f (ξ i ) (x i x i 1 )

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "f (ξ i ) (x i x i 1 )"

Átírás

1 Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = < <...< n = b. Megjegyzések: Az F n felosztás függ z osztópontok számától és zok elhelyezkedésétől is. Az F n felosztás finomságán z [, ], [, ],..., [ n, n ] részintervllumok közül leghosszbbik hosszát, zz d (F n )=m ( i i )-et értjük, hol i {,,..., n}. Az [, b] intervllum felosztásink egy F, F,..., F n,... soroztát végtelenül finomodónk nevezzük, h lim n d (F n )=. Definíció Legyen z f függvény értelmezett z [, b] intervllumon és legyen F n ={,,..., n } z intervllum egy felosztás. A σ n = n i= f (ξ i ) ( i i ) összeget z f függvény [, b] intervllum vett integrálközelítő összegének nevezzük, h i {,,...,n} eseténξ i [ i, i ]. Készítette: Vjd István 74

2 Villmosmérnök Szk, Távokttás Mtemtik segédnyg Megjegyzések: Az f függvény [, b] intervllumon vett integrálközelítő összege függ válsztott felosztástól és ttól is, hogy z egyes részintervllumokbn hogyn válsztjuk ξ i helyet. Az integrálközelítő összeget tégllpok területének összegével szemléltethetjük, h függvény z dott intervllumbn csk pozitív értékeket vesz fel. (. ábr) y ξ ξ ξ... n ξ n n. ábr. Integrálközelítő összeg Készítette: Vjd István 75

3 Villmosmérnök Szk, Távokttás Mtemtik segédnyg Definíció H z f függvény értelmezett z [, b] intervllumon és integrálközelítő összegeinek minden olynσ n sorozt, mely z [, b] intervllum vlmely végtelenül finomodó F n felosztássoroztához trtozik, ugynhhoz z I R vlós számhoz trt, kkor z f függvényt z [, b] intervllumon Riemnn-értelemben integrálhtónk nevezzük, és fenti I szám ennek függvénynek z [, b] intervllumon vett Riemnn-integrálj. Jelölés: b f, illetve b f () d. Megjegyzés: H z f függvény z [, b] intervllumon csk pozitív értékeket vesz fel, kkor b f = I értéke megegyezik z f függvény grfikonjánk [, b] intervllumb eső része, z tengely és z =, =b egyenesek áltl htárolt síkidom területével. (. ábr) y b f () d b. ábr. A htározott integrál szemléletes jelentése Készítette: Vjd István 76

4 Villmosmérnök Szk, Távokttás Mtemtik segédnyg (Az f függvény integrálhtóságánk szükséges feltétele.) H z f függvény Riemnn-értelemben integrálhtó z [, b] intervllumon, kkor f ezen z intervllumon korlátos. (Az f függvény integrálhtóságánk elégséges feltétele.) H z f függvény folytonos z [, b] intervllumon, kkor Riemnn-értelemben integrálhtó is [, b]-n. (Az f függvény integrálhtóságánk (egy másik) elégséges feltétele.) H z f függvény monoton és korlátos z [, b] intervllumon, kkor Riemnn-értelemben integrálhtó is [, b]-n. Készítette: Vjd István 77

5 Villmosmérnök Szk, Távokttás Mtemtik segédnyg H z f és g függvények integrálhtó z [, b] intervllumon és c R, kkor c f, f+ g és f g függvények is integrálhtók [, b]-n és b c f= c b f b b ( ) f+ g = f+ b g b b ( ) f g = f b g H z f függvény integrálhtó z [, b] intervllumon, kkor [, b] minden részintervllumán is integrálhtó. H <b<c vlós számok és z f függvény integrálhtó z [, b] és [b, c] intervllumokon, kkor integrálhtó [, c]-n is és b f+ c f= c f b Készítette: Vjd István 78

6 Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4.. A Newton-Leibniz formul, htároztln integrál Definíció H z f vlós-vlós függvény értelmezett vlmely (véges vgy végtelen) I intervllumon, és létezik olyn F függvény, mely differenciálhtó I-n és és melyre teljesül, hogy I esetén F ()= f (), kkor z F függvényt z f függvény I intervllumon vett primitív függvényének nevezzük. Péld: Az f ()= függvénynek F ()= primitív függvénye vlós számok hlmzán, ( ) ( ) mert R esetén F ()= = = = = f (). (Newton-Leibniz formul) H z f vlós-vlós függvény integrálhtó z [, b] intervllumon és F primitív függvénye f -nek [, b]-n, kkor b f= F (b) F () Péld: 5 d= [ ] 5 = 5 = 5 8 = 7 = 9. H z f vlós-vlós függvénynek F primitív függvénye, kkor C R esetén F + C is primitív függvénye f -nek. Péld: Az f ()= függvénynek z F ()=, stb. függvények is primitív függvényei. 5 függvényen kívül G ()= +, H ()= Készítette: Vjd István 79

7 Villmosmérnök Szk, Távokttás Mtemtik segédnyg H z f vlós-vlós függvénynek létezik primitív függvénye, kkor végtelen sok primitív függvénye is létezik, de bármelyik kettő különbsége konstns. Definíció Az f vlós-vlós függvény primitív függvényeinek hlmzát f htároztln integráljánk nevezzük. Jelölés: f, f () d Péld: d= + C C R H z f és g függvényeknek létezik primitív függvénye z I intervllumon és c R, kkor c f, f+ g, f g függvényeknek is létezik primitív függvénye I-n és c f= c ( ) f+ g = ( f g ) = f f+ f g g Példák: Mivel d= + C, ezért d= d= + C Minthogy sin d= cos +Cés cos d=sin +C, ezért sin +cos d= cos +sin +C Készítette: Vjd István 8

8 Villmosmérnök Szk, Távokttás Mtemtik segédnyg H F z f primitív függvénye és, b R,, kkor f (+b) d= F (+b) + C Példák: cos (+) d= sin (+) d = ln + C + C Mindenα R,α esetén f α () f () d= fα+ α+ + C Példák: sin 4 cos d= sin5 + C 5 ( + ) ( d= + ) ( + ) 4 ( + ) 4 d= + C= C f () f () d=ln f () + C Példák: + d= tg d= + d= ln( + ) + C sin cos d= sin d= ln cos +C cos Készítette: Vjd István 8

9 Villmosmérnök Szk, Távokttás Mtemtik segédnyg H z f vlós-vlós függvénynek létezik F primitív függvénye egy I intervllumon és ugynezen z intervllumon g vlósvlós differenciálhtó függvény, kkor z ( f g ) g függvénynek is létezik primitív függvénye I-n és ( f g ) () g () d= ( F g ) ()+C Megjegyzés: A fenti összefüggést szokás így is írni: f ( g () ) g ()=F ( g () ) + C. Példák: e sin cos d=e sin + C + d= 4 +( ) d= rctg + C (A prciális integrálás szbály) H z u és v függvények vlmely I intervllumon differenciálhtók, továbbá z uv szorztfüggvénynek létezik primitív függvénye I-n, kkor u v-nek is létezik primitív függvénye I-n és u v=uv uv Példák: (+) v e d=(+) e u v u e v d= u (+) e e d= = (+) e e + C=e + C Készítette: Vjd István 8

10 Villmosmérnök Szk, Távokttás Mtemtik segédnyg ( + ) ( ) ( ) ln d= v + ln v + d= u u u v ( ) ( ) ( ) = + ln + d= + ln 9 +C Mikor lklmzunk prciális integrálást? Erre kérdésre nehéz pontos válszt dni, de vn néhány olyn integrndus, melyre prciális integrálás módszere lklmzhtó: Az integrndus egy polinom és egy eponenciális függvény szorzt, hol z eponenciális függvény kitevője lineáris függvény. Ilyenkor z eponenciális függvényt integrálndó függvénynek (u ) válsztjuk és polinom deriválndó függvény (v). Az integrndus p () sin (+b) vgy p () cos (+b) lkú, hol p () polinom. Itt is polinomot válsztjuk deriválndó függvénynek (v) és trigonometrikus függvényt integrálndónk (u ). Az integrndus sin (+b) e c+d lkú. Kétszer kell prciálisn integrálni és z integrndus primitív függvényét egyenletrendezési lépésekkel kpjuk meg. Az integrndus p () log n (+b) lkú, hol p () polinom. Itt p () z integrálndó függvény (u ), és logritmus függvény deriválndó (v). Az integrndus p () rcsin n (+b), p () rccos n (+b), p () rctg n (+b), illetve p () rcctg n (+b) lkú, hol p () polinom. Itt is p () z integrálndó függvény (u ), ciklometrikus függvény pedig deriválndó (v). (A prciális integrálás szbály htározott integrál esetén) H z u és v függvények differenciálhtók, z u, v pedig integrálhtók z [, b] intervllumon, kkor z u v és uv függvények is integrálhtók [, b]-n és b u v=[uv] b b uv Készítette: Vjd István 8

11 Villmosmérnök Szk, Távokttás Mtemtik segédnyg π 4 Péld: u rctg d= rctg u v v π 4 π 4 u d= π + π 4 v + d= = π π 4 ( ) d= π + [ ] rctg π 4 =π π 8 +, Az integrálszámítás lklmzás területek kiszámításár. Számítsuk ki z y=sin, ( [,π]) görbe és z tengely közé zárt területet. y T= π sin π sin d=[ cos ] π = = cosπ+cos =. Mekkor területű korlátos síkidomot htárolnk z y= és y= egyenletekkel megdott lkztok? Ábrázolj ezt korlátos síkidomot derékszögű koordinátrendszerben. y y= y= A = másodfokú egyenletet megoldv z = és = gyököket kpjuk, zz két lkzt z = és = helyeken metszi egymást. T= ( ) [ d= = ( = ) ( ) ] = 9 Készítette: Vjd István 84

12 Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4.4. Feldtok Számíts ki következő htároztln integrálokt:. Alpintegrálokr visszvezethető feldtok: ) c) g) i) Megoldás: ( 5+ ) d b) ( + cos sin ) d d) ( ) ch + 4 sh d f) sin cos d h) ( sin ) + d ( ) d (e + 5 cos ) d ctg d + d ) ( 5+ ) d= 5 + +C b) ( ) d= ( ) d= C c) ( + cos sin ) d= + sin +cos +C d) (e + 5 cos ) d=e + 5 sin ln + C ( ) ch + 4 sh d= sh + 4 ch +C f) cos ctg sin ( ) d= sin d= sin d= sin d = ctg +C sin cos g) d= sin d= +C ( ) + ( h) + d= 4 d= 4 ) d= 4 rctg +C + + ( ) i) + d= rcsin +C Készítette: Vjd István 85

13 Villmosmérnök Szk, Távokttás Mtemtik segédnyg. ) c) g) i). ) c) g) i) 4. ) c) 5. ) d) (4+) 6 d b) 5 d ( d] d) ) d (sin 5 cos ) d f) +9 d ( ) 4 d h) cos d 4 sh (6 ) d +5 d b) d ( ) 6 ( + 5+) 7 d d) ( cos sin cos sin ) d rctg sin d f) + d rcsin ch d h) sh sh d ( ) 5 d d b) ctg d tg d d) th(+)d e cos d f) e + 5 sin d ( e d b) ( ) sin ) d c) e d e ch (e 6) d + 4 d 6. Alklmzz prciális integrálás módszerét. ) sin d b) cos d c) sin d d) sin d (+) cos d f) e d g) ln d h) rcsin d i) rctg d 7. Alklmzz rcionális törtek integrálásár tnult módszereket. 4 ) d b) d c) d d d) d f) (+) d 8. Végezze el következő integrálásokt helyettesítéssel: Készítette: Vjd István 86

14 Villmosmérnök Szk, Távokttás Mtemtik segédnyg ) d) d + e + e b) d e + d c) + d f) sin e e + d d +cos Készítette: Vjd István 87

15 Villmosmérnök Szk, Távokttás Mtemtik segédnyg. Számíts ki következő htározott integrálok értékét: ) i) π π ( + 5 ) d b) d + f) cos 5 d j) 4 π π π 4 d c) d cos g) cos d k) sin 6 π π sin d d) π 6 tg d h) 4 ln d l) + d d e rctg + d m) π π sin sin 6 d n) ch 5 d. Alklmzz prciális integrálás módszerét htározott integrálokr: π ( ) e d b) sin π ) π d c) cos d 4 d) rctg( )d e (+) ln d. Alklmzzon helyettesítéses integrálást következő integrálok kiszámításár: π 4 ln 5 sin e + ) d b) d c) 4+ cos + e + d 4. Számolj ki megdott függvény és z -tengely közötti területet megdott intervllumbn: ) [ ] f () =, [, 4] b) f () = ln, [, e] c) f () = rcsin,, 5. Htározz meg z f ()=4 + és g()= + 8 függvények grfikonji áltl htárolt korlátos síkidom területét. Készítette: Vjd István 88

Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál

Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál Htározott integrál definíció folytonos függvények esetén definíció korlátos függvények esetén Newton -Leibniz szbály integrálási szbályok lklmzások improprius integrál Legyen z f függvény [, b]-n értelmezett

Részletesebben

A Riemann-integrál intervallumon I.

A Riemann-integrál intervallumon I. A Riemnn-integrál intervllumon I. A htározott integrál foglm és kiszámítás Boros Zoltán Debreceni Egyetem, TTK Mtemtiki Intézet, Anĺızis Tnszék Debrecen, 2017. március 6. Zárt intervllum felosztási A továbbikbn,

Részletesebben

9. HATÁROZATLAN INTEGRÁL

9. HATÁROZATLAN INTEGRÁL 9. HATÁROZATLAN INTEGRÁL 9. Definíció és lpintegrálok. Definíció. Legyen f : I R dott függvény (I R egy intervllum). A F : I R függvényt f függvény primitív függvényének nevezzük I-n, h F differenciálhtó

Részletesebben

= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1

= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1 Htározott integrál megoldások + 7 + + 9 = 9 6 A bl végpontokt válsztv: i = i n, i+ i = n, fξ i = i 6 d = lim n n i= i n n = n lim n n i = lim n i= A jobb végpontokt válsztv: fξ i = n i, n i d = lim n n

Részletesebben

5.1. A határozatlan integrál fogalma

5.1. A határozatlan integrál fogalma 9 5. Egyváltozós vlós függvények integrálszámítás 5.. A htároztln integrál foglm Az eddigiekben megismertük differenciálás műveletét, melynek lpfeldt: dott f függvényhez megkeresni z f derivált függvényt.

Részletesebben

Gazdasági matematika I. tanmenet

Gazdasági matematika I. tanmenet Gzdsági mtemtik I. tnmenet Mádi-Ngy Gergely A hivtkozásokbn z lábbi két tnkönyvre utlunk: Cs: Csernyák László (szerk.): Anlízis, Nemzeti Tnkönyvkidó 200. D: Denkinger Géz: Anlízis gykorltok, Nemzeti Tnkönyvkidó

Részletesebben

Improprius integrálás

Improprius integrálás Improprius integrálás. feruár 9.. Feldt: d Megoldás: Egy improprius integrált kell meghtározni, mivel fels integrálási htár. Deníció: H z f() függvény integrálhtó z, intervllum ármely, részin- tervllumán,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logritmusos feldtok A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z

Részletesebben

A határozott integrál fogalma és tulajdonságai

A határozott integrál fogalma és tulajdonságai . fejezet Htározott integrál A htározott integrál foglm és tuljdonsági D. Legyen f z [, b] intervllumon legfeljebb véges számú pont kivételével mindenütt értelmezett korlátos vlós függvény, továbbá legyen

Részletesebben

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összeoglló Mátrilgeri összeoglló: ) Mátri értelmezése, jelölése: Mátri: skláris

Részletesebben

A határozott integrál

A határozott integrál A htározott integrál Bevezető problém: Egyenes úton egy utó időben változó v(t) = ds/dt sebességgel hld. A mindenkori sebesség ismeretében szeretnénk kiszámolni, hogy mekkor utt tesz meg vlmely t b időintervllumbn.

Részletesebben

Gyökvonás. Hatvány, gyök, logaritmus áttekintés

Gyökvonás. Hatvány, gyök, logaritmus áttekintés Htvány, gyök, logritmus áttekintés. osztály Gyökvonás Négyzetgyök: Vlmely nem negtív vlós szám négyzetgyöke olyn nem negtív vlós szám, melynek négyzete z szám. Mgj.: R = Azonosságok: b ; b k ;, h, b R

Részletesebben

Tekintsük az I (I R) intervallumon értelmezett f : I R függvényt. Ebben a

Tekintsük az I (I R) intervallumon értelmezett f : I R függvényt. Ebben a . . Egyváltozós függvények htároztln integrálj. Egyváltozós függvények htároztln integrálj PAP MARGIT. A primitív függvény foglm Tekintsük z I (I R) intervllumon értelmezett f : I R függvényt. Ebben prgrfusbn

Részletesebben

2. NUMERIKUS INTEGRÁLÁS

2. NUMERIKUS INTEGRÁLÁS numerikus nlízis ii. 39 B - SPLINEOK DERIVÁLTJÁRA ÉRVÉNYES : B mi x =m Bm,i x B m,ix. t i+m t i t i+m+ t i+. NUMERIKUS INTEGRÁLÁS Htározott integrálok numerikus kiszámítás mtemtik egyik legrégebbi problémáj.

Részletesebben

Minta feladatsor I. rész

Minta feladatsor I. rész Mint feldtsor I. rész. Írj fel z A számot htványként! A / pont/. Mekkor hosszúságú dróttl lehet egy m m-es tégllp lkú testet z átlój mentén felosztni két derékszögű háromszögre? Adj meg hosszúságot mértékegységgel!

Részletesebben

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 1 MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összefoglló 11 Mátrilgeri összefoglló: ) Mátri értelmezése, jelölése: Mátri:

Részletesebben

7. HATÁROZATLAN INTEGRÁL. 7.1 Definíció és alapintegrálok

7. HATÁROZATLAN INTEGRÁL. 7.1 Definíció és alapintegrálok 7. HATÁROZATLAN INTEGRÁL 7. efiníió és lpintegrálok efiníió. Legyen f : I R dott függvény (I R egy intervllum). A F : I R függvényt f függvény primitív függvényének nevezzük I-n, h F differeniálhtó I-n,

Részletesebben

Analízis II. harmadik, javított kiadás

Analízis II. harmadik, javított kiadás Ljkó Károly Anlízis II. hrmdik, jvított kidás Debreceni Egyetem Mtemtiki és Informtiki Intézet 2003 c Ljkó Károly ljko @ mth.klte.hu Amennyiben hibát tlál jegyzetben, kérjük jelezze szerzőnek! A jegyzet

Részletesebben

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei 7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,

Részletesebben

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van)

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van) Mgyr Eszter. tétel Függvények vizsgált elemi úton és dierenciálszámítás elhsználásávl Függvény: H egy A hlmz minden eleméhez hozzárendelünk egy B hlmz egy-egy elemét, kkor egy A-ból B-be rendelı üggvényt

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

Gyakorló feladatsor 11. osztály

Gyakorló feladatsor 11. osztály Htvány, gyök, logritmus Gykorló feldtsor 11. osztály 1. Számológép hsznált nélkül dd meg z lábbi kifejezések pontos értékét! ) b) 1 e) c) d) 1 0, 9 = f) g) 7 9 =. Számológép hsznált nélkül döntsd el, hogy

Részletesebben

(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): ---

(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): --- A ttárgy eve: Mtemtik I Heti órszám: 3+3 (6 kredit) Ttárgy kódj: GEMAN0B (ygmérök ppli BSc + felsőf szkk) A tárgy lezárás: láírás + kollokvium Okttók: Dr Vrg Péter ETF (előt feltétel): --- Algebr, lieáris

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Feladatok november

IV. INTEGRÁLSZÁMÍTÁS Feladatok november IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin

Részletesebben

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke? . Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik

Részletesebben

Határozatlan integrál, primitív függvény

Határozatlan integrál, primitív függvény Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,

Részletesebben

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

KALKULUS INFORMATIKUSOKNAK I.

KALKULUS INFORMATIKUSOKNAK I. Írt: GYŐRI ISTVÁN PITUK MIHÁLY KALKULUS INFORMATIKUSOKNAK I. Egyetemi tnnyg 20 COPYRIGHT: 20 206, Dr. Győri István, Dr. Pituk Mihály, Pnnon Egyetem Műszki Informtiki Kr Mtemtik Tnszék LEKTORÁLTA: Dr. Molnárk

Részletesebben

Fekete Mária. Matematika II. Pécsi Tudományegyetem Pollack Mihály Műszaki Kar Matematika Tanszék

Fekete Mária. Matematika II. Pécsi Tudományegyetem Pollack Mihály Műszaki Kar Matematika Tanszék Mtemtik II. Pollck jegzetek Fekete Mári Mtemtik II. Pécsi Tudománegetem Pollck Mihál Műszki Kr Mtemtik Tnszék Pécs, 2007 A jegzet PTE PMMK építőmérnök szk PMMANB312, PMMANB926 tntárgkódú Mtemtik II. kurzus

Részletesebben

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós

Részletesebben

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN 4 trigonometri lklmzás geometrián IX TRIGONOMETRI LKLMZÁS GEOMETRIÁN IX szinusz tétel Feldt Számítsd ki z háromszög köré írhtó kör sugrát háromszög egy oldl és szemen fekvő szög függvényéen Megoldás z

Részletesebben

0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha

0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha Vegyük észre, hogy egy mérhet f függvény pontosn kkor integrálhtó, h f dµ =. lim N Ez indokolj következ deníciót. { f α >N}. Deníció. Egy X, A, µ téren értelmezett mérhet függvényekb l álló vlmely f α

Részletesebben

Absztrakt vektorterek

Absztrakt vektorterek Absztrkt vektorterek Összeállított: dr. Leitold Adrien egyetemi docens 213. 1. 8. Absztrkt vektorterek /1. Absztrkt vektortér definíciój Legyen V egy hlmz, egy test (pl. vlós vgy komplex számtest), és

Részletesebben

( x) XI. fejezet. Határozott integrál, terület és térfogat számítás. Elméleti áttekintés. A határozott integrál definícióját ld. a jegyzetben.

( x) XI. fejezet. Határozott integrál, terület és térfogat számítás. Elméleti áttekintés. A határozott integrál definícióját ld. a jegyzetben. Htározott integrál, terület és térogt számítás XI. ejezet Htározott integrál, terület és térogt számítás Elméleti áttekintés A htározott integrál deinícióját ld. jegzeten. Newton-Leiniz tétel: ( ) d [

Részletesebben

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK...

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK... TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I FEJEZET A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL 5 II FEJEZET INTEGRÁLÁSI MÓDSZEREK 8 III FEJEZET A HATÁROZATLAN INTEGRÁLOK ALKALMAZÁSAI86 IV FEJEZET A HATÁROZOTT

Részletesebben

x a x, ha a > 1 x a x, ha 0 < a < 1

x a x, ha a > 1 x a x, ha 0 < a < 1 EL 18 Valós exponenciális függvények Definíció: Ha a R, a>0, akkor legyen a x = e x lna, x R A valós változós exponenciális függvények grafikonja: x a x, ha a > 1 x a x, ha 0 < a < 1 A szinusz függvény

Részletesebben

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő

Részletesebben

Numerikus módszerek 2.

Numerikus módszerek 2. Numerikus módszerek 2. 12. elődás: Numerikus integrálás I. Krebsz Ann ELTE IK 2015. május 5. Trtlomjegyzék 1 Numerikus integrálás 2 Newton Cotes típusú kvdrtúr formulák 3 Hibformulák 4 Összetett formulák

Részletesebben

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Függvények Analízis

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Függvények Analízis MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Függvények Anlízis A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z érintett feldtrészek megoldásához!

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Integrálszámítás (Gyakorló feladatok). Határozatlan integrál. Alapintegrálok F. Számítsa ki az alábbi határozatlan integrálokat! a) (x x + ) b) (6x x + 5) c) (x + x + x ) d) ( x + x x e) ( ) + e x ) f)

Részletesebben

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2 Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...

Részletesebben

Analízis házi feladatok

Analízis házi feladatok Analízis házi feladatok Készült a PTE TTK GI szakos hallgatóinak Király Balázs 200-. I. Félév 2 . fejezet Első hét.. Házi Feladatok.. Házi Feladat. Írjuk fel a következő sorozatok 0.,., 2., 5., 0. elemét,

Részletesebben

M. 2. Döntsük el, hogy a következő két szám közül melyik a nagyobb:

M. 2. Döntsük el, hogy a következő két szám közül melyik a nagyobb: Mgyr Ifjúság (Rábi Imre) Az előző években közöltük Mgyr Ifjúságbn közös érettségi-felvételi feldtok megoldását mtemtikából és fizikából. Tpsztltuk, hogy igen ngy volt z érdeklődés lpunk e szám iránt. Évente

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C )

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C ) Hlmzelmélet Kojukció: (és) (csk kkor igz h midkét állítás igz) Diszjukció: (vgy) (csk kkor hmis h midkét állítás hmis) Implikáció: A B (kkor és csk kkor hmis h A igz és B hmis) Ekvivleci: A B (kkor és

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Okttási Hivtl A 013/014 tnévi Országos Középiskoli Tnulmányi Verseny első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Jvítási-értékelési útmuttó 1 Oldj meg vlós számok hlmzán egyenletet! 3 5 16 0

Részletesebben

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) (11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)

Részletesebben

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt, 205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:

Részletesebben

Feladatok matematikából 3. rész

Feladatok matematikából 3. rész Debreceni Egyetem Matematikai Intézet Feladatok matematikából 3. rész fizika és villamosmérök alapszakos hallgatók részére Debrecen, 6 ősz Határozatlan integrál. Számítsuk ki a következő integrálokat!

Részletesebben

ANALÍZIS II. DEFINÍCIÓK, TÉTELEK

ANALÍZIS II. DEFINÍCIÓK, TÉTELEK ANALÍZIS II. DEFINÍCIÓK, TÉTELEK Szerkesztette: Blogh Tmás 2013. jnuár 16. H hibát tlálsz, kérlek jelezd info@bloghtms.hu e-mil címen! Ez Mű Cretive Commons Nevezd meg! - Ne dd el! - Így dd tovább! 3.0

Részletesebben

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7

Részletesebben

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM Felhsznált segédletek, példtárk:. Nemzetközi Elıkészítı Int. NEI. Összefoglló feldtgőjtemén ÖF. Szécheni István Fıiskol Távokt. SzIT. Mőszki Fıiskol Példtár MFP Szent

Részletesebben

Néhány szó a mátrixokról

Néhány szó a mátrixokról VE 1 Az Néhány szó mátrixokról A : 11 1 m1 1 : m......... 1n n : mn tábláztot, hol ij H (i1,,m, j1,,n) H elemeiből képzett m n típusú vlós mátrixnk nevezzük. Továbbá zt mondjuk, hogy A-nk m sor és n oszlop

Részletesebben

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},

Részletesebben

a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a

a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a 44 HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, évfolym MEGOLDÁSOK Mutssuk meg, hogy egy tetszőleges tégltest háromféle lpátlójából szerkesztett háromszög hegyesszögű lesz! 6 pont A tégltest egy

Részletesebben

lim 2 2 lim 2 lim 1 lim 3 4 lim 4 FOLYTONOSSÁG 1 x helyen? ( 2 a matek világos oldala Mosóczi András 4.1.? 4.5.? 4.2.? 4.6.? 4.3.? 4 4.7. 4.4.? 4.8.?

lim 2 2 lim 2 lim 1 lim 3 4 lim 4 FOLYTONOSSÁG 1 x helyen? ( 2 a matek világos oldala Mosóczi András 4.1.? 4.5.? 4.2.? 4.6.? 4.3.? 4 4.7. 4.4.? 4.8.? FÜGGVÉNYEK HTÁÉTÉKE Mosóczi ndrás..?..?..?..?..?..?..?.8.? FOLYTONOSSÁG DEFINÍCIÓ. z üggvény olytonos az a helyen értelmezve van az a helyen létezik és véges a tárértéke az a helyen és a a DEFINÍCIÓ. z

Részletesebben

Differenciálgeometria feladatok

Differenciálgeometria feladatok Differenciálgeometri feldtok 1. sorozt 1. Egy sugrú kör csúszás nélkül gördül egy egyenes mentén. A kör egy rögzített kerületi pontj áltl leírt pályát cikloisnk nevezzük. () Írjuk fel ciklois egy c: R

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

Határozatlan integral, primitívkeresés (Antiderivált). HATÁROZATLAN INTEGRÁL, PRIMITÍVKERESÉS (PRIMITÍV FÜGGVÉNY, ANTIDERIVÁLT FOGALMA)

Határozatlan integral, primitívkeresés (Antiderivált). HATÁROZATLAN INTEGRÁL, PRIMITÍVKERESÉS (PRIMITÍV FÜGGVÉNY, ANTIDERIVÁLT FOGALMA) Határozatlan integral primitívkeresés (Antiderivált). HATÁROZATLAN INTEGRÁL PRIMITÍVKERESÉS (PRIMITÍV FÜGGVÉNY ANTIDERIVÁLT FOGALMA). Definíció A differenciálszámítás egyik legfontosabb feladata az hogy

Részletesebben

Határozatlan integrál

Határozatlan integrál Határozatlan integrál 205..04. Határozatlan integrál 205..04. / 2 Tartalom Primitív függvény 2 Határozatlan integrál 3 Alapintegrálok 4 Integrálási szabályok 5 Helyettesítéses integrálás 6 Parciális integrálás

Részletesebben

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk

Részletesebben

BEVEZETÉS AZ ANALÍZISBE

BEVEZETÉS AZ ANALÍZISBE BEVEZETÉS AZ ANALÍZISBE Jegyzetek és példtárk mtemtik egyetemi okttásához sorozt Algoritmuselmélet Algoritmusok bonyolultság Anlitikus módszerek pénzügyben és közgzdságtnbn Anlízis feldtgyűjtemény I Anlízis

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése Hrmdik típusú nyelvek és véges utomták Formális nyelvek, 10. gykorlt Házi feldtok megoldás 1. feldt Melyik nyelvet fogdj el következő utomt? c q 0 q 1 q 2 q 3 q 1 q 4 q 2 q 4 q 2 q 0 q 4 q 3 q 3 q 4 q

Részletesebben

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 007. október 5. KÖZÉPSZINT I. ) Az A hlmz elemei háromnál ngyobb egyjegyű számok, B hlmz elemei pedig húsznál kisebb pozitív pártln számok. Sorolj fel z hlmz elemeit! ( pont) A B AB

Részletesebben

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C, 25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény.

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény. Tartalomjegyzék Kétváltozós függvény integrálszámítása... Primitívfüggvény... Kettősintegrál... A kettősintegrál téglalap tartományon... A kettősintegrál létezésének szükséges feltétele... 3 Illusztráció...

Részletesebben

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4 Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Mtemtik középszint 061 ÉRETTSÉGI VIZSGA 007. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivlók Formi előírások:

Részletesebben

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek . Eponenciális és ritmusos egenletek, egenlőtlenségek Elméleti összefoglló H >, b>, és vlós számok, kkor + ( ) b ( b) H >, kkor z z ( ) ( ) f függvén szigorún monoton növekvő, míg h <

Részletesebben

INTEGRÁLSZÁMÍTÁS A GYAKORLATBAN. Készítette: Varga Viktor Témavezet : Sikolya Eszter

INTEGRÁLSZÁMÍTÁS A GYAKORLATBAN. Készítette: Varga Viktor Témavezet : Sikolya Eszter INTEGRÁLSZÁMÍTÁS A GYAKORLATBAN Készítette: Vrg Viktor Témvezet : Sikoly Eszter ELTE-TTK, Mtemtik Bsc Budpest, . fejezet Bevezetés Diplommunkám során z integrálszámítás gykorlti módszereibe szeretnék betekintést

Részletesebben

BEVEZETÉS AZ ANALÍZISBE

BEVEZETÉS AZ ANALÍZISBE BEVEZETÉS AZ ANALÍZISBE Mezei István, Frgó István, Simon Péter Eötvös Loránd Tudományegyetem Alklmzott Anlízis és Számításmtemtiki Tnszék ii Trtlomjegyzék 1. Előszó 1 2. Hlmzok, relációk, függvények 3

Részletesebben

4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval

4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval 4. fejezet Egyváltozós valós függvények deriválása Elm 4.. Differenciálás a definícióval A derivált definíciójával atározza meg az alábbi deriváltakat!. Feladat: f) = 6 + f 4) =? f 4) f4 + ) f4) 5 + 6

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Vektorok (folytatás)

Vektorok (folytatás) Vektorok (folyttás) Vektor szorzás számml (sklárrl) Vektor szorzás számml b 1 c 2b c 2 ( 1 ) 2 Az vektor k-szoros (k R, vgyis k egy vlós szám) z vektor, melynek hossz k, irány pedig k > 0 esetén irányávl

Részletesebben

Példatár Lineáris algebra és többváltozós függvények

Példatár Lineáris algebra és többváltozós függvények Példatár Lineáris algebra és többváltozós függvények Simonné Szabó Klára. február 4. Tartalomjegyzék. Integrálszámítás.. Racionális törtek integrálása...................... Alapfeladatok..........................

Részletesebben

Vektorok. Vektoron irányított szakaszt értünk.

Vektorok. Vektoron irányított szakaszt értünk. Vektorok Vektoron irányított szkszt értünk A definíció értelmében tehát vektort kkor ismerjük, h ismerjük hosszát és z irányát A vektort kövér kis betűkkel (, b stb) jelöljük, megkülönböztetve z, b számoktól,

Részletesebben

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6. Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L

Részletesebben

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá. Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek

Részletesebben

Függvényhatárérték és folytonosság

Függvényhatárérték és folytonosság 8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak

Részletesebben

Analízis jegyzet Matematikatanári Szakosok részére

Analízis jegyzet Matematikatanári Szakosok részére Anlízis jegyzet Mtemtiktnári Szkosok részére Sikoly Eszter ELTE TTK Alklmzott Anlízis és Számításmtemtiki Tnszék 203. július 2. Előszó Ez jegyzet elsősorbn z áltlános iskoli és középiskoli Mtemtiktnári

Részletesebben

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda Trigonometrikus egyenletek megoldása Azonosságok és 1 mintapélda Frissítve: 01. novermber 19. :07:41 1. Azonosságok 1.1. Azonosság. A sin és cos szögfüggvények derékszög háromszögben vett, majd kiterjesztett

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Itegrálszámítás Gykorló feldtok Progrmtervező mtemtikus szkos hllgtókk z Alízis. című tárgyhoz Összeállított Bese Atl, Csillg Dávid, Kiss Blázs, Mátyás Gergely, Szili László 4. október Trtlomjegyzék I.

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =

Részletesebben

2. modul Csak permanensen!

2. modul Csak permanensen! MATEMATIKA C. évfolym. modul Csk permnensen! Készítette: Kovács Károlyné Mtemtik C. évfolym. modul: Csk permnensen! Tnári útmuttó A modul célj Időkeret Ajánlott korosztály Modulkpcsolódási pontok A htványzonosságok

Részletesebben

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex

Részletesebben

GAZDASÁGI MATEMATIKA I.

GAZDASÁGI MATEMATIKA I. GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z

Részletesebben

4 x. Matematika 0 1. előadás. Végezzük el a műveleteket! Alakítsuk szorzattá a következő kifejezéseket! 5. Oldjuk meg az alábbi egyenleteket!

4 x. Matematika 0 1. előadás. Végezzük el a műveleteket! Alakítsuk szorzattá a következő kifejezéseket! 5. Oldjuk meg az alábbi egyenleteket! Mtemtik 0. elődás Végezzük el műveleteket!. 6... Alkítsuk szorzttá következő kifejezéseket!. 8 6 6. 7. 8. y Oldjuk meg z lái egyenleteket! 9. 0. 7 0 7 6. 7. Egy kétjegyű szám számjegyeinek összege. H felseréljük

Részletesebben

Gyakorló feladatsor 9. osztály

Gyakorló feladatsor 9. osztály Gykorló feldtsor 9. osztály Hlmzok. Sorold fel z lábbi hlmzok elemeit! ) A={ legfeljebb kétjegyű 9-cel oszthtó páros pozitív számok} b) B={:prímszám, hol < 7} c) C={b=n+, hol nϵz és- n

Részletesebben

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC 6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen

Részletesebben

Analízis. Szász Róbert

Analízis. Szász Róbert Anlízis Szász Róbert . fejezet Improprius integrálok.. Improprius integrálok... Értelmezés. Legyen < b. Adott z f : [, b) R függvény. H bármely u (, b) esetén létezik z véges lim u b u u f()d htározott

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Mtemtik emelt szint 1111 ÉRETTSÉGI VIZSGA 011. május. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Formi előírások: Fontos tudnivlók 1.

Részletesebben

Matematikai analízis II.

Matematikai analízis II. Matematikai analízis II. Feladatgyűjtemény GEMAN6-B Gazdaságinformatikus, Programtervező informatikus és Mérnökinformatikus hallgatók részére Lengyelné Dr. Szilágyi Szilvia 6 . feladatlap Implicit függvények

Részletesebben

Hatványsorok, elemi függvények

Hatványsorok, elemi függvények Hatványsorok, elemi függvények EL 1 Hatványsorok, elemi függvények Hatványsorok, elemi függvények EL Definíció: függvénysorozat Legyen A R, H { f f:a R }. (A H halmaz elemei az A halmazon értelmezett függvények)

Részletesebben