 0 Elégséges: () f c-ben előjelet vált ból +b δ > 0 : f (x) 0(x (c δ, c) n) f monoton csökkenő (c δ, c)-n f (x) 0(x (c δ, c) n) f monoton növekvő (c δ, c)-n c lokális minimum hely. (b) f c-ben előjelet vált +ból b: hsonlón ()-hoz. 9.Tétel: Az e x sinx (x R) primitív függvények előállítás. e x sin x dx 1 ex (sin x cos x) + c e x sin x dx e x ( cos x) e x ( cos x)dx e x cos x + e x cos x dx [ ] e x cos x + e x e x sin xdx e x (sin x cos x) e x sin dx e x sin x dx 1 ex (sin x cos x) + c 4

5 10.Tétel: A 1 x (x ( 1, 1)) primitív függvényeinek előállítás. 1 x dx rcsin x + x q x + c (x ( 1, 1)) Legyen x sin t g(t), g 1 (x) rcsin x t (t ( π ; π )) ekkor g (t) cost cos t x dx 1 sin t dt trcsin x trcsin x ( t sin t + + c) trcsin x rcsin x sin rcsin x cos rcsin x + 4 sin α x; cos α 1 sin α ( ( π 1 x α ; π )) rcsin x + x 1 x 1 + c x dx rcsin x + x q x + c (x ( 1, 1)) 11.Tétel: Oszcillációs összegek. Az itegrálhtóség jellemzése z oszcillációs összegekkel. Oszcillációs összeg: Legyen, b R, < b, f : [, b] R korlátos függvény, τ [, b] egy felosztás [, b]-nek, s(f, τ), S(f, τ) z f függvény τ-hoz trtozó lsó, ill. delső közelítő összege. Ekkor Ω(f, τ) : S(f, τ) s(f, τ) z f függvény τ felosztáshoz trtozó oszcillációs összege. Tétel: : : f R[, b] ε > 0, τ F ([, b]) : Ω)f, τ) < ε 0 I (f) I (f) S(f, τ) s(f, τ) Ω(f, τ) < ε ε > 0 I (f) I (f) f R[, b] I (f) I (f) : I sup tulljdonság ε, τ 1 F ([, b]) : I ε < s(f, τ 1 ) I inf tulljdonság ε, τ F ([, b]) : I s(f, τ ) < I Tekintsük τ τ 1 τ I ε < s(f, τ 1 ) s(f, τ) S(f, τ) S(f, τ ) < I + ε Ω(f, τ) < ε 1.Tétel: Folytonos függvény integrálhtó. H f : [, b] Rfolytonos friemnn integrálhtó. f C[, b] Heine tetel f egyenletesen folytonos [, b]-n ε > 0, δ > 0 : x x < δ : f(x ) f(x ) < ε Legyen ε > 0rögzített és τ : {x 0,..., x n } F ([, b]) : x k x k 1 < δ (k 1,..., n) ( ) Ω(f, τ) sup f inf f (x i x i 1 ) i1 [x i,x i 1] [x i,x i 1] (( ) ) i1 sup [x i,x i 1] f inf f [x i,x i 1] sup f(x) f(y) (x i x i 1 ) ( ) ε ( ) sup f(x) f(y), x, y [x i, x i 1 ] 5 (x i x i 1 ) ε(b ) f R[, b] i1

6 13.Tétel: Monoton függvény integrálhtó. (oszcillációs összegekkel) H f : [, b] R függvény monoton [, b]-n f [, b] Tfh. f monoton növekedő és τ {x i } F ([, b]) m i inf f f(x i 1) és M i sup f f(x i ) [x i 1,x i] [x i 1,x i] Ω(f, τ) M i (x i x i 1 ) i1 m i (x i x i 1 ) i1 (f(x i ) f(x i 1 )) (x i x i 1 ) i1 mx 1 i n (x i x i 1 ) (f(x i ) f(x i 1 )) < ε h i1 ε mx (x i x i 1 ) δ < i f(b) f() 14.Tétel: Newton-Leibniz-tétel. g R[, b] és g-nek primitív függvénye b g G(b) G() [G(x)] b (F : Az fprimitív függvénye) Legyen τ : { x 0 < x 1 <... < x n b} F ([, b]) G(b) G() G(x n ) g(x 0 ) (G(x n ) G(x n 1 )) + (G(x n 1 ) G(x n )) (G(x 1 ) G(x 0 )) G (ρ i )(x i x i 1 ) g(ρ i )(x i x i 1 ) τ (ρ [x i 1, x i ]) Lgrnge k.e.t. i1 s(g, τ) G(b) G() i1 g(ρ i )(x i x i 1 ) S(g, τ) τ I (g) G(b) G() I (g) i1 g R[, b] I (g) I (g) b G(b) G() b 6

ANALÍZIS II. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS II. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS II. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Blogh Tmás 2013. jnuár 16. H hibát tlálsz, kérlek jelezd info@bloghtms.hu e-mil címen! Ez Mű Cretive Commons Nevezd meg! - Ne dd el! - Így

Részletesebben

Matematika A1a - Analízis elméleti kérdései

Matematika A1a - Analízis elméleti kérdései Mtemtik A1 - Anlízis elméleti kérdései (műszki menedzser szk, 2018. ősz) Kör egyenlete Az (x 0, y 0 ) középpontú, R sugrú kör egyenlete síkon (x x 0 ) 2 + (y y 0 ) 2 = R 2. Polinom Az x n x n + n 1 x n

Részletesebben

Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév

Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév Klkulus II. Beugró kérdések és válszok 2012/2013 s tnév II. félév 1. Legyen ], b[ R nemüres, nyílt intervllum, f :], b[ R függvény. Hogyn vn értelmezve z f függvény primitív függvénye? Válsz. Legyen ],

Részletesebben

A Riemann-integrál intervallumon I.

A Riemann-integrál intervallumon I. A Riemnn-integrál intervllumon I. A htározott integrál foglm és kiszámítás Boros Zoltán Debreceni Egyetem, TTK Mtemtiki Intézet, Anĺızis Tnszék Debrecen, 2017. március 6. Zárt intervllum felosztási A továbbikbn,

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?

Részletesebben

f(x) a (x x 0 )-t használjuk.

f(x) a (x x 0 )-t használjuk. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál

Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál Htározott integrál definíció folytonos függvények esetén definíció korlátos függvények esetén Newton -Leibniz szbály integrálási szbályok lklmzások improprius integrál Legyen z f függvény [, b]-n értelmezett

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

ANALÍZIS II. DEFINÍCIÓK, TÉTELEK

ANALÍZIS II. DEFINÍCIÓK, TÉTELEK ANALÍZIS II. DEFINÍCIÓK, TÉTELEK Szerkesztette: Blogh Tmás 2013. jnuár 16. H hibát tlálsz, kérlek jelezd info@bloghtms.hu e-mil címen! Ez Mű Cretive Commons Nevezd meg! - Ne dd el! - Így dd tovább! 3.0

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

Laplace-transzformáció. Vajda István február 26.

Laplace-transzformáció. Vajda István február 26. Anlízis elődások Vjd István 9. február 6. Az improprius integrálok fjtái Tegyük fel, hogy egy vlós-vlós függvényt szeretnénk z I intervllumon integrálni, de függvény nincs értelmezve I minden pontjábn,

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

Metrikus terek, többváltozós függvények

Metrikus terek, többváltozós függvények Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének. Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének

Részletesebben

Rekurzív sorozatok. SZTE Bolyai Intézet nemeth. Rekurzív sorozatok p.1/26

Rekurzív sorozatok. SZTE Bolyai Intézet   nemeth. Rekurzív sorozatok p.1/26 Rekurzív sorozatok Németh Zoltán SZTE Bolyai Intézet www.math.u-szeged.hu/ nemeth Rekurzív sorozatok p.1/26 Miért van szükség közelítő módszerekre? Rekurzív sorozatok p.2/26 Miért van szükség közelítő

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. március 17. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Függvények folytonosságával kapcsolatos tételek és ellenpéldák

Függvények folytonosságával kapcsolatos tételek és ellenpéldák Eötvös Loránd Tudományegyetem Természettudományi Kar Függvények folytonosságával kapcsolatos tételek és ellenpéldák BSc Szakdolgozat Készítette: Nagy-Lutz Zsaklin Matematika BSc, Matematikai elemz szakirány

Részletesebben

Analízis II. harmadik, javított kiadás

Analízis II. harmadik, javított kiadás Ljkó Károly Anlízis II. hrmdik, jvított kidás Debreceni Egyetem Mtemtiki és Informtiki Intézet 2003 c Ljkó Károly ljko @ mth.klte.hu Amennyiben hibát tlál jegyzetben, kérjük jelezze szerzőnek! A jegyzet

Részletesebben

9. HATÁROZATLAN INTEGRÁL

9. HATÁROZATLAN INTEGRÁL 9. HATÁROZATLAN INTEGRÁL 9. Definíció és lpintegrálok. Definíció. Legyen f : I R dott függvény (I R egy intervllum). A F : I R függvényt f függvény primitív függvényének nevezzük I-n, h F differenciálhtó

Részletesebben

BSc Analízis II. előadásjegyzet 2009/2010. tavaszi félév

BSc Analízis II. előadásjegyzet 2009/2010. tavaszi félév BSc Anlízis II. elődásjegyzet 2009/200. tvszi félév Sikoly Eszter ELTE TTK Alklmzott Anlízis és Számításmtemtiki Tnszék 20. jnuár 7. ii Trtlomjegyzék Előszó v. Differenciálhtóság.. A derivált foglm és

Részletesebben

[f(x) = x] (d) B f(x) = x 2 ; g(x) =?; g(f(x)) = x 1 + x 4 [

[f(x) = x] (d) B f(x) = x 2 ; g(x) =?; g(f(x)) = x 1 + x 4 [ Bodó Beáta 1 FÜGGVÉNYEK 1. Határozza meg a következő összetett függvényeket! g f = g(f(x)); f g = f(g(x)) (a) B f(x) = cos x + x 2 ; g(x) = x; f(g(x)) =?; g(f(x)) =? f(g(x)) = cos( x) + ( x) 2 = cos( x)

Részletesebben

Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész

Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész Ellenőrző kérdések a Matematika I. tantárgy elméleti részéhez, 2. rész Mintakérdések a 2. ZH elméleti részéhez. Nem csak ezek a kérdések szerepelhetnek az elméleti részben, de azért hasonló típusú kérdések

Részletesebben

MATEMATIKA 2. dolgozat megoldása (A csoport)

MATEMATIKA 2. dolgozat megoldása (A csoport) MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f

Részletesebben

VI. Deriválható függvények tulajdonságai

VI. Deriválható függvények tulajdonságai 1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl

Részletesebben

EGYVÁLTOZÓS FÜGGVÉNYEK FOLYTONOSSÁGA ÉS HATÁRÉRTÉKE

EGYVÁLTOZÓS FÜGGVÉNYEK FOLYTONOSSÁGA ÉS HATÁRÉRTÉKE EGYVÁLTOZÓS FÜGGVÉNYEK FOLYTONOSSÁGA ÉS HATÁRÉRTÉKE BÁTKAI ANDRÁS Ennek a jegyzetnek az elsődleges célja, hogy a matematika tanárszakos analízis előadást kísérje és a vizsgára készülést segítse. A jegyzet

Részletesebben

Analízis házi feladatok

Analízis házi feladatok Analízis házi feladatok Készült a PTE TTK GI szakos hallgatóinak Király Balázs 200-. I. Félév 2 . fejezet Első hét.. Házi Feladatok.. Házi Feladat. Írjuk fel a következő sorozatok 0.,., 2., 5., 0. elemét,

Részletesebben

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0 I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

Debreceni Egyetem. Kalkulus II. Gselmann Eszter

Debreceni Egyetem. Kalkulus II. Gselmann Eszter Debreceni Egyetem Természettudományi és Technológii Kr Klkulus II. Gselmnn Eszter Debrecen, 22 Azoknk, kik nem ismerik mtemtikát, nehézséget okoz keresztüljutni szépség vlódi érzéséhez, legmélyebb szépséghez,

Részletesebben

Debreceni Egyetem. Kalkulus II. példatár. Gselmann Eszter

Debreceni Egyetem. Kalkulus II. példatár. Gselmann Eszter Debreceni Egyetem Természettudományi és Technológiai Kar Kalkulus II. példatár Gselmann Eszter Debrecen, 203 Tartalomjegyzék. Határozatlan integrál Elméleti áttekintés............................. Alapintegrálok...............................

Részletesebben

Boros Zoltán február

Boros Zoltán február Többváltozós függvények differenciál- és integrálszámítása (2 3. előadás) Boros Zoltán 209. február 9 26.. Vektorváltozós függvények differenciálhatósága és iránymenti deriváltjai A továbbiakban D R n

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának

Részletesebben

Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14.

Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14. Fraktálok Hausdorff távolság Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. március 14. TARTALOMJEGYZÉK 1 of 36 Halmazok távolsága ELSŐ MEGKÖZELÍTÉS Legyen (S, ρ) egy metrikus tér, A, B S, valamint

Részletesebben

Kiegészítő jegyzet a valós analízis előadásokhoz

Kiegészítő jegyzet a valós analízis előadásokhoz Kiegészítő jegyzet a valós analízis előadásokhoz (Utolsó frissítés: 011. január 8., 0:30) Az előadásokon alapvetően a Laczkovich T. Sós könyvet követjük, de több témát nem úgy adtam elő, mint ahogy a könyvben

Részletesebben

Gyökvonás. Hatvány, gyök, logaritmus áttekintés

Gyökvonás. Hatvány, gyök, logaritmus áttekintés Htvány, gyök, logritmus áttekintés. osztály Gyökvonás Négyzetgyök: Vlmely nem negtív vlós szám négyzetgyöke olyn nem negtív vlós szám, melynek négyzete z szám. Mgj.: R = Azonosságok: b ; b k ;, h, b R

Részletesebben

Descartes-féle, derékszögű koordináta-rendszer

Descartes-féle, derékszögű koordináta-rendszer Descartes-féle, derékszögű koordináta-rendszer A derékszögű koordináta-rendszerben a sík minden pontjához egy rendezett valós számpár rendelhető. A számpár első tagja (abszcissza) a pont y tengelytől mért

Részletesebben

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex

Részletesebben

Gyakorló feladatok az II. konzultáció anyagához

Gyakorló feladatok az II. konzultáció anyagához Gyakorló feladatok az II. konzultáció anyagához 003/004 tanév, I. félév 1. Vizsgáljuk meg a következő sorozatokat korlátosság és monotonitás szempontjából! a n = 5n+1, b n = n + n! 3n 8, c n = 1 ( 1)n

Részletesebben

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás,

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, 3... Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg az f() = 4 deriváltját az = helyen.pt. Határozzuk meg a következő határértékeket: pt lim n 8n 5

Részletesebben

Gazdasági matematika I. tanmenet

Gazdasági matematika I. tanmenet Gzdsági mtemtik I. tnmenet Mádi-Ngy Gergely A hivtkozásokbn z lábbi két tnkönyvre utlunk: Cs: Csernyák László (szerk.): Anlízis, Nemzeti Tnkönyvkidó 200. D: Denkinger Géz: Anlízis gykorltok, Nemzeti Tnkönyvkidó

Részletesebben

f (ξ i ) (x i x i 1 )

f (ξ i ) (x i x i 1 ) Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <

Részletesebben

Matematika I. NÉV:... FELADATOK:

Matematika I. NÉV:... FELADATOK: 24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n

Részletesebben

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon. 215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Részletesebben

Integr alsz am ıt as. 1. r esz aprilis 12.

Integr alsz am ıt as. 1. r esz aprilis 12. Integrálszámítás. 1. rész. 2018. április 12. Területszámítás f : [a, b] IR + korlátos függvény. Mennyi a függvény grafikonja és az x tengely közti terület? Riemann integrál, ismétlés F: Az összes lehetséges

Részletesebben

Fourier sorok február 19.

Fourier sorok február 19. Fourier sorok. 1. rész. 2018. február 19. Függvénysor, ismétlés Taylor sor: Speciális függvénysor, melynek tagjai: cf n (x) = cx n, n = 0, 1, 2,... Állítás. Bizonyos feltételekkel minden f előállítható

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér

Részletesebben

Programtervező informatikus I. évfolyam Analízis 1

Programtervező informatikus I. évfolyam Analízis 1 Programtervező informatikus I. évfolyam Analízis 1 2012-2013. tanév, 2. félév Tételek, definíciók (az alábbi anyag csupán az előadásokon készített jegyzetek mellékletéül szolgál) 1. Mit jelent az asszociativitás

Részletesebben

GAZDASÁGI MATEMATIKA I.

GAZDASÁGI MATEMATIKA I. GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z

Részletesebben

Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben

Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges

Részletesebben

EGYVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMíTÁSA

EGYVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMíTÁSA EGYVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMíTÁSA BÁTKAI ANDRÁS Ennek a jegyzetnek az elsődleges célja, hogy a matematika tanárszakos analízis előadást kísérje és a vizsgára készülést segítse. A jegyzet gépelési

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl

Részletesebben

DIFFERENCIÁLSZÁMÍTÁS Matematika BSc szakosok részére

DIFFERENCIÁLSZÁMÍTÁS Matematika BSc szakosok részére DIFFERENCIÁLSZÁMÍTÁS Matematika BSc szakosok részére (2008). A differenciálhatóság és a derivált fogalma Emlékeztetünk az egyváltozós különbségi hányados fogalmára, melyet a konvex függvények tárgyalása

Részletesebben

Függvény differenciálás összefoglalás

Függvény differenciálás összefoglalás Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a

Részletesebben

KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ

KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ BSC MATEMATIKATANÁR SZAKIRÁNY 28/29. TAVASZI FÉLÉV Az lábbikbn z el dáson vonlinterálról ill. primitív füvényr l elhnzottk közül zok olvshtók, mik Lczkovich-T. Sós: Anlízis

Részletesebben

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén

Részletesebben

Dierenciálhatóság. Wettl Ferenc el adása alapján és

Dierenciálhatóság. Wettl Ferenc el adása alapján és 205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási

Részletesebben

2012. október 2 és 4. Dr. Vincze Szilvia

2012. október 2 és 4. Dr. Vincze Szilvia 2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex

Részletesebben

Alkalmazott matematika és módszerei I Tantárgy kódja

Alkalmazott matematika és módszerei I Tantárgy kódja Tantárgy neve Alkalmazott matematika és módszerei I Tantárgy kódja MTB1901 Meghirdetés féléve Kreditpont 4 Összóraszám (elm+gyak) + Számonkérés módja G Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve

Részletesebben

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2

Részletesebben

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban! . Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x

Részletesebben

Modellek és Algoritmusok - 2.ZH Elmélet

Modellek és Algoritmusok - 2.ZH Elmélet Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2 Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt

Részletesebben

Matematika BSc tanárszak Analízis IV. előadásjegyzet 2010/2011. tavaszi félév

Matematika BSc tanárszak Analízis IV. előadásjegyzet 2010/2011. tavaszi félév Mtemtik BSc tnárszk Anlízis IV. elődásjegyzet 2010/2011. tvszi félév Sikoly Eszter ELTE TTK Alklmzott Anlízis és Számításmtemtiki Tnszék 2011. október 11. ii Trtlomjegyzék Előszó v 1. Differenciálegyenletek

Részletesebben

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál

Részletesebben

0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha

0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha Vegyük észre, hogy egy mérhet f függvény pontosn kkor integrálhtó, h f dµ =. lim N Ez indokolj következ deníciót. { f α >N}. Deníció. Egy X, A, µ téren értelmezett mérhet függvényekb l álló vlmely f α

Részletesebben

Függvények alkalmazása feladatokban. nemethj

Függvények alkalmazása feladatokban.   nemethj Dr. Németh József Függvények alkalmazása feladatokban http://www.math.u-szeged.hu/ nemethj . Oldjuk meg a következő egyenletet: x 6 + 6 x x 5x 6. Megoldás. Vizsgáljuk az ÉT.-t! A bal oldalon x 6 0 x 6

Részletesebben

A gyakorlatok anyaga

A gyakorlatok anyaga A 7-11. gyakorlatok anyaga a Matematika A1a-Analízis nevű tárgyhoz B és D kurzusok Számhalmazok jelölésére a következő szimbólumokat használjuk: N := {1,,...}, Z, Q, Q, R. Az intervallumokat pedig így

Részletesebben

Nevezetes függvények

Nevezetes függvények Nevezetes függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt

Részletesebben

Diszkrét Matematika MSc hallgatók számára. 4. Előadás

Diszkrét Matematika MSc hallgatók számára. 4. Előadás Diszkrét Matematika MSc hallgatók számára 4. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor 2012. február 28. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét

Részletesebben

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények 6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai

Részletesebben

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák: 1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN Készült a TÁMOP-4.1.-08//a/KMR-009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék

Részletesebben

KALKULUS INFORMATIKUSOKNAK I.

KALKULUS INFORMATIKUSOKNAK I. Írt: GYŐRI ISTVÁN PITUK MIHÁLY KALKULUS INFORMATIKUSOKNAK I. Egyetemi tnnyg 20 COPYRIGHT: 20 206, Dr. Győri István, Dr. Pituk Mihály, Pnnon Egyetem Műszki Informtiki Kr Mtemtik Tnszék LEKTORÁLTA: Dr. Molnárk

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Numerikus módszerek 2.

Numerikus módszerek 2. Numerikus módszerek 2. 12. elődás: Numerikus integrálás I. Krebsz Ann ELTE IK 2015. május 5. Trtlomjegyzék 1 Numerikus integrálás 2 Newton Cotes típusú kvdrtúr formulák 3 Hibformulák 4 Összetett formulák

Részletesebben

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke Differenciálszámítás Lokális növekedés (illetve csökkenés): H z f() függvény deriváltj z 0 helyen pozitív: f () > 0 (illetve negtív: f () < 0), kkor z f() függvény z 0 helyen növekvően (illetve csökkenően)

Részletesebben

Ez a fejezet az eddig tanult lineáris algebra tananyag alkalmazásaként megmutatja,

Ez a fejezet az eddig tanult lineáris algebra tananyag alkalmazásaként megmutatja, 8 Fejezet Differenciálszámítás Ez a fejezet az eddig tanult lineáris algebra tananyag alkalmazásaként megmutatja, hogy hogyan vihető át a derivált fogalma többváltozós függvényekre Látni fogjuk, hogy a

Részletesebben

Komplex számok. A komplex számok algebrai alakja

Komplex számok. A komplex számok algebrai alakja Komple számok A komple számok algebrai alakja 1. Ábrázolja a következő komple számokat a Gauss-féle számsíkon! Adja meg a számok valós részét, képzetes részét és számítsa ki az abszolút értéküket! a) 3+5j

Részletesebben

konvergensek-e. Amennyiben igen, számítsa ki határértéküket!

konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 1. Határértékek 1. Állapítsa meg az alábbi sorozatokról, hogy van-e határértékük, konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 2 2...2 2 (n db gyökjel), lim a) lim n b) lim n (sin(1)) n,

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete)

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete) Megoldások 1. Ábrázold és jellemezd a következő függvényeket! a) f (x) = sin (x π ) + 1 b) f (x) = 3 cos (x) c) f (x) = ctg ( 1 x) 1 a) A kérdéses függvényhez a következő lépésekben juthatunk el: g (x)

Részletesebben

Feladatgyûjtemény. Analízis III. Sáfár Zoltán

Feladatgyûjtemény. Analízis III. Sáfár Zoltán Feladatgyûjtemény Analízis III. Sáfár Zoltán NyME-SEK 20 Tartalomjegyzék. Számsorozatok számsorok 2. Differenciálszámítás 5 2.. L Hospital-szabály............................... 7 3. Függvénysorok Taylor-polinom

Részletesebben

Analízis I. beugró vizsgakérdések

Analízis I. beugró vizsgakérdések Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók

Részletesebben

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt 27.2.2. Kalkulus I. NÉV:... A csoport KÓD:.... Adjuk meg a b n = 3n 7 9 2n sorozat infimumát, szuprémumát. 8pt 2. Határozzuk meg a következő határértékeket: 8pt (a) ( lim n 2 3n n 2 n 3) n ( ) 3n 5 3 2n,

Részletesebben

4. Laplace transzformáció és alkalmazása

4. Laplace transzformáció és alkalmazása 4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:

Részletesebben

Gazdasági matematika I.

Gazdasági matematika I. Gazdasági matematika I. Losonczi László, Pap Gyula Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László, Pap Gyula (DE) Gazdasági matematika I. 1 / 123 Kötelező irodalom: LOSONCZI LÁSZLÓ,

Részletesebben

Gazdasági matematika I.

Gazdasági matematika I. Gazdasági matematika I. Losonczi László, Pap Gyula Debreceni Egyetem, Informatikai Kar I. félév Előadó: Hajdu Lajos Losonczi László, Pap Gyula (DE) Gazdasági matematika I. I. félév 1 / 124 Félévközi kötelező

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Elemi függvények H607, EIC 2019-03-13 Wettl Ferenc

Részletesebben

A derivált alkalmazásai

A derivált alkalmazásai A derivált alkalmazásai Összeállította: Wettl Ferenc 2014. november 17. Wettl Ferenc A derivált alkalmazásai 2014. november 17. 1 / 57 Tartalom 1 Függvény széls értékei Abszolút széls értékek Lokális széls

Részletesebben

1. Sorozatok. A sorozat megadható. Képlettel: Rekurziós formulával: Felsorolással: Gazdasági Matematika

1. Sorozatok. A sorozat megadható. Képlettel: Rekurziós formulával: Felsorolással: Gazdasági Matematika 1. Sorozatok Azokat a függvényeket, amelyek értelmezési tartománya a pozitív egész számok halmaza ( jelölése N ), a képhalmaz a valós számok halmaza, sorozatnak nevezzük. Az a függvény n N helyen vett

Részletesebben