Taylor-polinomok. 1. Alapfeladatok április Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!"

Átírás

1 Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el a Maclaurin-polinomok deníciójából, miszerint egy függvény n-edfokú Maclaurin-polinomjának nevezzük, a 0 helyen vett n-edfokú Taylor-polinomját, mely az alábbi módon írható fel. M n fx) = f0) +! f 0) x + 2! f 0) x n! f n) 0) x n Mivel feladatunkban másodfokú polinomot kell felírnunk, így n = 2, s így a polinomban csupán három tag fog szerepelni. M 2 fx) = f0) +! f 0) x + 2! f 0) x 2 Természetesen a konkrét Maclaurin-polinom felírásához meg kell határoznunk a képletben szerepl f0), f 0) és f 0) értékeket. Els ként helyettesítsük a függvénybe a 0-t. f0) = e 2 0 = e 0 = Ezután állítsuk el a függvény deriváltját, és határozzuk meg a derivált helyettesítési értékét is a 0 helyen. f x) = e 2x 2) = 2e 2x A deriválás során ne feledkezzünk el arról, hogy összetett függvényt deriválunk, így a küls függvény deriválása után szoroznunk kell még a bels függvény deriváltjával is. Hajtsuk végre a 0 behelyettesítését. f 0) = 2e 2 0 = 2e 0 = 2 Állítsuk el a második deriváltat. f x) = 2e 2x 2) = e 2x Helyettesítsük ebbe is a 0-t.

2 f 0) = e 2 0 = e 0 = Utolsó lépésként helyettesítsük be a meghatározott f0), f 0) és f 0) értékeket a másodfokú Maclaurin-polinom képletébe. A behelyettesítés után határozzuk meg a faktoriálisok értékét, és egy-egy tagban szorozva a konstansokat, hozzuk egyszer bb alakra a polinomot. M 2 fx) = +! 2) x + 2! x2 = + 2) x + 2 x2 = = 2x + 2x 2 Nézzük ezután a feladat egy másik megoldását. Ekkor arra hivatkozunk, hogy az gx) = e x függvénynek ismert a Maclaurin-sora. e x = +! x + 2! x2 +! x + x IR Ebb l megkapjuk az e x másodfokú Maclaurin-polinomját, ha a sorból elhagyjuk a másodfokúnál magasabb fokú tagokat. M 2 gx) = +! x + 2! x2 Végül az e x Maclaurin polinomjából úgy kapjuk meg az e 2x Maclaurinpolinomját, hogy az x helyére a 2x-et helyettesítjük. M 2 fx) = +! 2x) + 2! 2x)2 Az így kapott polinomban végezzük el az együtthatókon belül a m veleteket. M 2 fx) = + 2x) + 2 x2 = 2x + 2x 2 Természetesen így is ugyanazt az eredményt kaptuk, mint az el bb. 2. Feladat: Írjuk fel az fx) = x + függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot most is kétféle úton oldjuk meg. Els ként itt is elindulhatunk a másodfokú Maclaurin-polinom deníciójából. M 2 fx) = f0) +! f 0) x + 2! f 0) x 2 Most is el kell állítanunk az f0), f 0) és f 0) értékeket. Helyettesítsük be els ként a függvénybe a 0-t. f0) = 0 + = Ezután állítsuk el a függvény deriváltját. A deriválás el tt célszer átalakítani a függvényt. A gyök helyett írjunk törtkitev s hatványt. fx) = x + = x + ) Ebb l az alakból már egyszer a deriválás. f x) = x + ) 2 2

3 Helyettesítsük be a deriváltba a 0-t. f 0) = ) = Állítsuk el a második deriváltat is. f x) = 2 ) x + ) 5 = x + ) Határozzuk meg a második derivált 0 helyen vett helyettesítési értékét. f 0) = ) = 2 9 Végül a meghatározott f0), f 0) és f 0) értékeket helyettesítsük be a másodfokú Maclaurin-polinom képletébe. A behelyettesítés után hozzuk egyszer bb alakra a polinomban az együtthatókat. M 2 fx) = +! x + 2! = + x 9 x2 2 9 ) x 2 = + x ) x 2 = Következzen ezután a feladat másik megoldása. Arra hivatkozunk, hogy az gx) = + x) α függvény Maclaurin-sorát ismerjük. Ezt nevezzük binomiális sornak. + x) α = + α! x <, α IR αα ) x + x 2 + 2! αα )α 2) x +! Ebb l megkapjuk a másodfokú Maclaurin-polinomot, ha elhagyjuk a másodfokúnál magasabb fokó tagokat. M 2 gx) = + α αα ) x + x 2! 2! Ezután pedig már csak annyit kell tennünk, hogy α helyére -ot helyettsítünk. ) M 2 fx) = +! x + x 2 2! Utolsó lépésként hozzuk egyszer bb alakra a polinomban az együtthatókat. 2 ) M 2 fx) = + x + x 2 = + 2 x 9 x2 Eredményünk természetesen megegyezik az el z megoldásban kapottal. helyen vett má-. Feladat: Írjuk fel az fx) = sin 2x függvény a = π sodfokú Taylor-polinomját!

4 Megoldás: A feladatot most is kétféle úton oldjuk meg. Els ként megint denícióból indulunk el. Eszerint az fx) függvény a helyen vett n-edfokú Taylor-polinomja a következ : T n fx) = fa) +! f a) x a) + 2! f a) x a) n! f n) a) x a) n Mivel másodfokú polinom a kérdés, így n = 2. T 2 fx) = fa) +! f a) x a) + 2! f a) x a) 2 Annyiban változik tehát csak a dolgunk az el z ekhez képest, hogy nem a 0 helyen kell meghatároznunk a függvény, valamint els és második deriváltjának értékét, hanem az a = π helyen. Helyettesítsünk el ször a függvénybe. ) π f = sin 2 π ) = sin π 2 = Állítsuk el a függvény deriváltját. Figyeljünk oda, mert összetett függvényr l van szó, ne felejtsünk el szorozni a bels függvény deriváltjával. f x) = cos 2x 2 = 2 cos 2x Helyettesítsünk most a deriváltba is. ) π f = 2 cos 2 π ) = 2 cos π 2 = 0 Ezután deriváljunk még egyszer. f x) = 2 sin 2x) 2 = sin 2x A második deriváltba is helyettesítsük be az a = π értéket. ) π f = sin 2 π ) = sin π 2 = Az el z ekben meghatározott fa), f a) és f a) értékeket írjuk be a Taylor-polinom képletébe, s egyben helyettesítsünk a helyére is. T 2 fx) = +! 0 x π ) + 2! ) x π ) 2 Végül hozzuk egyszer bb alakra a polinom együtthatóit. x π ) 2 Lássuk ezután a feladat másik megoldását. Középiskolából ismert a T 2 fx) = + 2 ) x π ) 2 = 2 sin α = cos α π ) összefüggés. Ezt felhasználva kapjuk, hogy 2 sin 2x = cos 2x π ) = cos 2 x π )). 2

5 Vezessük be az u = x π jelölést. Így sin 2x = cos 2u. Mivel ha x = π, akkor u = 0, ezért a sin 2x függvény a = π helyen vett másodfokú Taylor polinomja megegyezik a cos 2u függvény u = 0 helyen vett másodfokú Taylor polinomjával, azaz a másodfokú Maclaurinpolinommal. Használjuk fel, hogy a cos x függvény Maclaurin-sora ismert. cos x = 2! x2 +! x 6! x6 + x IR Hagyjuk el a másodfokúnál magasabb fokú tagokat, és írjunk x helyett 2u-t. Így megkapjuk a gu) = cos 2u függvény másodfokú Maclaurinpolinomját. M 2 gu) = 2! 2u)2 = 2u 2 Ezután pedig már csak annyit kell tennünk, hogy u helyére x π -et helyettesítünk T 2 fx) = 2 x π ) 2 Eredményünk természetesen megegyezik az el z megoldásban kapottal.. Feladat: Írjuk fel az fx) = ln x függvény a = helyen vett másodfokú Taylor-polinomját! Megoldás: Ezt a feladatot is kétféle módon fogjuk megoldani. Az els megoldás során most is a másodfokú Taylor-polinom denícióját használjuk fel. T 2 fx) = fa) +! f a) x a) + 2! f a) x a) 2 Határozzuk meg a polinomban szerepl, egyel re ismeretlen fa), f a) és f a) értékeket. Helyettesítsük els ként a függvénybe az a = -ot. f = ln ) ) = ln = 0 Deriváljuk a függvényt. f x) = x = x Helyettesítsünk be a deriváltban is a helyére -ot. ) f = = 5

6 Állítsuk el a második deriváltat. f x) = x 2 Helyettesítsük a második deriváltba is az a = -ot. f x) = ) 2 = 9 Majd a Taylor-polinom képletében helyettesítsünk a, fa), f a) és f a) helyére. T 2 fx) = 0 +! x ) + 2! 9) x ) 2 Végül írjuk egyszer bb alakban a polinom együtthatóit. T 2 fx) = x ) 9 x ) 2 2 Nézzük ezután a feladat másik megoldását. Most alakítsuk át a függvényt, s írjuk a következ alakban: fx) = ln x = ln + x ) = ln Ha pedig bevezetjük az u = x alakítható. fx) = ln x = ln + u) + x )). jelölést, akkor ez még tovább Azért kedvez bb ez az alak, mert a ln + x) függvény Maclaurinsora ismert, és ha x =, akkor u = 0. Ennek következtében a ln x függvény a = helyen vett másodfokú Taylor polinomja megegyezik a ln + u) függvény u = 0 helyen vett másodfokú Taylor polinomjával, azaz a másodfokú Maclaurin-plonimmal. Induljunk el tehát a ln + x) függvény Maclaurin-sorából. ln + x) = x 2 x2 + x x + x < Hagyjuk el a másodfokúnál magasabb fokú tagokat, és írjunk x helyett u-t. Így megkapjuk a gu) ln + u) függvény másodfokú Maclaurinpolinomját. M 2 gu) = u 2 u)2 = u 9 2 u2 Ha ebben u helyére x -ot helyettesítünk, akkor pedig megkapjuk a keresett Taylor polinomot. T 2 fx) = x ) 9 2 x ) 2 6

7 Természetesen ugyanazt kaptuk eredményül, mint az els megoldásban. 5. Feladat: Melyik az a harmadfokú polinom, melyre a következ k igazak: p0) =, p 0) =, p 0) = 6, p 0) = 2? Megoldás: Ismert egy függvény és deriváltjainak értéke a 0 helyen, ezért a Maclaurin-sor felírásából indulhatunk ki, mely egy fx) függvény esetén a következ : f0) +! f 0) x + 2! f 0) x 2 +! f 0) x + Mivel most egy polinomról van szó, így t el állítja a Maclaurin-sora. Mivel pedig a polinom harmadfokú, így negyedik és annál magasabb rend deriváltjai azonosan 0-val egyenl ek. Ez azt jelenti, hogy a Maclaurinsorban a haramadfokúnál magasabb fokú tagok nem szerepelnek, azaz a harmadfokú Maclaurin-polinomot felírva, megkapjuk a keresett polinomot. Ezt egyenletben a következ módon írhatjuk: px) = p0) +! p 0) x + 2! p 0) x 2 +! p 0) x. Ide már csak be kell helyettesítenünk a függvény és a deriváltak megadott értékeit. px) = +! ) x + 2! 6) x2 + 2 x! Végezzük el az együtthatókban a m veleteket. px) = x x 2 + 2x Ha pedig csökken fokszám szerint írjuk a tagokat, akkor px) = 2x x 2 x Összetett feladatok. Feladat: Írjuk fel az fx) = x 5x 2 + x + 20 függvény a = helyen vett Taylor-sorát! Megoldás: Induljunk ki a Taylor-sor deníciójából, mely fa) +! f a) x a) + 2! f a) x a) 2 +! f a) x a) + Mivel egy polinom Taylor-sorát írjuk majd fel, így a sor biztosan el fogja állítani a függvényt, azaz fx) egyenl lesz a Taylor-sorral, s a sorban a helyére -at kell helyettesítenünk. fx) = f)+! f ) x )+ 2! f ) x ) 2 +! f ) x ) + A konkrét Taylor-sort akkor tudjuk felírni, ha meghatározzuk az f), f ), f ) értékeket. Els ként helyettsítsük a függvénybe a -at. 7

8 f) = = 5 Deriváljuk a függvényt. f x) = x 2 0x + Határozzuk meg a derivált értékét az x = helyen. f ) = = 2 Állítsuk el a második deriváltat. f x) = 6x 0 Helyettesítsük ebbe is a -at. f ) = 6 0 = 8 Deriváljunk még egyszer. f x) = 6 A harmadik derivált egy konstans függvény, így nyilván a helyen is ezt a konstanst veszi fel, azaz f ) = 6. Mivel a harmadrend derivált konstans, így negyed és annál magasabb rend deriváltak már azonosan egyenl ek zérussal. Ez azt jelenti, hogy a Taylor-sor most véges sok tagból áll, hiszen csak az els négy tag különbözik 0-tól. Helyettesítsük be a meghatározott értékeket a Taylor-sor képletébe. fx) = 5 +! 2) x ) + 2! 8 x )2 + 6 x )! Az együtthatókon belül végezzük el a m veleteket. fx) = 5 2x ) + x ) 2 + x ) Amint látható, a Taylor-sor felírásával úgy alakult át a polinom, hogy x hatványai helyett x hatványai szerepelnek benne. Ha elvégeznénk a Taylor-sorban a hatványozásokat, és összevonnánk utána az azonos fokszámú tagokat, akkor visszakapnánk az eredeti polinomot. Ezzel ellen rizhetnénk megoldásunk helyességét. Megjegyzés: Minden polinom Taylor-sora véges, hisz ha a polinom n- edfokú, akkor az n+-edik és annál magasabbrend deriváltak azonosan nullával egyenl ek. Ezért egy n-edfokú polinom Taylor-sorában legfeljebb n+ nullától különböz tag lehet. A Taylor sor felírása úgy alakítja át a polinomot, hogy benne x hatványai helyett x a hatványai fognak szerepelni. Ha a = 0, azaz Maclaurin-sort írunk fel, akkor x a = x, így továbbra is x hatványai szerepelnek, azaz változatlan alakban marad a polinom. Ez azt jelenti, minden polinom Maclaurin-sora maga a polinom. 8

9 2. Feladat: Hogyan határozhatjuk meg közelít értékét, ha csak 0 e négy alapm veletes számológépünk van? Megoldás: Mivel 0 e = e 0., ezért a feladatot úgy is fogalmazhatjuk, hogy adjuk meg közelít leg az fx) = e x függvény x = 0. helyen vett helyettesítési értékét. Mivel a 0. közel van nullához, ezért az fx) = e x függvény Maclaurin-sorából határozhatunk meg közelít értéket. Ezen függvény Maclaurin sora a következ : e x = +! x + 2! x2 +! x + Ebben kell x helyére 0.-et helyettesítenünk. Mivel a sornak végtelen sok tagja van, így nem tudunk a teljes sorba helyettesíteni, hanem csak a sor elejér l veszünk gyelembe véges sok tagot. Így tulajdonképpen valamelyik Maclaurin-polinomba helyettesítünk. Minél több tagot veszünk gyelembe, a közelít érték annál pontosabb lesz. Ha pl. másodfokú Maclaurin-polinomba helyettesítünk, akkor a következ t kapjuk: e 0. +! 0.) + 2! 0.)2 = Ha negyedfokú polinomba helyettesítünk, akkor pedig az alábbi értéket kapjuk: e 0. +! 0.) + 2! 0.)2 +! 0.) +! 0.) = = Ha nem csak a négy alapm veletet ismer számolódépünk van, akkor egyetlen lépésben a következ közelít értéket kapjuk: e Amint látható, a negyedfokú polinomból kapott érték már 6 tizedesjegyre pontos. Ha ennél is pontosabb értékre van szükség, további tagok gyelembe vételével tetsz leges pontosság érhet el. Felvet dik annak kérdése, hogy ha el re megadott pontossággal szeretnénk megkapni a közelít értéket, akkor hány tagot kell gyelembe vennünk. Ezt a Lagrange-féle maradéktag becslésével tudjuk meghatározni. Ha annak abszolút értéke már a megengedett pontosságnál kisebb, akkor megfelel közelít értéket kapunk. Ha pl. tizedesjegy pontosság elérése a feladat, akkor a Lagrange-féle maradéktag abszolút értékének nél kisebbnek kell lenni. Így olyan egyenl tlenséget fogunk kapni, amiben a tagok szám, azaz n lesz az ismeretlen. Ha n-edfokú polinomot írunk fel, akkor a Lagrange-féle maradéktag a következ : 9

10 R n+ f, x) = f n+) ξ) x a) n+ n + )! Írjuk fel az egyenl tlenséget a feladat adataival. R n+ e x e ξ 0.) n+, 0.) = n + )! = e ξ n + )! 0.)n+ < Az egyenl tlenségben szerepl ξ a [ 0., 0] intervallumnak eleme. Mivel ezen ξ értékét nem ismerjük, ezért e ξ értékét felülr l becsüljük. Az exponenciális függvény szigorúan monoton n, így legnagyobb értékét az intervallum jobb oldali végpontjában veszi fel. Ebb l e ξ e 0 = következik. Ezután az egyenl tlenség a következ : e ξ n + )! 0.)n+ n + )! 0.)n+ < Mivel az n + )! 0.)n+ < egyenl tlenség már n = esetén igaz, ez azt jelenti, hogy a tizedesjegy pontosság elérhet, ha harmadfokú Maclaurin-polinomba helyettesítünk.. Feladat: Ha ismerjük az ln közelít értéket, és van egy négy alapm veletes számológépünk, akkor hogyan határozhatjuk meg ln 8 közelít értékét? Megoldás: Ismerjük egy olyan függvény Maclaurin-sorát, amelyben logaritmus szerepel, ez az fx) = lnx + ). Tudjuk, hogy ln + x) = x 2 x2 + x x + Egyszer lenne itt x = 7-et helyettesíteni, de ezt nem tehetjük meg, mert ez a sor csak akkor konvergens, ha x <. Úgy segíthetünk magunkon, ha a ln 8-at más alakban írjuk fel. ln 8 = ln0 2) = ln 0 0.2)) = ln 0 + ln 0.2) Mivel ln 0 értékét ismerjük, így lényegében az ln 0.8 = ln 0.2) = ln + 0.2)) közelít értékét kell meghatároznunk. Ezt a ln+x) Maclaurin-sorából kaphatjuk x = 0.2 helyettesítéssel. A konkrét közelít értéket negyedfokú polinomból számoljuk ki. ln+ 0.2)) ) ) 0.2) Ezután térjünk vissza az eredeti kérdéshez. ln 8 = ln 0 + ln = Megjegyzés: Egy tudományos funkciókkal is rendelkez számológéppel a ln közelít értéket kapjuk. Bár az el z feladathoz 0

11 hasonlóan most is negyedfokú polinomból számoltunk közelít értéket, mégis azt látjuk, hogy itt csak tizedesjegy lett pontos. Ez érthet, mert a pontosságot nagy mértékben befolyásolja x nagysága, hiszen minél nagyobb az x, annál lassabban tartanak zérushoz a sor tagjai, s így annál lassabb a konvergencia. Mivel most x kétszer akkora volt, mint az el z feladatban, ezért kisebb pontosság volt várható. Természetesen a pontosságon javíthatunk, ha a sor több tagját vesszük gyelembe.. Feladat: Hogyan határozhatjuk meg 6 közelít értékét egy négy alapm veletes számológép segítségével? Megoldás: Mivel = 6 2, ezért a binomiális sorból indulhatunk 6 ki, mely szerint + x) α = + α! x + αα ) 2! x 2 + αα )α 2)! x + Nyilvánvaló, hogy most α helyére kerül majd. Egyszer nek t nne, 2 hogy az x helyére pedig kerüljön 5, azonban ez nem járható út, mert a sor csak x < esetén konvergens. Mint az el z feladatban, most is írjuk más alakban a közelítend számot. = 6 6 = = 2 2.5) = ) 2 2 Így tulajdonképpen az.5) 2 közelít értékét kell meghatároznunk, majd azt -del szorozni. Így már nincs baj a konvergenciával, hisz ha 2 + x =.5, akkor x = 0.5, s ez eleget tesz az x < feltételnek, ami konvergenciához szükséges. A közelít értéket most harmadfokú polinomból számoljuk ki..5) 2 = + 0.5) ) 0.5) 0.5 ) ) 2 +! 2! 0.5) 0.5 ) 0.5 2) 0.5) = ! Majd térjünk vissza a eredeti kérdéshez = Ha egy jobb számológép is rendelkezésünkre áll, akkor azzal az közelít értéket kapjuk. Látható, hogy az általunk számolt közelítés elég pontatlan, ami annak tudható be, hogy csak harmadfokú közelítést használtunk, és x is nagyobb volt, mint az eddigi feladatokban.

12 Megjegyezzük, hogy a feladatot némileg máshogyan is megoldhattuk volna, ha a közelítend számot másképp alakítjuk át. Tekintsük a következ átalakítást. 6 = = 9 2 = 2 ) 2 = ) 2 + )) 2 Ezután ugyanúgy járhatnánk el, mint a fenti megoldásban, csak most x helyére -ot kellene helyettesíteni. Ez bizonyos szempontból még kedvez bb is lenne, hiszen így x kisebb, ezáltal jobb közelítést várhatnánk. = 2

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

DIFFERENCIÁLSZÁMÍTÁS. 5. Taylor-polinom

DIFFERENCIÁLSZÁMÍTÁS. 5. Taylor-polinom DIFFERENCIÁLSZÁMÍTÁS KÉZI CSABA GÁBOR 5. Taylor-polinom 5.. Feladat. Írjuk fel az f(x) = e x függvény x 0 = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével számoljuk ki e közelítő értékét!

Részletesebben

Komplex számok algebrai alakja

Komplex számok algebrai alakja Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

II. rész. Valós függvények

II. rész. Valós függvények II. rész Valós függvények Feladatok 3 4 3.. Értelmezési tartomány Határozza meg a következ függvények értelmezési tartományát! 3.. y = + + 3.. 3.4. 3.6. y = y = 3 y = + 3 ln 5 4 3.3. 3.5. 3.7. y = 3 +

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Tartalomjegyzék 1. Műveletek valós számokkal... 1 8 2. Függvények... 8 12 3. Elsőfokú egyenletek és egyenlőtlenségek... 13 16

Tartalomjegyzék 1. Műveletek valós számokkal... 1 8 2. Függvények... 8 12 3. Elsőfokú egyenletek és egyenlőtlenségek... 13 16 Tartalomjegyzék 1. Műveletek valós számokkal... 1 8 1.1. Gyökök és hatványozás... 1 3 1.1.1. Hatványozás...1 1.1.2. Gyökök... 1 3 1.2. Azonosságok... 3 4 1.3. Egyenlőtlenségek... 5 8 2. Függvények... 8

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Tartalomjegyzék. 3. Elsőfokú egyenletek és egyenlőtlenségek... 8 3.1. Elsőfokú egyenletek... 8 3.2. Valós szám abszolút értéke...

Tartalomjegyzék. 3. Elsőfokú egyenletek és egyenlőtlenségek... 8 3.1. Elsőfokú egyenletek... 8 3.2. Valós szám abszolút értéke... Tartalomjegyzék 1. Műveletek valós számokkal... 1 1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 2. Függvények... 5 2.1. A függvény

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

Gonda János POLINOMOK. Példák és megoldások

Gonda János POLINOMOK. Példák és megoldások Gonda János POLINOMOK Példák és megoldások ELTE Budapest 007-11-30 IK Digitális Könyvtár 4. javított kiadás Fels oktatási tankönyv Lektorálták: Bui Minh Phong Láng Csabáné Szerkesztette: Láng Csabáné c

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

Irracionális egyenletek, egyenlôtlenségek

Irracionális egyenletek, egyenlôtlenségek 9 Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek /I a) Az egyenlet bal oldala a nemnegatív számok halmazán, a jobb oldal minden valós szám esetén

Részletesebben

Mikroökonómia - Bevezetés, a piac

Mikroökonómia - Bevezetés, a piac Mikroökonómia szeminárium Bevezetés, a piac Budapesti Corvinus Egyetem Makroökonómia Tanszék 2011 szeptember 21. A témakör alapfogalmai Keresleti (kínálati) görbe - kereslet (kínálat) fogalma - kereslet

Részletesebben

MATEMATIKA II. FELADATGY JTEMÉNY

MATEMATIKA II. FELADATGY JTEMÉNY MATEMATIKA II. FELADATGY JTEMÉNY KÉZI CSABA Date: today. KÉZI CSABA ELŽSZÓ Ez a feladatgy jtemény a Debreceni Egyetem M szaki Karának Matematika II. tantárgyának tematikájához szorosan illeszkedik. Célja

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Ismertető A Solver telepítése, illetve indítása A Solver célcella módosuló cellák A feltételek általában a módosuló cellákra hivatkozó képletek.

Ismertető A Solver telepítése, illetve indítása A Solver célcella módosuló cellák A feltételek általában a módosuló cellákra hivatkozó képletek. Ismertető A középiskolában sokféle egyenlet megoldásával megismerkednek a diákok. A matematikaórán azonban csak korlátozott típusú egyenletek fordulnak elő. Nem is cél az egyenletmegoldás általános tárgyalása,

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

1. feladatsor, megoldások. y y = 0. y h = C e x

1. feladatsor, megoldások. y y = 0. y h = C e x 1. feladatsor, megoldások 1. Ez egy elsőrendű diffegyenlet, először a homogén egyenlet megoldását keressük meg, majd partikuláris megoldást keresünk: y y = 0 Ez pl. egy szétválasztható egyenlet, melynek

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

Nagyordó, Omega, Theta, Kisordó

Nagyordó, Omega, Theta, Kisordó A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,

Részletesebben

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Feladatok a logaritmus témaköréhez 11. osztály, középszint TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

Newton módszer. az F(x) = 0 egyenlet x* gyökének elég jó közelítése. Húzzuk meg az F(x) függvény (x 0. )) pontbeli érintőjét, és jelölje x 1

Newton módszer. az F(x) = 0 egyenlet x* gyökének elég jó közelítése. Húzzuk meg az F(x) függvény (x 0. )) pontbeli érintőjét, és jelölje x 1 Newton módszer A húrmódszernél és a szelőmódszernél az F(x) függvény gyökének közelítéséhez a függvény húrját használtuk. Hatásosabb a módszer akkor, ha érintőkkel dolgozunk. Def.: Legyen x 0 az F(x) =

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja) Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu Polinomgy r k Dr. Vattamány Szabolcs 1. Bevezet Ezen jegyzet célja, hogy megismertesse az olvasót az egész, a racionális, a valós és a komplex számok halmaza fölötti polinomokkal. A szokásos jelölést használjuk:

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

Többváltozós széls érték számítás és alkalmazásai

Többváltozós széls érték számítás és alkalmazásai Eötvös Loránd Tudományegyetem Természettudományi Kar Többváltozós széls érték számítás és alkalmazásai BSc Szakdolgozat Készítette: Prikkel Anett Matematika BSc Matematikai elemz szakirány Témavezet :

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Az osztályozóvizsgák követelményrendszere MATEMATIKA Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom

Részletesebben

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24 OKTATÁSI MINISZTÉRIUM M/D/13 Dolgozók gimnáziuma Dolgozók szakközépiskolája Szakmunkások szakközépiskolája intenzív tagozat) 003. május ) Határozza meg a következő egyenlet racionális gyökét! 1 3 4 + 5

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 1411 ÉRETTSÉGI VIZSGA 014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

Dierenciálegyenletek Jegyzet. Eisner Tímea Pécsi Tudományegyetem

Dierenciálegyenletek Jegyzet. Eisner Tímea Pécsi Tudományegyetem Dierenciálegyenletek Jegyzet Eisner Tímea Pécsi Tudományegyetem Matematika BSc szakos hallgatóknak 0 Tartalomjegyzék El szó 5. A dierenciálegyenlet fogalma 7. Közönséges dierenciálegyenletek.. Els rend

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

i=1 i+3n = n(2n+1). j=1 2 j < 4 2 i+2 16 k, azaz az algoritmus valóban konstans versenyképes.

i=1 i+3n = n(2n+1). j=1 2 j < 4 2 i+2 16 k, azaz az algoritmus valóban konstans versenyképes. 1. Feladat Adott egy parkoló, ahol egy professzor a kocsiját tartja. A parkolóhelyeket egy n és n közötti szám azonosítja, az azonosító szerint helyezkednek el balról jobbra. A professzor kijön az egyetemr

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 111 É RETTSÉGI VIZSGA 011. október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója SZAKKÖZÉPISKOLA A 006-007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója. Feladat: Egy számtani sorozat három egymást követő tagjához rendre 3-at, -et, 3-at adva

Részletesebben

Frissítve: 2015.04.29. Feszültség- és alakváltozási állapot. 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort!

Frissítve: 2015.04.29. Feszültség- és alakváltozási állapot. 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort! 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort! 1 / 20 2. példa: Rajzoljuk fel az adott feszültségtenzorhoz tartozó kockát! 2 / 20 3. példa: Feszültségvektor számítása. Egy alkatrész egy

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (b) Kvantummechanika Utolsó módosítás: 2013. november 9. 1 A legkisebb hatás elve (1) A legkisebb hatás elve (Hamilton-elv): S: a hatás L: Lagrange-függvény 2 A

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

Miért van az, hogy a legtöbben. a szöveges feladatokkal nem boldogulnak? Részletek a szövegértést fejleszt, kidolgozott feladatlapokból

Miért van az, hogy a legtöbben. a szöveges feladatokkal nem boldogulnak? Részletek a szövegértést fejleszt, kidolgozott feladatlapokból Miért van az, hogy a legtöbben a szöveges feladatokkal nem boldogulnak? Részletek a szövegértést fejleszt, kidolgozott feladatlapokból Elszó 0 éves személyes tapasztalataim azt mutatják, hogy a tanulóknak

Részletesebben

Diszkrét matematika feladatok

Diszkrét matematika feladatok gyakorlat Diszkrét matematika feladatok 205/6 tanév, I. félév. Bizonyítsa be teljes indukcióval az alábbi állításokat! n(n + ) (a) + 2 + + n = 2 (b) 2 + 2 2 + + n 2 n(n + )(2n + ) = 6 ( ) 2 n(n + ) (c)

Részletesebben

Gráfelméleti alapfogalmak-1

Gráfelméleti alapfogalmak-1 KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

Matematikai analízis I. (Segédanyag a "Közgazdaságtan matematikai alapjai" tárgyhoz)

Matematikai analízis I. (Segédanyag a Közgazdaságtan matematikai alapjai tárgyhoz) Matematikai analízis I. (Segédanyag a "Közgazdaságtan matematikai alapjai" tárgyhoz) dr. Szalkai István és Mikó Teréz Pannon Egyetem, Veszprém 20. augusztus. 3... ii Tartalomjegyzék Tartalomjegyzék iii

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 É RETTSÉGI VIZSGA 005. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

EXPONENCIÁLIS EGYENLETEK

EXPONENCIÁLIS EGYENLETEK Sokszínű matematika /. oldal. feladat a) = Mivel mindegik hatván alapja hatván, ezért átírjuk a -et és a -ot: = ( ) Alkalmazzuk a hatván hatvána azonosságot! ( ) = A bal oldalon az azonos alapú hatvánok

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Állandó együtthatós lineáris rekurziók

Állandó együtthatós lineáris rekurziók 1. fejezet Állandó együtthatós lineáris rekurziók 1.1. A megoldás menete. Mese. Idézzük fel a Fibonacci-számokat! Az F n sorozatot a következő módon definiáltuk: legyen F 0 = 0, F 1 = 1, és F n+2 = F n+1

Részletesebben

Bevezetés a programozásba I.

Bevezetés a programozásba I. Bevezetés a programozásba I. 5. gyakorlat Surányi Márton PPKE-ITK 2010.10.05. C++ A C++ egy magas szint programozási nyelv. A legels változatot Bjarne Stroutstrup dolgozta ki 1973 és 1985 között, a C nyelvb

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2014. május 6. MINISZTÉRIUMA EMBERI ERFORRÁSOK

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2014. május 6. MINISZTÉRIUMA EMBERI ERFORRÁSOK Matematika középszint Javítási-értékelési útmutató MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERFORRÁSOK MINISZTÉRIUMA ÉRETTSÉGI VIZSGA 04. május 6. Fontos tudnivalók

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

Szöveges feladatok és Egyenletek

Szöveges feladatok és Egyenletek Szöveges feladatok és Egyenletek Sok feladatot meg tudunk oldani következtetéssel, rajz segítségével és egyenlettel is. Vajon mikor érdemes egyenletet felírni? Van-e olyan eset, amikor nem tanácsos, vagy

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

Végeredmények, feladatok részletes megoldása

Végeredmények, feladatok részletes megoldása Végeredmények, feladatok részletes megoldása I. Kombinatorika, gráfok Sorba rendezési problémák (Ismétlés). Részhalmaz-kiválasztási problémák, vegyes összeszámlálási feladatok (Ismétlés). Binomiális együtthatók,

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. október 21. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2008. október 21. EMELT SZINT MATEMATIKA ÉRETTSÉGI 008. október. EMELT SZINT ) Oldja meg a valós számok halmazán az alábbi egyenleteket: a) b) lg 8 0 6 I. (5 pont) (5 pont) a) A logaritmus értelmezése alapján: 80 ( vagy ) Egy szorzat

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

Matematika PRÉ megoldókulcs 2013. január 19. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT

Matematika PRÉ megoldókulcs 2013. január 19. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT Matematika PRÉ megoldókulcs 013. január 19. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi 1 feladat megoldása kötelező volt! 1) Adott A( 1; 3 ) és B( ; ) 7 9 pont. Határozza meg

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei 7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Feladatok MATEMATIKÁBÓL II.

Feladatok MATEMATIKÁBÓL II. Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2

Részletesebben

Dr`avni izpitni center MATEMATIKA

Dr`avni izpitni center MATEMATIKA Dr`avni izpitni center *P05C10113M* ŐSZI IDŐSZAK MATEMATIKA ÉRTÉKELÉSI ÚTMUTATÓ 005. augusztus 9., hétfő SZAKMAI ÉRETTSÉGI VIZSGA RIC 005 P05-C101-1-3M ÚTMUTATÓ a szakmai írásbeli érettségi vizsga feladatainak

Részletesebben

Görbe- és felületmodellezés. Szplájnok Felületmodellezés

Görbe- és felületmodellezés. Szplájnok Felületmodellezés Görbe- és felületmodellezés Szplájnok Felületmodellezés Spline (szplájn) Spline: Szakaszosan, parametrikus polinomokkal leírt görbe A spline nevét arról a rugalmasan hajlítható vonalzóról kapta, melyet

Részletesebben

Eötvös Loránd Tudományegyetem Természettudományi Kar

Eötvös Loránd Tudományegyetem Természettudományi Kar Eötvös Loránd Tudományegyetem Természettudományi Kar Közönséges differenciálegyenletek numerikus megoldása Szakdolgozat Soós Ivett Matematika B.Sc., Matematikai elemz szakirány Témavezet : Mincsovics Miklós

Részletesebben

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Próbaérettségi feladatsor_a NÉV: osztály Elért pont: Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a

Részletesebben