: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!
|
|
- Zoltán Orbán
- 6 évvel ezelőtt
- Látták:
Átírás
1 nomosztással a megoldást visszavezethetjük egy alacsonyabb fokú egyenlet megoldására Mivel a egyenletben az együtthatók összege ezért az egyenletnek gyöke az (mert esetén a kifejezés helyettesítési értéke pont az együtthatók összeg vagyis biztosan kiemelhet gyöktényez ként Polinomosztással kapjuk A harmadfokú egyenletben az együtthatók összege tehát ennek az egyenletnek is gyöke az így még egyszer kiemelhet gyöktényez ként A 6 6 másodfokú egyenlet gyökei (a megoldóképlettel) és Tehát az eredeti negyedfokú egyenlet megoldásai és 4 Ellen rzéssel meggy z dhetünk róla hogy ezek valóban jó megoldások Megjegyzés A fenti gondolatmenetben láttuk hogy ha egy egyenletben az együtthatók összege akkor az egyenletnek gyöke az Hasznos megfigyelés még hogy ha egy egyenlet együtthatóinak váltakozó el jel összege akkor az egyenletnek gyöke a III Ajánlott feladatok Végezzük el a kijelölt m veleteket majd adjuk meg az eredményt minél egyszer bb alakban! a a a a 4 p 4 q pq p w w w w n n n n n n u v u u v v ahol n A zárójelek felbontásával alakítsuk át többtagú kifejezéssé a következ ket! e f y y c c n 4 n 4 a b a b pq t u 4 t tu u c 4 uv 4 s uv 4 s k l m Alakítsuk szorzattá a következ kifejezéseket! 44 j ij i 4 6 u r 6 p 49 z rz 64 r u 6 u v uv 8 v a 8 8 jl km jm kl 6 64 c 7 d 6 z z y 6 y y 4 Egyszer sítsük a törteket a változók lehetséges értékei mellett! 6 b 6 b 8 c 8 d c d u u u u 9 6 a v a v av ab a c b ac s s t s t s s t st 4 Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett! c d c d c d c d 4 e f e f m m m m m m m g 6 g 8 g 6 g a a 8 7 a a a 4 6 a a a a a a 6 a 9 a u v u v u u v u uv l l l l j i j i i ij i j i ij j ij 6 Egyszer sítsük a törteket a változók lehetséges értékei mellett! 9 a 4 a a 6 6 a b b b b 9 4 b 9 7 Határozzuk meg számológép használata nélkül a következ m veletek végeredményét! Határozzuk meg számológép használata nélkül hogy az 9 és a 489 közül melyik számnak van több pozitív osztója!
2 9 Határozzuk meg a és b értékét ha tudjuk hogy minden a b összefüggés! esetén teljesül az Oldjuk meg a valós számok halmazán a következ egyenleteket! Döntsük el a következ m veletek végeredményeir l hogy racionálisak vagy irracionálisak-e! Határozzuk meg a lehet! y y 4 kifejezés minimumát ha és y tetsz leges valós szám Határozzuk meg az y z (ahol y és z egyike sem )! kifejezés értékét ha y z és y z teljesül 4 Írjuk fel minél egyszer bb alakban a következ kifejezést ahol ; ; ; ; 4; 4 4 Az ajánlott feladatok megoldásai Végezzük el a kijelölt m veleteket majd adjuk meg az eredményt minél egyszer bb alakban! a a a a 4 p 4 q pq p w w w w n n n n n n u v u u v v ahol n a a a a 4 a a a a 4 a a 8 a 4 a p 4 q pq p p q p p 4 pq p q 8 q p 7 p q 4 pq p 8 q 4 4 w w w w w w w w w w w w w w w Másképpen 4 w w w w w w w w w u v u u v v u u v u v u u v u v v v n n n n n n n n n n n n n n n n n n n n n n u v u v Másképpen n n n n n n n n n n u v u u v v u v u v A zárójelek felbontásával alakítsuk át többtagú kifejezéssé a következ ket! e f y y c c n 4 n 4 a b a b pq t u 4 t tu u c 4 uv 4 s uv 4 s k l m A nevezetes azonosságok alkalmazásával a következ ket kapjuk e f 9 e ef f y y 8 y 6 y 4 y 7 y c c c 4 c c n 4 n 4 n 8 a b a b a b 6 pq 9 p q pq 4 t u 4 t tu u 8 t u c 4 c c 48 c 64 uv 4 s uv 4 s 4 u v 6 s k l m k 4 l 9 m 4 kl 6 km lm Alakítsuk szorzattá a következ kifejezéseket! 44 j ij i 4 6 u r 6 p 49 z rz 64 r u 6 u v uv 8 v a 8 8 jl km jm kl 6 64 c 7 d 6 z z y 6 y y 44 j ij i j i 4 6 u r 6 p ur 4 p ur 4 p 49 z rz 64 r 7 z 8 r 8 r 7 z
3 u 6 u v uv 8 v u v a 8 a a a 4 8 jl km jm kl 8 jl jm kl km 6 j l m k l m l m 6 j k c 7 d 4 c d 6 c cd 9 d A 6 z z egyenlet gyökei z z z és z így 6 z z 6 z z y 6 y y y 6 y y y 6 Mivel az 6 másodfokú egyenletnek nincs valós megoldása (a diszkriminánsa negatív) ezért az 6 szorzótényez nem bontható tovább 4 Egyszer sítsük a törteket a változók lehetséges értékei mellett! 6 b 6 b 8 c 8 d c d u u u u 9 6 a v a v av ab a c b ac s s t s t s s t st 4 6 b 6 6 b b b b b ahol b 8 c 8 d 8 c d c d 4 c d c d c d c cd d c cd d ahol c d u u u u u u 9 u u u ahol u 6 b b b b ahol b és b a v a v av a v a av v a v a av v a av v av a av v a v ahol a av v 4 (ez csak az a v esetet zárja k c a b d a b d a b c a b d a b d a b ahol a b és c d ab c a a c a b a c b ac a ac c b a c b a c b a c b a c b ahol b a c ahol és s s st t s s st st t s s s t t s t 4 s s t s t s s t st s s st t s s 6 st st t s s s t t s t s s t s t s s t s s t s t s t ahol s s t és t s Megjegyzés Az feladat számlálója és nevez je más módszerrel is szorzattá alakítható amely hasznos bizonyos kétismeretlenes másodfokú polinomok esetében Például a nevez ben lév s st t szorzattá alakításakor tekintsük a s st t egyenletet amely s-re nézve egy másodfokú t paraméter egyenlet Ennek megoldásai vagyis s t és s t s t alakban is írható t s így az egyenlet gyöktényez s alakja t t 4 t t 7 t s 6 6 t s t s amely Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett! c d c d c d c d 4 e f e f m m m m m m m g 6 g 8 g 6 g a a 8 7 a a a 4 6 a a a a a a 6 a 9 a u v u v u u v u uv l l l l j i j i i ij i j i ij j ij c d c d c d c d c d c d c d c d c d c d c d c d c d
4 c d c cd d c cd d c d c d c d c d c d c d c d c d c d ahol c d 4 e f 4 e f 7 e f e f e f e f e f e f ahol e f és e f m m m m m m 4 m m 4 m 4 m m m m m m m és m m ahol m g 6 g 6 g 6 g 4 g 6 g 4 g 8 g 6 g g 4 g 4 g 4 g 4 g g 4 ahol g 4 a a 8 7 a a a a a a a a 4 a a a 4 ahol a (A második tört nevez je sosem mert a a 4 a ) 6 a a a a a a a a a a a 6 a 9 a a a a a 9 a a a 6 a a a a a a a a a a a a a a a a a a a a ahol a a és a u v u v u v u v u u v u v u u v u u u v u uv u u v u u v u u v u és u v u v ahol l l l l l l l l l l l l ahol l Másképpen l l l l l l l l l l j i j i j i j i i ij i j i ij j ij i i j i j i i j j j i j i i j i j j i i j i ij ij j i i i j i j i j i j i i j i j i j i j 6 i j i j i j ij j j i i j i j i j ij i j j i ahol i i j és j 6 Egyszer sítsük a törteket a változók lehetséges értékei mellett! 9 a 4 a a 6 6 a b b b b 9 4 b 9 A tört akkor értelmezhet ha 4 a Az eredményt polinomosztással kapjuk 9 a 4 a a 6 6 a 8 a a 9 a a a a 6 a 4 a a 6 a 6 Tehát az egyszer sített tört értéke a a Megjegyzés Ha a nevez t a 4 alakra hozzuk majd a számlálót csak a 4 -gyel osztjuk el akkor a végeredményt a a 4 alakban kapjuk meg Így az osztás során minden együttható egész lesz ez azonban nem szükségszer egy polinomosztásnál mint azt a fenti példa is mutatja Fontos megfigyelnünk hogy a 6 a 8 -cal történ osztáskor az els lépésben a hányados els tagja a lett (tehát a nem egész együtthatók is megengedettek) nem pedig a ekkor ugyanis a 9a -b l még a megmaradt volna viszont az osztási lépésekben a maradék fokszámának mindig kisebbnek kell lennie az osztó fokszámánál (kivéve ha a hányados ) A tört akkor értelmezhet ha b (ezek a nevez gyöke Polinomosztással kapjuk hogy 8 b 4 b b b 9 4 b 9 b b 4 8 b 8 b b b b 9 7 b 4 b 9 b 4 4 b 6 Mivel az utolsó lépésben a maradék 4 b 6 ez viszont már nem osztható 4 b 9 -cel ezért a tört számlálója nem osztható maradék nélkül a nevez vel (A maradékos osztás a következ képpen lenne felírható 4 8 b b b b 9 b b 4 b 9 4 b 6 ) 7
5 A nevez viszont szorzattá alakítható 4 b 9 b b így megpróbálhatjuk különkülön a szorzótényez k valamelyikével elosztani a tört számlálóját Mivel b gyöke a számlá- lónak (ezt behelyettesítéssel ellen rizhetjük) de tudni maradék nélkül elosztani a számlálót b nem gyöke ezért b -mal fogjuk 8 b 4 b b b 9 b b b b b 9 b b 6 b 9 6 b 9 A kapott b nem gyöke 4 kifejezés már biztosan nem osztható maradék nélkül b -mal hiszen 4 -nak (Ráadásul ha osztható lenne vele akkor az eredeti kifejezéssel is el tudtuk volna osztani az eredeti számlálót) 4 b 9 Így tehát az egyszer sítés a következ képpen írható le b b b b 9 b 4 4 b 9 b b b 7 Határozzuk meg számológép használata nélkül a következ m veletek végeredményét! Határozzuk meg számológép használata nélkül hogy az 9 és a 489 közül melyik számnak van több pozitív osztója! Az osztók számát meghatározhatnánk a számok prímtényez s felbontásából azonban sem az 9 sem a 489 nem osztható semelyik egyjegy prímmel sem így a prímtényez k keresése hosszabb írásbeli osztásokat igényelne Vegyük észre hogy és így a nevezetes azonosságokkal és adódik Mivel a számok mindegyike prím ezért az 9 és a 489 is két prím szorzata tehát ugyanannyi (4 d pozitív osztójuk van 9 Határozzuk meg a és b értékét ha tudjuk hogy minden a b összefüggés! esetén teljesül az a b a b a a A jobb oldal átalakítva a a Mivel teljesül minden megengedett értékre ezért a számlálók egyenl sége a b a b alakban is írható Két (els fokú) polinom pontosan akkor egyenl ha együtthatóik rendre megegyeznek azaz a b és a b Az els összefüggésb l a b ezt a másodikba helyettesítve 7 b ahonnan és a adódik 7 b 7 Megjegyzés Ezt az eljárást amikor tehát egy (legaláb másodfokú nevez j algebrai törtet több els fokú nevez j tört összegeként írunk fel parciális törtekre bontásnak nevezzük Oldjuk meg a valós számok halmazán a következ egyenleteket! Mivel az együtthatók váltakozó el jeles összege ezért az gyöke az egyenletnek így szorzótényez ként kiemelhet bel le Polinomosztással kapjuk
6 A 8 4 másodfokú egyenlet gyökei és Tehát az eredeti egyenlet 4 három megoldása a az és a Ellen rzéssel meggy z dhetünk róla hogy ezek mindegyike valóban jó 4 megoldás Mivel szimmetrikus negyedfokú egyenletr l van szó amelynek a nem gyöke ezért végigosztva a összefüggés alapján egyenletet kapjuk amely az alakra hozható Ez -tel -re nézve másodfokú a két gyök és 9 Ha akkor az egyenletb l az és megoldásokat kapjuk Ha kapjuk 9 akkor az 9 egyenletb l az és 4 megoldásokat Tehát az eredeti egyenlet négy megoldása az a a és a hetünk róla hogy ezek mindegyike valóban jó megoldás Ellen rzéssel meggy z d- Döntsük el a következ m veletek végeredményeir l hogy racionálisak vagy irracionálisak-e! racionális irracionális racionális Határozzuk meg a lehet! y y 4 kifejezés minimumát ha és y tetsz leges valós szám Keressünk teljes négyzeteket y y 4 y Mivel egy teljes négyzet értéke mindig nemnegatív ezért y vagyis a ki- fejezés értéke legalább Pontosan akkor lehet ha y és Ez meg is valósulhat és y esetén Tehát a kifejezés minimuma Határozzuk meg az y z a b c (ahol y és z egyike sem )! kifejezés értékét ha y z és y z teljesül Az y z kapjuk amelyet abc -vel elosztva a yz z y bc ac ab így egyenletet yz -vel szorozva az ayz bz cy összefüggést y z y z y z yz egyenlethez jutunk Mivel y z y z a b c ab ac bc ahonnan a keresett kifejezés értéke 4 Írjuk fel minél egyszer bb alakban a következ kifejezést ahol ; ; ; ; 4; 4 4 Az 4 közös nevez választása rendkívül hosszú számolást eredményezne Ehelyett észrevehetjük (a parciális törtekre bontás korábban ismertetett módszerével) hogy és így tovább 4 4 Vagyis a vizsgált kifejezés felírható a következ képpen 4 4 IV Ellen rz feladatok Végezzük el a kijelölt m veleteket majd adjuk meg az eredményt minél egyszer bb alakban! b b b b 4 b f f ef e ef f A zárójelek felbontásával alakítsuk át többtagú kifejezéssé a következ ket! ef 4 e q r c d 4 4 uv u v y y y y f g 4 h
3. Algebrai kifejezések, átalakítások
I Elméleti összefoglaló Műveletek polinomokkal Algebrai kifejezések, átalakítások Az olyan betűs kifejezéseket, amelyek csak valós számokat, változók pozitív egész kitevőjű hatványait, valamint összeadás,
RészletesebbenEgyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
RészletesebbenMagasabbfokú egyenletek
86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y
Részletesebben8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.
8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az
RészletesebbenFüggvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim.
Függvények 205. július 3. Határozza meg a következ határértékeket!. Feladat: 2. Feladat: 3. Feladat: 4. Feladat: (2 + 7 5 ) (2 + 7 5 ) (2 + 0 ) (2 + 7 5 ) (2 + 7 5 ) (2 + 0) (2 + 0 7 5 ) (2 + 0 7 5 ) (2
Részletesebben2. Algebrai átalakítások
I. Nulladik ZH-ban láttuk: 2. Algebrai átalakítások 1. Mi az alábbi kifejezés legegyszerűbb alakja a változó lehetséges értékei esetén? (A) x + 1 x 1 (x 1)(x 2 + 3x + 2) (1 x 2 )(x + 2) (B) 1 (C) 2 (D)
RészletesebbenPéldatár Lineáris algebra és többváltozós függvények
Példatár Lineáris algebra és többváltozós függvények Simonné Szabó Klára. február 4. Tartalomjegyzék. Integrálszámítás.. Racionális törtek integrálása...................... Alapfeladatok..........................
RészletesebbenHatványozás. A hatványozás azonosságai
Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84
RészletesebbenPolinomok (el adásvázlat, április 15.) Maróti Miklós
Polinomok (el adásvázlat, 2008 április 15) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: gy r, gy r additív csoportja, zéruseleme, és multiplikatív félcsoportja, egységelemes
RészletesebbenAz Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai
Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív
RészletesebbenMásodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.
RészletesebbenIntergrált Intenzív Matematika Érettségi
. Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.
Részletesebben352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm
5 Nevezetes egyenlôtlenségek a b 775 Legyenek a befogók: a, b Ekkor 9 + $ ab A maimális ab terület 0, 5cm, az átfogó hossza 8 cm a b a b 776 + # +, azaz a + b $ 88, tehát a keresett minimális érték: 88
RészletesebbenMásodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:
RészletesebbenHatározott integrál és alkalmazásai
Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,
RészletesebbenKomplex számok trigonometrikus alakja
Komplex számok trigonometrikus alakja 015. február 15. 1. Alapfeladatok 1. Feladat: Határozzuk meg az alábbi algebrai alakban adott komplex számok trigonometrikus alakját! z 1 = 4 + 4i, z = 4 + i, z =
RészletesebbenElemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged
Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül
RészletesebbenÁltalános és Középiskolai alapismeretek
Általános és Középiskolai alapismeretek Balázs István Bogya Norbert Csányi János Dudás János Fülöp Vanda Szíjjártó András Zarnócz Tamás https://www.youtube.com/playlist?list=plm_pndtn9bap8udvkotuuxovynnsul.
RészletesebbenBevezetés. 1. fejezet. Algebrai feladatok. Feladatok
. fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális
RészletesebbenEgyenletek, egyenlőtlenségek V.
Egyenletek, egyenlőtlenségek V. DEFINÍCIÓ: (Másodfokú egyenlet) Az ax + bx + c = 0 alakban felírható egyenletet (a, b, c R; a 0), ahol x a változó, másodfokú egyenletnek nevezzük. TÉTEL: Az ax + bx + c
RészletesebbenNémeth László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa
Németh László Matematikaverseny 007. április 16. A 9-10. osztályosok feladatainak javítókulcsa Feladatok csak 9. osztályosoknak 1. feladat a) Vegyük észre, hogy 7 + 5 felírható 1 + 3 + 6 + alakban, így
RészletesebbenKomplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23
Komplex számok Wettl Ferenc 2014. szeptember 14. Wettl Ferenc Komplex számok 2014. szeptember 14. 1 / 23 Tartalom 1 Számok A számfogalom b vülése Egy kis történelem 2 Miért számolunk velük? A megoldóképlet
RészletesebbenTaylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!
Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el
RészletesebbenHatározatlan integrál
Határozatlan integrál 05. április.. Alapfeladatok. Feladat: Határozzuk meg az alábbi határozatlan integrált! + sin ch Megoldás: Az integrálandó függvényen belül összeadás illetve kivonás m velete szerepel,
RészletesebbenALGEBRAI KIFEJEZÉSEK, EGYENLETEK
ALGEBRAI KIFEJEZÉSEK, EGYENLETEK AZ ALGEBRAI KIFEJEZÉS FOGALMÁNAK KIALAKÍTÁSA (7-9. OSZTÁLY) Racionális algebrai kifejezés (betűs kifejezés): betűket és számokat a négy alapművelet véges sokszori alkalmazásával
Részletesebben1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint
A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül
Részletesebben9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában
9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában Bevezet : A témakörben els - és másodfokú egyenl tlenségek megoldásának
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
RészletesebbenGAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten MÁSODFOKÚ EGYENLETEK ÉS EGYENLŽTLENSÉGEK Készítette: Gábor Szakmai felel s: Gábor
RészletesebbenFüggvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:
Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független
RészletesebbenKomplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 14
Komplex számok Wettl Ferenc 2012-09-07 Wettl Ferenc () Komplex számok 2012-09-07 1 / 14 Tartalom 1 Számok A számfogalom b vülése Egy kis történelem 2 Miért számolunk velük? A megoldóképlet egy speciális
RészletesebbenOSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.
Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :
RészletesebbenFüggvények határértéke, folytonossága
Függvények határértéke, folytonossága 25. február 22.. Alapfeladatok. Feladat: Határozzuk meg az f() = 23 4 5 3 + 9 a végtelenben és a mínusz végtelenben! függvény határértékét Megoldás: Vizsgáljuk el
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Algebra
Algebra Műveletek tulajdonságai: kommutativitás (felcserélhetőség): a b = b a; a b = b a asszociativitás (átcsoportosíthatóság): (a b) c = a (b c); a (b c) = (a b) c disztributivitás (széttagolhatóság):
RészletesebbenEgy általános iskolai feladat egyetemi megvilágításban
Egy általános iskolai feladat egyetemi megvilágításban avagy mit kell(ene) tudnia egy 8.-osnak a matematika versenyeken Kunos Ádám Középiskolás pályázat díjkiosztó SZTE Bolyai Intézet 2011. november 12.
RészletesebbenIV. INTEGRÁLSZÁMÍTÁS Megoldások november
IV. INTEGRÁLSZÁMÍTÁS Megoldások 009. november Határozatlan integrálás.05. + C + C.06. + C + C.07. ( ( 5 5 + C.08. ( ( + 5 5 + + C.09. + ( + ln + + C.. ( + ( + ( + 5 5 + + C.. + ( + ( + ( + + ( + ( + +
RészletesebbenKomplex számok algebrai alakja
Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z
RészletesebbenMegoldások 9. osztály
XXV. Nemzetközi Magyar Matematikaverseny Budapest, 2016. március 1115. Megoldások 9. osztály 1. feladat Nevezzünk egy számot prímösszeg nek, ha a tízes számrendszerben felírt szám számjegyeinek összege
RészletesebbenIrracionális egyenletek, egyenlôtlenségek
9 Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek /I a) Az egyenlet bal oldala a nemnegatív számok halmazán, a jobb oldal minden valós szám esetén
Részletesebben6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?
6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.
RészletesebbenPolinomok maradékos osztása
14. előadás: Racionális törtfüggvények integrálása Szabó Szilárd Polinomok maradékos osztása Legyenek P, Q valós együtthatós polinomok valamely x határozatlanban. Feltesszük, hogy deg(q) > 0. Tétel Létezik
RészletesebbenI. Egyenlet fogalma, algebrai megoldása
11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel
RészletesebbenHatvány gyök logaritmus
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Hatvány gyök logaritmus Hatványozás azonosságai 1. Döntse el az alábbi állításról, hogy igaz-e vagy hamis! Ha két szám négyzete egyenl, akkor
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenMatematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.
Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
RészletesebbenOktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont
Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú
RészletesebbenPolinomok (előadásvázlat, október 21.) Maróti Miklós
Polinomok (előadásvázlat, 2012 október 21) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: gyűrű, gyűrű additív csoportja, zéruseleme, és multiplikatív félcsoportja,
RészletesebbenAz Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin
RészletesebbenExponenciális és logaritmikus kifejezések Megoldások
Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása
RészletesebbenTrigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
RészletesebbenEmelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész
Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )
RészletesebbenGAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten KOMPLEX SZÁMOK Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Történeti bevezetés
RészletesebbenHatározatlan integrál
Határozatlan integrál Boros Zoltán Debreceni Egyetem, TTK Matematikai Intézet, Anaĺızis Tanszék Debrecen, 207. február 20 27. Primitív függvény, határozatlan integrál A továbbiakban legyen I R intervallum.
RészletesebbenA relációelmélet alapjai
A relációelmélet alapjai A reláció latin eredet szó, jelentése kapcsolat. A reláció, két vagy több nem feltétlenül különböz halmaz elemei közötti viszonyt, kapcsolatot fejez ki. A reláció értelmezése gráffal
Részletesebben25 i, = i, z 1. (x y) + 2i xy 6.1
6 Komplex számok megoldások Lásd ábra z = + i, z = + i, z = i, z = i z = 7i, z = + 5i, z = 5i, z = i, z 5 = 9, z 6 = 0 Teljes indukcióval 5 Teljes indukcióval 6 Az el z feladatból következik z = z = =
RészletesebbenRacionális és irracionális kifejezések
Racionális és irracionális kifejezések a + b a + ac a_ a+ ci a 77. A feltétel szerint b ac, ezért b c. + ac + c c_ a+ ci c ab ac bc 78. A feltétel szerint: ab+ ac+ bc- b, ezért + + + + a b c abc b -b -,
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: R) a) log 4 (x ) = 3 b) lg (x 4) = lg (8x 10) c) log x + log 3 = log 15 d) log x 0x log x 5 = e) log 3 (x 1) = log 3 4 f) log 5 x = 4 g) lg
Részletesebben3. Egyenletek, egyenletrendszerek, egyenlőtlenségek
. Egyenletek, egyenletrendszerek, egyenlőtlenségek I. Nulladik ZH-ban láttuk: 1. Mennyi a 2x 2 8x 5 = 0 egyenlet gyökeinek a szorzata? (A) 10 (B) 2 (C) 2,5 (D) 4 (E) ezek egyike sem Megoldás I.: BME 2011.
Részletesebben7. gyakorlat megoldásai
7. gyakorlat megoldásai Komple számok, sajátértékek, sajátvektorok F1. Legyen z 1 = + i és z = 1 i. Számoljuk ki az alábbiakat: z 1 z 1 + z, z 1 z, z 1 z,, z 1, z 1. z M1. A szorzásnál használjuk, hogy
RészletesebbenLineáris egyenletrendszerek
Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: Z) a) (x 1) (x + 1) 7x + 1 = x (4 + x) + 2 b) 1 2 [5 (x 1) (1 + 2x) 2 4x] = (7 x) x c) 2 (x + 5) (x 2) 2 + (x + 1) 2 = 6 (2x + 1) d) 6 (x 8)
RészletesebbenM. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!
Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval
Részletesebben1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
Részletesebbenkarakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja
Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus
Részletesebben1.1. Alapfogalmak. Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a
1. 1. hét 1.1. Alapfogalmak Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a (2, 3) Egyenes normál vektora egy pontban: egy olyan vektor
RészletesebbenA 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =
RészletesebbenFüggvények december 6. Határozza meg a következő határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. Megoldás: lim. 2. Feladat: lim.
Függvények 05. december 6. Határozza meg a következő határértékeket!. Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0 ). Feladat: ( + 7 5 ) ( + 7 5 ) ( + 0) 3. Feladat: ( + 0 7 5 ) 4. Feladat: ( + 0 7 5 ) ( + 7 0 5
RészletesebbenPolinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu
Polinomgy r k Dr. Vattamány Szabolcs 1. Bevezet Ezen jegyzet célja, hogy megismertesse az olvasót az egész, a racionális, a valós és a komplex számok halmaza fölötti polinomokkal. A szokásos jelölést használjuk:
RészletesebbenLÁNG CSABÁNÉ POLINOMOK ALAPJAI. Példák és megoldások
LÁNG CSABÁNÉ POLINOMOK ALAPJAI Példák és megoldások Lektorálta Ócsai Katalin c Láng Csabáné, 008 ELTE IK Budapest 008-11-08. javított kiadás Tartalomjegyzék 1. El szó..................................
RészletesebbenFELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest
FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest 2007-07-25 A 2. és a 4. fejezet feladatai megoldva megtalálhatók a Testb vítés, véges testek;
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos
RészletesebbenA 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM)
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) Javítási értékelési útmutató 1. Melyek azok a pozitív p és q prímek, amelyekre a számok mindegyike
RészletesebbenKomplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18
Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök
RészletesebbenKongruenciák. Waldhauser Tamás
Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Részletesebben5. Végezd el a kijelölt műveleteket, és ahol lehet, vonj össze!
1 1. Rendezd a következő polinomokat a bennük lévő változó növekedő hatvánkitevői szerint! a) 2 + + 2 b) 2 + + 2 + 6 2. Melek egnemű algebrai kifejezések? a) a 2 b; 2ab; a 2 b; 2a b; 1,a 2 b b) 2 ; 2 ;
RészletesebbenAdd meg az összeadásban szereplő számok elnevezéseit!
1. 2. 3. 4. 5. Add meg az összeadásban szereplő Add meg a kivonásban szereplő Add meg a szorzásban szereplő Add meg az osztásban szereplő Hogyan függ két szám előjelétől a két szám szorzata, hányadosa?
RészletesebbenMásodfokú egyenletek. 2. Ábrázoljuk és jellemezzük a következő,a valós számok halmazán értelmezett függvényeket!
Másodfokú egyenletek 1. Alakítsuk teljes négyzetté a következő kifejezéseket! a.) - 4 + 4 b.) - 6 + 8 c.) + 8 - d.) - 4 + 9 e.) - + 8 - f.) - - 4 + 3 g.) + 8-5 h.) - 4 + 3 i.) -3 + 6 + 1. Ábrázoljuk és
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
RészletesebbenSzámelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa
Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa 1. Mutasd meg, hogy a tízes számrendszerben felírt 111111111111 tizenhárom jegyű szám összetett szám, azaz
RészletesebbenDIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC
BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános
Részletesebben2017/2018. Matematika 9.K
2017/2018. Matematika 9.K Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép 2 órás, 4 jegyet ér 2018. május 28. hétfő 1-2. óra A312 terem Aki hiányzik, a következő
RészletesebbenZárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét.
Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a Számítsuk ki a 2i + 3j + 6k kvaternió inverzét. b Köbgyöktelenítsük a nevezőt az alábbi törtben: 1 3 3. Megoldás: a Egy q = a + bi + cj
RészletesebbenArany Dániel Matematikai Tanulóverseny 2017/2018-as tanév 2. forduló Haladók II. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 017/018-as tanév. forduló Haladók II. kategória Megoldások és javítási útmutató 1. Egy tanár kijavította egy 1 f s csoport dolgozatait.
RészletesebbenMegoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Számítsd ki a következő kifejezések pontos értékét!
Megoldások. Számítsd ki a következő kifejezések pontos értékét! 8 8 ( ) ( ) ( ) Használjuk a gyökvonás azonosságait. 0 8 8 8 8 8 8 ( ) ( ) ( ) 0 8 . Határozd meg a következő kifejezések értelmezési tartományát!
RészletesebbenEgészrészes feladatok
Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges
RészletesebbenKlasszikus algebra előadás. Waldhauser Tamás április 14.
Klasszikus algebra előadás Waldhauser Tamás 2014. április 14. Többhatározatlanú polinomok 4.3. Definíció. Adott T test feletti n-határozatlanú monomnak nevezzük az ax k 1 1 xk n n alakú formális kifejezéseket,
RészletesebbenKomplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 9
Komplex számok Wettl Ferenc 2010-09-10 Wettl Ferenc () Komplex számok 2010-09-10 1 / 9 Tartalom 1 Számok Egy kis történelem A megoldóképlet egy speciális esetre Lehet számolni negatív szám gyökével Műveletek
RészletesebbenOrszágos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor
Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket
RészletesebbenIntegrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november
Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................
Részletesebben(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0,
Feladatok az 5. hétre. Eredményekkel és kidolgozott megoldásokkal. Oldjuk meg az alábbi másodrend lineáris homogén d.e. - et, tudva, hogy egy megoldása az y = x! x y xy + y = 0.. Oldjuk meg a következ
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Részletesebben1. A maradékos osztás
1. A maradékos osztás Egész számok osztása Példa 223 = 7 31+6. Visszaszorzunk Kivonunk 223 : 7 = 31 21 13 7 6 Állítás (számelméletből) Minden a,b Z esetén, ahol b 0, létezik olyan q,r Z, hogy a = bq +
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 016. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenOszthatósági problémák
Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,
Részletesebben