Improprius integrálás
|
|
- Zsófia Fekete
- 6 évvel ezelőtt
- Látták:
Átírás
1 Improprius integrálás 7. feruár.. Feldt: d Megoldás: Egy improprius integrált kell meghtározni, mivel fels integrálási htár. Deníció: H z f() függvény folytonos z, intervllumon, vlmint létezik f()d htárérték (véges), kkor zt mondjuk, hogy z f() függvény improprius integrálj létezik z, intervllumon és f()d f()d H htárérték nem véges, kkor z improprius integrál nem létezik (divergens). Most z integrndus folytonos, lklmzhtjuk deníciót: d d Szükségünk vn egy primitív függvényre. Azért hogy megoldás jon átláthtó legyen, végezzük el külön htároztln integrál keresését, mjd térjünk vissz z improprius integrál meghtározásához. d Folytssuk z improprius integrálást: felhsználv: d d + c + c + d + + h Tehát htárérték létezik (véges), z improprius integrál is létezik és d
2 . Feldt: d Megoldás: Az dott intervllumon folytonos függvény improprius integrálját kell meghtározni, h létezik. Tehát d d Szükségünk vn htároztln integrálr. d Folytssuk z improprius integrál meghtározását. d felhsználv: + c + c + + d + h Tehát d. Feldt: + d Megoldás: Az dott intervllumon folytonos függvény improprius integrálját keressük, h létezik. d + + d Külön végezzük el htároztln integrál számítását. ( + ) d ( + ) Folytssuk z improprius integrálást: felhsználv: ( + ) + ( + ) d + c ( + ) d ( + ) + c ( + ) ( + ) + 6 h ( + ) ( + ) Mivel htárérték nem egy véges vlós szám, hnem, ezért z improprius integrál nem létezik (divergens).
3 . Feldt: e d Megoldás: Az integrndus folytonos z dott intervllumon, így: Felhsználv, hogy: folytssuk z integrálást: Felhsználv, mivel: kkor Tehát e e d e d e + c e d e e e + + e e ( ) e +. Feldt: e d d Megoldás: Most z lsó integrációs htár. Deníció H z f() függvény folytonos z, intervllumon, vlmint f()d htárérték létezik (véges), kkor zt mondjuk, hogy z f() függvény improprius integrálj létezik, intervllumon és f()d f()d H htárérték nem véges, kkor z improprius integrál nem létezik (divergens). Tehát d d
4 A htároztln integrál: d Folytssuk z improprius integrálást. ( ) d ( ) ( ) + c + c d felhsználv: + + h Mivel htárérték nem egy véges vlós szám, hnem, ezért z improprius integrál nem létezik (divergens). 6. Feldt: ( + ) d Megoldás: A deníció lpján: ( + d ) ( + ) d Állítsuk el htároztln igtegrált: ( + ) d ( + ) d }{{} ( } + {{ } ) d g g ( + ) + c ( + ) + c Folytssuk z improprius integrálást: ( + d ) ( + d ) ( + ( ) ) + ( + ) ( + ) + c ( + ) Felhsználv, hogy: ( + ) 7. Feldt: 6 7 d 6 7 d
5 . Feldt: d Az improprius integrál nem létezik. 9. Feldt:. Feldt: 9 ( + ) d 9 ( + ) d 9 ( + 9) d ( + 9) d. Feldt: e d. Feldt: e d e e d e d e. Feldt: 6 d ( + ) Az improprius integrál nem létezik.. Feldt: + d + d π + π π
6 . Vizsgfeldt: e d Megoldás: Most z egyik integrációs htár sem véges. Ilyen eseten feldtot visszvezetjük z el z esetekre. H f függvény integrálhtó ármely részintervllumon és c egy tetsz leges vlós szám, vlmint c f()d és c f()d improprius integrálok külön-külön léteznek, kkor c f()d f()d + f()d c El ször keressünk primitív függvényt. Alklmzzuk z lái integrálási szályt: F ( + ) f( + ) + c hol F () f() Een z eseten: + és e d e + C e + C Térjünk vissz z improprius integrál meghtározásár. A deníción szerepl c ármilyen vlós szám lehet. Legyen most c. e d e d + e d Htározzuk meg külön-külön z improprius integrálokt. Felhsználv, hogy: e d e e e d e e e e e h e Felhsználv: e d e e e d e e e h e 6
7 Mivel vizsgált improprius integrálok közül z egyik nem létezik, ezért e d sem létezik (divergens). Megjegyzés: A feldt kicsit egyszer en is megoldhtó, h felhsználjuk, hogy c f()d f()d + f()d c F (c) F () + F () F (c) F () F () feltéve, hogy két htárérték külön-külön létezik. e d e ; e e e e ; Az egyik htárérték nem véges, így keresett improprius integrál nem létezik. 6. Feldt: Megoldás: + d El ször végezzük el primitív függvény keresését. Vegyük észre, hogy számlálón vítéssel nem tudjuk kilkítni nevez deriváltját ( hiányzik). Vezessük vissz feldtot rctg deriváltjár. + d Hsználjuk fel deníciót: 7. Vizsgfeldt: }{{} g + ( ( ) d rctg + C }{{} ) g d rctg ( ) + ; rctg ( ) rctg ( ) π π π e d Megoldás: Egy folytonos függvény improprius integrálját keressük, mivel fels integrálási htár. e d g {}}{ }{{} e d e + c g 7
8 A primitív függvény segítségével htározzuk meg z improprius integrált. felhsználv:. Vizsgfeldt: e d e + e e d e e h kkor és ln d + + e Megoldás: A fels integrációs htár, egy improprius integrált keresünk. El ször djuk meg htároztln integrált. Felhsználv, hogy: ezért, h f() ln, kkor f (), tehát f n ()f ()d f n+ () n + + c n ln d (ln }{{} ) g }{{} g d ln + c ln + c Az improprius integrál: felhsználv: 9. Vizsgfeldt: ln d ln + ln ln d ln + ln ln h ln e d + e ln + ln ln Megoldás: Az lsó integrációs htár, egy improprius integrált keresünk. A primitív függvény meghtározásávl kezdjük. e + e d e + e d ln + e + c
9 felhsználv: e d + e ln + e ln + e ln + e ln ln ln h e + e Tehát. Vizsgfeldt: Megoldás: Alklmzzuk deníciót: e + e d ln ( ) d 6 ( ) d 6 ( ) d 6 A primitív függvény keresésénél lklmzzuk z lái integrálási szályt: f n ()f ()d f n+ () + c h n n + ( ) d ( ) 6 6 d ( }{{} ) 6 ( ) ( }{{} )d g g Tláltunk primitív függvényt, vizsgáljuk meg z improprius integrált. + c ( ) d 6 ( ) d 6 ( ) Tehát ( ) d 6. Vizsgfeldt: ( ) d 9
10 Megoldás: Alklmzzuk deníciót: d ( ) ( ) d Következ lépés primitív függvény el állítás: ( ) d ( ) d ( ) + c + c Folytssuk z improprius integrál kiszámolását: d ( ) ( ) d felhsználv: 6 h. Feldt: Megoldás: + d El ször végezzük el primitív függvény keresését. Az integrndus egy vlódi rcionális tört. Vegyük észre, hogy számlálón vítéssel kilkíthtó nevez deriváltj. Mivel ( + ) 6, vítsünk 6-tl. + d d 6 ln + + C Mivel + >, ezért z szolútértéket továikn elhgyhtjuk. Hsználjuk fel, hogy f()d c f()d + hol c egy tetsz leges vlós szám, legyen most c. + d + d + c f()d + d Htározzuk meg külön-külön z improprius integrálokt. d d ln( + )
11 felhsználv: 6 ln 6 ln( + ) 6 ln( + ) h + ln( + ) Mivel már z els htárérték nem véges ezért létezik (divergens).. megoldás: d improprius integrál nem + d + ; ; d + ; 6 ln( + ) 6 ln( + ) 6 ln( + ) 6 ln( + ) 6 ln( + ) Mivel htárértékek külön-külön nem végesek, z improprius integrál nem létezik.. Vizsgfeldt: + ( ) d Megoldás: Egyik integrációs htár sem véges, tehát egy improprius integrált keresünk. El ször djunk primitív függvényt. Vegyük észre, hogy ( ) ( + ) Alkítsuk z integrndust f(g())g () lkúr. + ( ) d ( + )( ) d Most már hsználhtjuk z f(g())g ()d F (g()) integrálási szályt: ( ) ( ) Az improprius integrál: + ( d ) ; ( ) felhsználv: ( ) + + h ( ) ( ) Mindkét htárérték véges, z improprius integrál létezik és értéke. ( )
12 . Vizsgfeldt:. Vizsgfeldt: e d d divergens 7 6. Vizsgfeldt: 7. Vizsgfeldt:. Vizsgfeldt: 9. Vizsgfeldt: e ln 6 d 6 e ln d 7 + d 7 π d divergens +. Vizsgfeldt: Htározz meg f()d értékét, h { f() h < < h különen f()d d. Vizsgfeldt: Htározz meg f()d értékét, h {, e, h < f() h különen f()d, e, d e, e,. Vizsgfeldt: Htározz meg f()d értékét, h { f() 6 h < < 7 h különen f()d 6 d 6,
13 . Vizsgfeldt: Htározz meg f()d improprius integrált, h { + f() h < < különen Megoldás: d + f()d + d + f()d + d + f()d + ( + ) f()d. Vizsgfeldt: Htározz meg f()d improprius integrált, h Megoldás: f()d e + { f() f()d + h e h > f()d d + + ( 7 ) e + +. Vizsgfeldt: Htározz meg f()d improprius integrált, h { h f() (+) h > e d Megoldás: Az integrndus most egy szkszosn deniált függvény.alklmozhtjuk tnult deníciót. Most legyen c. f()d f()d + f()d d + ( + ) d + d ( + ) Felhsználv, hogy : ( + ) d ( + ) d ( + ) + c + + c Mivel htárérték véges, z improprius integrál létezik és értéke.
Improprius integrálás
Improprius integrálás. feruár 9.. Feldt: d Megoldás: Egy improprius integrált kell meghtározni, mivel fels integrálási htár. Deníció: H z f() függvény integrálhtó z, intervllum ármely, részin- tervllumán,
RészletesebbenLaplace-transzformáció. Vajda István február 26.
Anlízis elődások Vjd István 9. február 6. Az improprius integrálok fjtái Tegyük fel, hogy egy vlós-vlós függvényt szeretnénk z I intervllumon integrálni, de függvény nincs értelmezve I minden pontjábn,
Részletesebbenf (ξ i ) (x i x i 1 )
Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <
RészletesebbenHatározott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál
Htározott integrál definíció folytonos függvények esetén definíció korlátos függvények esetén Newton -Leibniz szbály integrálási szbályok lklmzások improprius integrál Legyen z f függvény [, b]-n értelmezett
RészletesebbenKalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév
Klkulus II. Beugró kérdések és válszok 2012/2013 s tnév II. félév 1. Legyen ], b[ R nemüres, nyílt intervllum, f :], b[ R függvény. Hogyn vn értelmezve z f függvény primitív függvénye? Válsz. Legyen ],
Részletesebben5.1. A határozatlan integrál fogalma
9 5. Egyváltozós vlós függvények integrálszámítás 5.. A htároztln integrál foglm Az eddigiekben megismertük differenciálás műveletét, melynek lpfeldt: dott f függvényhez megkeresni z f derivált függvényt.
RészletesebbenMatematika A1a - Analízis elméleti kérdései
Mtemtik A1 - Anlízis elméleti kérdései (műszki menedzser szk, 2018. ősz) Kör egyenlete Az (x 0, y 0 ) középpontú, R sugrú kör egyenlete síkon (x x 0 ) 2 + (y y 0 ) 2 = R 2. Polinom Az x n x n + n 1 x n
RészletesebbenFüggvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim.
Függvények 205. július 3. Határozza meg a következ határértékeket!. Feladat: 2. Feladat: 3. Feladat: 4. Feladat: (2 + 7 5 ) (2 + 7 5 ) (2 + 0 ) (2 + 7 5 ) (2 + 7 5 ) (2 + 0) (2 + 0 7 5 ) (2 + 0 7 5 ) (2
RészletesebbenA Riemann-integrál intervallumon I.
A Riemnn-integrál intervllumon I. A htározott integrál foglm és kiszámítás Boros Zoltán Debreceni Egyetem, TTK Mtemtiki Intézet, Anĺızis Tnszék Debrecen, 2017. március 6. Zárt intervllum felosztási A továbbikbn,
Részletesebben= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1
Htározott integrál megoldások + 7 + + 9 = 9 6 A bl végpontokt válsztv: i = i n, i+ i = n, fξ i = i 6 d = lim n n i= i n n = n lim n n i = lim n i= A jobb végpontokt válsztv: fξ i = n i, n i d = lim n n
Részletesebben0.1 Deníció. Egy (X, A, µ) téren értelmezett mérhet függvényekb l álló valamely (f α ) α egyenletesen integrálhatónak mondunk, ha
Vegyük észre, hogy egy mérhet f függvény pontosn kkor integrálhtó, h f dµ =. lim N Ez indokolj következ deníciót. { f α >N}. Deníció. Egy X, A, µ téren értelmezett mérhet függvényekb l álló vlmely f α
RészletesebbenGazdasági matematika I. tanmenet
Gzdsági mtemtik I. tnmenet Mádi-Ngy Gergely A hivtkozásokbn z lábbi két tnkönyvre utlunk: Cs: Csernyák László (szerk.): Anlízis, Nemzeti Tnkönyvkidó 200. D: Denkinger Géz: Anlízis gykorltok, Nemzeti Tnkönyvkidó
Részletesebben1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 1 MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összefoglló 11 Mátrilgeri összefoglló: ) Mátri értelmezése, jelölése: Mátri:
RészletesebbenImproprius integrálás
Improprius intgrálás Tnulási cél Htározott intgrál foglmánk kitrjsztés végtln intrvllumr. Dfiníciók lklmzás konkrét fldtok stén. Motivációs péld Eddig htározott intgrált csk végs zárt intrvllumon számoltunk.
Részletesebben12. Határozatlan és határozott integrál
. Htároztln és htározott integrál Tnulási cél: Megismerni htároztln és htározott integrál foglmát. Elsjátítni z lpintegrálokt, és z egyszerű integrálási tételeket, vlmint Newton-Leiniz-formulát. Ezen ismereteket
RészletesebbenVI. Deriválható függvények tulajdonságai
1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn
RészletesebbenPéldatár Lineáris algebra és többváltozós függvények
Példatár Lineáris algebra és többváltozós függvények Simonné Szabó Klára. február 4. Tartalomjegyzék. Integrálszámítás.. Racionális törtek integrálása...................... Alapfeladatok..........................
RészletesebbenTekintsük az I (I R) intervallumon értelmezett f : I R függvényt. Ebben a
. . Egyváltozós függvények htároztln integrálj. Egyváltozós függvények htároztln integrálj PAP MARGIT. A primitív függvény foglm Tekintsük z I (I R) intervllumon értelmezett f : I R függvényt. Ebben prgrfusbn
Részletesebben1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összeoglló Mátrilgeri összeoglló: ) Mátri értelmezése, jelölése: Mátri: skláris
RészletesebbenA határozott integrál fogalma és tulajdonságai
. fejezet Htározott integrál A htározott integrál foglm és tuljdonsági D. Legyen f z [, b] intervllumon legfeljebb véges számú pont kivételével mindenütt értelmezett korlátos vlós függvény, továbbá legyen
RészletesebbenHatározzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke (
9 4 FÜGGVÉNYVIZSGÁLAT Htározzuk meg, hogy következő függvényeknek vn-e és hol zérushelye, továbbá helyi szélsőértéke és bszolút szélsőértéke (41-41): 41 f: f, R 4 f: 4 f: f 5, R f 5 44 f: f, 1, 1 1, R
RészletesebbenObudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz
Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},
Részletesebben9. HATÁROZATLAN INTEGRÁL
9. HATÁROZATLAN INTEGRÁL 9. Definíció és lpintegrálok. Definíció. Legyen f : I R dott függvény (I R egy intervllum). A F : I R függvényt f függvény primitív függvényének nevezzük I-n, h F differenciálhtó
RészletesebbenAz integrálszámítás néhány alkalmazása
Az integrálszámítás néhány lklmzás (szerkesztés ltt) Dr Toledo Rodolfo 4 november 4 Trtlomjegyzék Két függvények áltl htárolt terület Forgástestek térfogt és felszíne 5 3 Ívhosszszámítás 7 4 Feldtok 8
RészletesebbenTöbbváltozós analízis gyakorlat
Többváltozós nlízis gykorlt Áltlános iskoli mtemtiktnár szk 07/08. őszi félév Ajánlott irodlom (sok gykorló feldt, megoldásokkl: Thoms-féle klkulus 3., Typote, 007. (Jól hsználhtók z -. kötetek is Fekete
Részletesebben( x) XI. fejezet. Határozott integrál, terület és térfogat számítás. Elméleti áttekintés. A határozott integrál definícióját ld. a jegyzetben.
Htározott integrál, terület és térogt számítás XI. ejezet Htározott integrál, terület és térogt számítás Elméleti áttekintés A htározott integrál deinícióját ld. jegzeten. Newton-Leiniz tétel: ( ) d [
RészletesebbenEls gyakorlat. vagy más jelöléssel
Els gykorlt Egyszer egyenletek, EHL PDE A gykorlt elején megismerkedünk prciális dierenciálegyenletek (mostntól: PDE-k) lpfoglmivl. A félév során sokt fog szerepelni z ún. multiindex jelöl, melynek lényege,
Részletesebben5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?
. Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik
Részletesebben7. HATÁROZATLAN INTEGRÁL. 7.1 Definíció és alapintegrálok
7. HATÁROZATLAN INTEGRÁL 7. efiníió és lpintegrálok efiníió. Legyen f : I R dott függvény (I R egy intervllum). A F : I R függvényt f függvény primitív függvényének nevezzük I-n, h F differeniálhtó I-n,
Részletesebben5. A logaritmus fogalma, a logaritmus azonosságai
A ritmus foglm ritmus zonossági I Elméleti összefoglló H > 0 > 0 > 0 vlós számok és n tetszőleges vlós szám kkor 0 n n H > 0 > 0 > 0 vlós számok kkor H > kkor z f( ) kkor z f( ) függvén szigorún monoton
RészletesebbenFüggvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim.
Függvények 05. december 6. Határozza meg a következő határértékeket!. Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0 ). Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0) 3. Feladat: ( + 0 7 5 ) 4. Feladat: ( + 0 7 5 ) ( + 7 0 5
RészletesebbenA határozott integrál
A htározott integrál Bevezető problém: Egyenes úton egy utó időben változó v(t) = ds/dt sebességgel hld. A mindenkori sebesség ismeretében szeretnénk kiszámolni, hogy mekkor utt tesz meg vlmely t b időintervllumbn.
RészletesebbenSorozatok és Sorozatok és / 18
Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle
RészletesebbenDebreceni Egyetem. Kalkulus II. Gselmann Eszter
Debreceni Egyetem Természettudományi és Technológii Kr Klkulus II. Gselmnn Eszter Debrecen, 22 Azoknk, kik nem ismerik mtemtikát, nehézséget okoz keresztüljutni szépség vlódi érzéséhez, legmélyebb szépséghez,
RészletesebbenMegoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
Részletesebben12. Határozatlan és határozott integrál
. Htároztln és htározott integrál Tnulási cél: Megismerni htároztln és htározott integrál oglmát. Elsjátítni z lpintegrálokt, és z egyszerűbb integrálási tételeket, vlmint Newton-Leibniz-ormulát. Ezen
RészletesebbenHatározott integrál és alkalmazásai
Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,
Részletesebben7. Határozott integrál
7. Htározott intgrál 7.. Számolj ki z lái intgrálokt! 7... d 7... d 7... d 7... d 7... d 7... d 7..7. d 7... d 7..9. d 7... d 7... d 7... d 7... d 7... d 7... d 7... d 7..7. d 7... d 7..9. d 7... d 7...
RészletesebbenAz érintőformula A Simpson formula Gauss-kvadratúrák Hiba utólagos becslése. Numerikus analízis
Az érintőformul Érintőformul Az érintőformul egy nyílt Newton-Cotes formul, melyre: ( ) + b f (x)dx (b )f. 2 Az érintőformul úgy is értelmezhető, hogy függvényt z [, b] intervllum középpontjához húzott
Részletesebbena b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a
44 HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, évfolym MEGOLDÁSOK Mutssuk meg, hogy egy tetszőleges tégltest háromféle lpátlójából szerkesztett háromszög hegyesszögű lesz! 6 pont A tégltest egy
RészletesebbenEllenállás mérés hídmódszerrel
1. Lbortóriumi gykorlt Ellenállás mérés hídmódszerrel 1. A gykorlt célkitűzései A Whestone-híd felépítésének tnulmányozás, ellenállások mérése 10-10 5 trtománybn, híd érzékenységének meghtározás, vlmint
RészletesebbenFormális nyelvek I/2.
Formális nyelvek I/2. Véges utomták minimlizálás Fülöp Zoltán SZTE TTIK Informtiki Intézet Számítástudomány Alpji Tnszék 6720 Szeged, Árpád tér 2. Véges utomták minimlizálás Két utomt ekvivlens, h ugynzt
Részletesebben1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények
1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási
RészletesebbenANALÍZIS II. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA
ANALÍZIS II. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Blogh Tmás 2013. jnuár 16. H hibát tlálsz, kérlek jelezd info@bloghtms.hu e-mil címen! Ez Mű Cretive Commons Nevezd meg! - Ne dd el! - Így
Részletesebben2. Gauss elimináció. 2.1 Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:
. Guss elimináció.1 Oldjuk meg Guss-Jordn eliminációvl következő egyenletrendszert: x - x + x + x5 = -5 x1-7x + 8x - 5x = 9 x1-9x + 1x - 9x = 15. A t prméter mely értékeire nincs z egyenletrendszernek
RészletesebbenIX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN
4 trigonometri lklmzás geometrián IX TRIGONOMETRI LKLMZÁS GEOMETRIÁN IX szinusz tétel Feldt Számítsd ki z háromszög köré írhtó kör sugrát háromszög egy oldl és szemen fekvő szög függvényéen Megoldás z
Részletesebben2. NUMERIKUS INTEGRÁLÁS
numerikus nlízis ii. 39 B - SPLINEOK DERIVÁLTJÁRA ÉRVÉNYES : B mi x =m Bm,i x B m,ix. t i+m t i t i+m+ t i+. NUMERIKUS INTEGRÁLÁS Htározott integrálok numerikus kiszámítás mtemtik egyik legrégebbi problémáj.
RészletesebbenIntegrálszámítás (Gyakorló feladatok)
Integrálszámítás (Gyakorló feladatok). Határozatlan integrál. Alapintegrálok F. Számítsa ki az alábbi határozatlan integrálokat! a) (x x + ) b) (6x x + 5) c) (x + x + x ) d) ( x + x x e) ( ) + e x ) f)
Részletesebben1. Primitív függvények (határozatlan integrálok)
. Primitív függvéyekhtároztl itegrálok 7. Primitív függvéyek htároztl itegrálok.. A defiíciók egyszerű következméyei F. Htározz meg z lábbi függvéyek összes primitív függvéyét: f :, + ; b f :, ; c f :,
RészletesebbenDifferenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke
Differenciálszámítás Lokális növekedés (illetve csökkenés): H z f() függvény deriváltj z 0 helyen pozitív: f () > 0 (illetve negtív: f () < 0), kkor z f() függvény z 0 helyen növekvően (illetve csökkenően)
RészletesebbenOrszágos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása
Okttási Hivtl Országos Középiskoli Tnulmányi Verseny 00/0 Mtemtik I ktegóri (SZAKKÖZÉPISKOLA) Az forduló feldtink megoldás Az x vlós számr teljesül hogy Htározz meg sin x értékét! 6 sin x os x + 6 = 0
RészletesebbenIntegrálszámítás (Gyakorló feladatok)
Itegrálszámítás Gykorló feldtok Progrmtervező mtemtikus szkos hllgtókk z Alízis. című tárgyhoz Összeállított Bese Atl, Csillg Dávid, Kiss Blázs, Mátyás Gergely, Szili László 4. október Trtlomjegyzék I.
RészletesebbenHatározatlan integrál
Határozatlan integrál 205..04. Határozatlan integrál 205..04. / 2 Tartalom Primitív függvény 2 Határozatlan integrál 3 Alapintegrálok 4 Integrálási szabályok 5 Helyettesítéses integrálás 6 Parciális integrálás
RészletesebbenA gyakorlatok anyaga
A 7-11. gyakorlatok anyaga a Matematika A1a-Analízis nevű tárgyhoz B és D kurzusok Számhalmazok jelölésére a következő szimbólumokat használjuk: N := {1,,...}, Z, Q, Q, R. Az intervallumokat pedig így
RészletesebbenTrükkös integrálás. - Szakdolgozat - Készítette: Diószegi Edina (Matematika BSc, Tanári szakirány)
Trükkös integrálás - Szkdolgozt - Készítette: Diószegi Edin (Mtemtik BSc, Tnári szkirány Témvezet : Buczolich Zoltán (Anlízis Tnszék, Mtemtiki Intézet Eötvös Loránd Tudományegyetem Természettudományi Kr
RészletesebbenBodó Bea, Somonné Szabó Klára Matematika 2. közgazdászoknak
ár: Ár Bodó B, Somonné Szó Klár Mtmtik. közgzdászoknk II. modul: Intgrálszámítás. lck: Intgrálási szályok Tnulási cél: Szorztfüggvénykr vontkozó intgrálási tchnikák mgismrés és különöző típusokr vló lklmzás
RészletesebbenFELVÉTELI VIZSGA, július 15.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy
RészletesebbenAnalízis II. harmadik, javított kiadás
Ljkó Károly Anlízis II. hrmdik, jvított kidás Debreceni Egyetem Mtemtiki és Informtiki Intézet 2003 c Ljkó Károly ljko @ mth.klte.hu Amennyiben hibát tlál jegyzetben, kérjük jelezze szerzőnek! A jegyzet
RészletesebbenOPTIMALIZÁLÁS LAGRANGE-FÉLE MULTIPLIKÁTOR SEGÍTSÉGÉVEL
OPTIMALIZÁLÁS LAGRANGE-FÉLE MULTIPLIKÁTOR SEGÍTSÉGÉVEL HAJDER LEVENTE 1. Bevezetés A Lgrnge-féle multiplikátoros eljárást Joseph Louis Lgrnge (1736-1813) olsz csillgász-mtemtikus (eredeti nevén Giuseppe
RészletesebbenA logaritmikus közép
Szkdolgozt A logritmikus közé Szó Tíme Mtemtik Bsc. Tnári szkirány Témvezet : Besenyei Ádám Adjunktus Alklmzott Anlízis és Számításmtemtiki Tnszék Eötvös Loránd Tudományegyetem Természettudományi Kr Budest,
RészletesebbenAZ INTEGRÁLELMÉLET FEJLŐDÉSE RIEMANN ÓTA
ÖTVÖS LORÁND TUDOMÁNYGYTM TRMÉSZTTUDOMÁNY KAR LTTNR TÍMA AZ NTGRÁLLMÉLT FJLŐDÉS RMANN ÓTA BSc szkdolgozt ALKALMAZOTT MATMATKUS SZAKRÁNY TÉMAVZTŐ: LÓCZ LAJOS ADJUNKTUS, NUMRKUS ANALÍZS TANSZÉK 1 TARTALOM
RészletesebbenGazdasági matematika 1. tantárgyi kalauz
Dr Mdrs Lászlóné Gzdsági mtemtik tntárgyi kluz Szolnoki Főiskol Szolnok 005 Gzdsági mtemtik tntárgyi kluz A kluz következő három kidványhoz készült: Dr Csernyák László: Anlízis, Mtemtik közgzdászoknk sorozt,
RészletesebbenÖsszetettebb feladatok
A szinusztétel és koszinusztétel lklmzás Összetettebb feldtok 055..,7 m háom kö közötti síkidom teülete. Kössük össze köök középpontjit, így kpunk egy háomszöget. Legyen m, b m, 5 m. Számítsuk ki koszinusztétellel
RészletesebbenMatematika 4 gyakorlat Földtudomány és Környezettan BSc II/2
Mtemtik 4 gykorlt Földtudomány és Környezettn BSc II/2 1. gykorlt Integrálszámítás R n -ben: vonlintegrál, primitív függvény, Newton Leibniz-szbály. Legyen Ω R n egy trtomány, f : Ω R n folytonos függvény
RészletesebbenKIEGÉSZÍTÉS A VONALINTEGRÁLHOZ
KIEGÉSZÍTÉS A VONALINTEGRÁLHOZ BSC MATEMATIKATANÁR SZAKIRÁNY 28/29. TAVASZI FÉLÉV Az lábbikbn z el dáson vonlinterálról ill. primitív füvényr l elhnzottk közül zok olvshtók, mik Lczkovich-T. Sós: Anlízis
RészletesebbenA + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C )
Hlmzelmélet Kojukció: (és) (csk kkor igz h midkét állítás igz) Diszjukció: (vgy) (csk kkor hmis h midkét állítás hmis) Implikáció: A B (kkor és csk kkor hmis h A igz és B hmis) Ekvivleci: A B (kkor és
Részletesebben1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?
. Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,
RészletesebbenGAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN Készült a TÁMOP-4.1.-08//a/KMR-009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék
RészletesebbenIV. INTEGRÁLSZÁMÍTÁS Feladatok november
IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin
RészletesebbenANALÍZIS II. DEFINÍCIÓK, TÉTELEK
ANALÍZIS II. DEFINÍCIÓK, TÉTELEK Szerkesztette: Blogh Tmás 2013. jnuár 16. H hibát tlálsz, kérlek jelezd info@bloghtms.hu e-mil címen! Ez Mű Cretive Commons Nevezd meg! - Ne dd el! - Így dd tovább! 3.0
Részletesebbenesetben, ahol mindkettő nulla a számlálót is és a nevezőt is szorzattá alakítjuk.
FÜGGVÉNYEK HTÁÉTÉKÉNEK KISZÁMOLÁS? Véges helyen vett tárérték a Ilyenkor az első lépés hogy helyettesítsük be a üggvénybe az a -t. Ha amit így kapunk értelmezhető akkor kész is vagyunk az a szám a tárérték*.
RészletesebbenTaylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!
Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el
Részletesebbenf függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van)
Mgyr Eszter. tétel Függvények vizsgált elemi úton és dierenciálszámítás elhsználásávl Függvény: H egy A hlmz minden eleméhez hozzárendelünk egy B hlmz egy-egy elemét, kkor egy A-ból B-be rendelı üggvényt
RészletesebbenMATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti
RészletesebbenPIACI SZERKEZETEK BMEGT30A hét, 2. óra: Stackelberg-oligopólium
IACI SZEREZETE BMEGT30A104 8. hét,. ór: Stkelerg-oligopólium RN: 11.1 fejezet 019.04.03. 1:15 QAF14 upsik Rék (kupsikr@kgt.me.hu) Stkelerg-oligopólium: feltételek Strtégii változó: mennyiség Szekveniális
RészletesebbenTérbeli pont helyzetének és elmozdulásának meghatározásáról - I.
Térbeli pont helyzetének és elmozdulásánk meghtározásáról - I Egy korábbi dolgoztunkbn melynek címe: Hely és elmozdulás - meghtározás távolságméréssel már volt szó címbeli témáról Ott térbeli mozgást végző
Részletesebben= x2. 3x + 4 ln x + C. 2. dx = x x2 + 25x. dx = x ln 1 + x. 3 a2 x +a 3 arctg x. 3)101 + C (2 + 3x 2 ) + C. 2. 8x C.
. Határozatlan integrál megoldások.. 5. 7 5 5. t + t 5t. 8 = 7 8 = 8 5 8 5 6. e + 5 ln + tg + 7. = 8. + 5 = 5 ln + 5 9. = + 5 + 5 5 + 5 + 5 = /5 = 5 6 6/5 + 5 5 = + ln = 5 + 5 = + ln + 0.. a +a arctg a.
RészletesebbenNumerikus módszerek 2.
Numerikus módszerek 2. 12. elődás: Numerikus integrálás I. Krebsz Ann ELTE IK 2015. május 5. Trtlomjegyzék 1 Numerikus integrálás 2 Newton Cotes típusú kvdrtúr formulák 3 Hibformulák 4 Összetett formulák
RészletesebbenNumerikus integrálás. Szakdolgozat. Írta: Pásztor Nikolett Matematika BSc - matematikai elemz szakirány
Szkdolgozt Numerikus integrálás Írt: Pásztor Nikolett Mtemtik BSc - mtemtiki elemz szkirány Témvezet : Kurics Tmás, egyetemi tnársegéd Alklmzott Anlízis és Számításmtemtiki Tnszék Eötvös Loránd Tudományegyetem,
Részletesebben4 x. Matematika 0 1. előadás. Végezzük el a műveleteket! Alakítsuk szorzattá a következő kifejezéseket! 5. Oldjuk meg az alábbi egyenleteket!
Mtemtik 0. elődás Végezzük el műveleteket!. 6... Alkítsuk szorzttá következő kifejezéseket!. 8 6 6. 7. 8. y Oldjuk meg z lái egyenleteket! 9. 0. 7 0 7 6. 7. Egy kétjegyű szám számjegyeinek összege. H felseréljük
RészletesebbenKALKULUS INFORMATIKUSOKNAK I.
Írt: GYŐRI ISTVÁN PITUK MIHÁLY KALKULUS INFORMATIKUSOKNAK I. Egyetemi tnnyg 20 COPYRIGHT: 20 206, Dr. Győri István, Dr. Pituk Mihály, Pnnon Egyetem Műszki Informtiki Kr Mtemtik Tnszék LEKTORÁLTA: Dr. Molnárk
RészletesebbenFekete Mária. Matematika II. Pécsi Tudományegyetem Pollack Mihály Műszaki Kar Matematika Tanszék
Mtemtik II. Pollck jegzetek Fekete Mári Mtemtik II. Pécsi Tudománegetem Pollck Mihál Műszki Kr Mtemtik Tnszék Pécs, 2007 A jegzet PTE PMMK építőmérnök szk PMMANB312, PMMANB926 tntárgkódú Mtemtik II. kurzus
RészletesebbenGyakorlo feladatok a szobeli vizsgahoz
Gyakorlo feladatok a szobeli vizsgahoz Függvények. Viszgaljuk meg, hogy az alabbi fuggvenyek kozuk melyik injektv, szurjektv, illetve bijektv? F : N N, n n b) F : Q Q, c) F : R R, d) F : N N, n n e) F
Részletesebben19. Függvények rekurzív megadása, a mester módszer
19. Függvéyek rekurzív megdás, mester módszer Algoritmusok futási idejéek számítás gykr vezet rekurzív egyelethez, külööse kkor, h z lgoritmus rekurzív. Tekitsük például h z összefésülő redezés lábbi lgoritmusát.
RészletesebbenAnalízis. Szász Róbert
Anlízis Szász Róbert . fejezet Improprius integrálok.. Improprius integrálok... Értelmezés. Legyen < b. Adott z f : [, b) R függvény. H bármely u (, b) esetén létezik z véges lim u b u u f()d htározott
RészletesebbenAz LR elemző felépítése. Léptetés. Redukálás. Kiegészített grammatika. Mit kell redukálni? Kiegészített grammatika. elemző. elemző.
Emlékeztető Emlékeztető: elemzési irányok Felülről lefelé lulról felfelé LR elemzések (z LR() elemzés) () () () () B B Forítóprogrmok előás (,C,T szkirány) () () () () () () () B () B () () () B () Ez
Részletesebben2014/2015-ös tanév II. féléves tematika
Dr Vincze Szilvi 24/25-ös tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási módszereik
Részletesebben1. Házi feladatsor Varga Bonbien, VABPACT.ELTE
. Házi feldtsor Vrg Bonbien, VBPCT.LT. Feldt: feldt szerint z ellipszis istengelye ngytengelye b. Prméterezzü z ellipszist z lábbi módon: x = b cos t zz: y = sin t r(t) = b cos t sin t z ismert éplet szerint
RészletesebbenMűszaki folyamatok közgazdasági elemzése Előadásvázlat október 10. Monopólium
űszki folymtok közgzdsági elemzése Elődásvázlt 3 októer onoólium A tökéletesen versenyző válllt számár ici ár dottság, így teljes evétele termékmennyiség esetén TR () = ínálti monoólium: egyetlen termelő
RészletesebbenHázi feladatok megoldása. Automaták analízise, szintézise és minimalizálása. Házi feladatok megoldása. Házi feladatok megoldása
Automták nlízise, szintézise és minimlizálás Formális nyelvek, 11. gykorlt Célj: Az utomták nlízisének és szintézisének gykorlás, utomt minimlizáió Foglmk: Anlízis és szintézis, nyelvi egyenlet és egyenletrendszer
RészletesebbenValószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
RészletesebbenMATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
Részletesebben2010/2011 es tanév II. féléves tematika
2 február 9 Dr Vincze Szilvi 2/2 es tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási
RészletesebbenFeladatgyûjtemény. Matematika I-II. Sáfár Zoltán
Feldtgyûjtemény Mtemtik I-II. Sáfár Zoltán NyME-SEK 22 Trtlomjegyzék. Komplex számok 2. Számsoroztok és számsorok 3 2.. Soroztok.................................... 3 2.2. Sorok.......................................
RészletesebbenFüggvények határértéke, folytonossága
Függvények határértéke, folytonossága 25. február 22.. Alapfeladatok. Feladat: Határozzuk meg az f() = 23 4 5 3 + 9 a végtelenben és a mínusz végtelenben! függvény határértékét Megoldás: Vizsgáljuk el
RészletesebbenMATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym TMt2 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggonozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen
RészletesebbenEgy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.
Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek
RészletesebbenSzili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány
Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........
RészletesebbenMATEMATIKA FELADATLAP a 4. évfolyamosok számára
4. évfolym AMt1 feldtlp MATEMATIKA FELADATLAP 4. évfolymosok számár 2010. jnuár 22. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden
RészletesebbenEgy látószög - feladat
Ehhez tekintsük z 1. ábrát is! Egy látószög - feldt 1. ábr Az A pont körül kering C pont, egy r sugrú körön. A rögzített A és B pontok egymástól távolság vnnk. Az = CAB szöget folymtosn mérjük. Keressük
Részletesebben