Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I."

Átírás

1 Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés: Egy szám osztóinak megkeresését elég a szám négyzetgyökéig vizsgálni. Az 1-et és magát a számot nem tekintjük valódi osztónak. A 0 minden számnak többszöröse. DEFINÍCIÓ: (Prímszám) Törzsszámnak, vagy prímszámnak nevezzük azokat a számokat, amelyeknek pontosan két osztója van a természetes számok között. DEFINÍCIÓ: (Összetett szám) Összetett számnak nevezzük azt a 0-tól különböző számot, amelynek kettőnél több osztója van. Megjegyzés: A 0-t és 1-et nem tekintjük prímszámnak és összetett számnak sem. TÉTEL: (Számelmélet alaptétele) Minden összetett szám felírható prímszámok szorzatára és ez a felírás a sorrendtől eltekintve egyértelmű. DEFINÍCIÓ: (Legnagyobb közös osztó) Két vagy több 0-tól különböző természetes szám legnagyobb közös osztója az adott számok mindegyikének osztója és az összes közös osztójuknak többszöröse. Jelölés: (a; b). DEFINÍCIÓ: (Legkisebb közös többszörös) Két vagy több 0-tól különböző természetes szám legkisebb közös többszöröse az adott számok mindegyikének többszöröse és az összes közös többszörösüknek osztója. Jelölés: [a; b]. TÉTEL: Ha az a és b szám legnagyobb közös osztóját és legkisebb közös többszörösét összeszorozzuk, akkor az a és b szám szorzatát kapjuk. Jelölés: a b = (a; b) [a; b]. 1

2 Megjegyzés: Legnagyobb közös osztó meghatározása: a közös prímtényezők szorzata az előforduló legkisebb hatványon Legkisebb közös többszörös meghatározása: az összes különböző prímtényezők szorzata az előforduló legnagyobb hatványon DEFINÍCIÓ: (Relatív prímek) Az olyan természetes számokat, amelyek legnagyobb közös osztója 1, relatív prímeknek nevezzük. TÉTEL: (Oszthatósági szabályok) Egy természetes szám pontosan akkor osztható 2-vel, ha utolsó számjegye osztható 2-vel 5-tel, ha az utolsó számjegye osztható 5-tel 10-zel, ha az utolsó számjegye osztható 10-zel 4-gyel, ha az utolsó két számjegyből álló szám osztható 4-gyel 25-tel, ha az utolsó két számjegyből álló szám osztható 25-tel 8-cal, ha az utolsó három számjegyből álló szám osztható 8-cal 100-zal, ha az utolsó három számjegyből álló szám osztható 100-zal 125-tel, ha az utolsó három számjegyből álló szám osztható 125-tel 16-tal, ha az utolsó négy számjegyből álló szám osztható 16-tal 1000-rel, ha az utolsó négy számjegyből álló szám osztható 1000-rel 3-mal, ha a számjegyek összege osztható 3-mal 9-cel, ha a számjegyek összege osztható 9-cel 11-gyel, ha a váltakozó előjellel vett számjegyeinek összege osztható 11-gyel. TÉTEL: (Euklideszi osztás) Bármely a, b természetes számhoz található olyan egyértelműen meghatározott p, r természetes szám, amelyre a = b p + r teljesül (ahol 0 r < b). Ekkor p-t hányadosnak, r-t maradéknak nevezzük. 2

3 TÉTEL: (Euklideszi algoritmus) Két számon végrehajtott euklideszi algoritmus utolsó nem 0 maradéka a két szám legnagyobb közös osztója. TÉTEL: Ha egy összeg minden tagja osztható egy számmal, akkor az összeg is osztható ezzel a számmal. Jelöléssel: a b és a c a (b + c). TÉTEL: Ha egy szorzat valamelyik tényezője osztható egy számmal, akkor a szorzat is osztható azzal a számmal. Jelöléssel: c a c (a b). DEFINÍCIÓ: (Számelméleti függvény) Az olyan függvényeket, melyek értelmezési tartománya a természetes számok halmaza, számelméleti függvényeknek nevezzük. TÉTEL: Ha n felírható n = p 1 α 1 p 2 α 2 p r α r alakban, ahol p 1, p 2,, p n az n szám prímosztói, akkor megadhatóak a következő számelméleti függvények: az n szám osztóinak száma: d(n) = (α 1 + 1) (α 2 + 1) (α r + 1) az n szám osztóinak összege: σ(n) = p 1 α p 1 1 az n-nél nem nagyobb, n-hez relatív prímek száma: p 2 α2+1 1 p r αr+1 1 p 2 1 p r 1 φ(n) = (p 1 1) p 1 α 1 1 (p 2 1) p 2 α 2 1 (p r 1) p r α r 1 DEFINÍCIÓ: (Racionális számok) Azokat a számokat, amelyek felírhatóak két egész szám hányadosaként (tört alakban), racionális számoknak nevezzük. Megjegyzés: A racionális számok felírhatóak tizedestört alakban is. Véges tizedes tört: A tört alak úgy egyszerűsíthető, illetve bővíthető, hogy nevezője 10-nek valamilyen hatványa legyen. Pl.: 5,6 = 56 14,592 = ,0703 = Végtelen szakaszos tizedestört: A tizedes vessző után álló számjegyek egy szakasza újra és újra ismétlődik. Pl.: 1,03 6 = 1, , 5 = 2,555 3, 1 89 = 3, Bármely két racionális szám között van újabb racionális szám. 3

4 DEFINÍCIÓ: (Irracionális számok) Az olyan tizedestörtet, mely nem véges és nem végtelen szakaszos, irracionális számnak nevezzük. Megjegyzés: A tizedesvessző utáni számjegyek ismétlődésében nincs szabályosság. Nem írhatóak fel két egész szám hányadosaként (tört alakban). Irracionális számok esetében közelítő értékkel számolunk. DEFINÍCIÓ: (Valós számok) A racionális és irracionális számok halmazának uniója a valós számok halmaza. DEFINÍCIÓ: (Reciprok) Egy 0-tól különböző szám reciprokán azt a számot értjük, amellyel a számot megszorozva a szorzat értéke 1 lesz. 4

5 1. Írd fel 0-tól 20-ig a 6 többszöröseit! Azok a számok a 6 többszörösei, melyek felírhatóak 6-nak és egy egész számnak szorzataként. Ezek alapján a megoldás: 0, 6, 12, Mely számok relatív prímek a következőek közül? 11, 14, 15, 18, 25 Először a számokat bontsuk fel prímtényezőkre. 11 = = = = = 5 2 A számok közül azok lesznek relatív prímek, melyek nem tartalmaznak azonos prímtényezőt. Ezek alapján a relatív prímek: (11; 14), (11; 15), (11; 18), (11; 25), (14; 15), (14; 25), (18; 25). 3. Határozd meg 324 és 750 összes osztójának számát, összegét, illetve a relatív prímek számát! Először a számokat bontsuk fel prímtényezőkre: 324 = és 750 = Az osztók számát megkapjuk a d(n) számelméleti függvény segítségével: d(324) = (2 + 1) (4 + 1) = 3 5 = 15 d(750) = (1 + 1) (1 + 1) (3 + 1) = = 16 Az osztók összegét megkapjuk a σ(n) számelméleti függvény segítségével: σ(324) = = = σ(750) = = = A relatív prímek számát megkapjuk a φ(n) számelméleti függvény segítségével: φ(324) = (2 1) 2 1 (3 1) 3 3 = = 108 φ(750) = (2 1) 2 0 (3 1) 3 0 (5 1) 5 2 = = 200 5

6 4. Határozd meg 60 és 198 legnagyobb közös osztóját és legkisebb közös többszörösét! Először a számokat bontsuk prímtényezőkre: 60 = és 198 = A legnagyobb közös osztó meghatározásához a közös prímtényezőket az előforduló legkisebb hatványon összeszorozzuk. Ezek alapján a legnagyobb közös osztó: (60, 198) = 2 3 = 6. A legkisebb közös többszörös meghatározásához a két számban szereplő összes prímtényezőt az előforduló legnagyobb hatványon szorozzuk össze. Ezek alapján a legkisebb közös többszörös: [60, 198] = = Határozd meg a b számot, ha tudjuk, hogy a = ; (a, b) = és [a, b] = ! A b szám prímtényezők szorzataként való felíráshoz a legnagyobb közös osztóból indulunk ki. Abból az következik, hogy a b szám prímtényezős felbontásában biztosan lesz 2 4 (mert az a számban 2 7 szerepelt), s 3-nak valamilyen hatványa (mivel a-nál is éppen 3 5 szerepelt, ezért a hatványt még nem tudjuk kitalálni). Ezek után tekintsük a legkisebb közös többszöröst. Abból pedig azt kapjuk, hogy biztosan lesz a b szám prímtényezős felírásában 5 és 3 9 (mert az a szám felírásában az 5 nem, míg a 3 csak az ötödik hatványon szerepelt). Ezek alapján a b szám a következő: b = = Határozd meg az 1852 és 1972 számok legnagyobb közös osztóját Euklideszi algoritmus segítségével! Az euklideszi algoritmus azt jelenti, hogy minden újabb lépésben az előző lépésben szereplő osztót osztjuk el az ott keletkezett maradékkal: = 1, maradék: = 15, maradék: = 2, maradék: = 3, maradék: = 4, maradék: 0. Az utolsó nem 0 maradék lesz a megoldás, vagyis a két szám legnagyobb közös osztója: 4. 6

7 7. Milyen x érték esetén lesz a 7431x2 szám osztható 24-gyel? Először a 24-et fel kell írnunk két olyan relatív prímszám szorzatára, melyekre tanultunk korábban oszthatósági szabályt. Mivel 24 = 3 8, így ebből következik, hogy egy szám akkor lesz osztható 24-gyel, ha osztható 3-mal és 8-cal is. Az adott szám, akkor lesz osztható 3-mal (számjegyek összege osztható 3-mal), ha x = 1, 4, 7. Az adott szám akkor lesz osztható 8-cal (utolsó 3 számjegyből képzett szám osztható 8-cal), ha x = 1, 5, 9. Ezek alapján a szám csak akkor lesz osztható 24-gyel, ha x = Milyen x és y érték esetén lesz az 1x24y6 szám osztható 12-vel? Mivel 12 = 3 4, így ebből következik, hogy egy szám akkor lesz osztható 12-vel, ha osztható 3-mal és 4-gyel is. Ebben a feladatban két ismeretlen van, ezért el kell döntenünk a két oszthatóság közül melyik az, amelyik biztosan meghatározza az egyik ismeretlent. Az adott szám akkor lesz osztható 4-gyel (utolsó 2 számjegyből képzett szám osztható 4-gyel), ha y = 1, 3, 5, 7, 9. Az x kiszámításánál a 3-mal való oszthatóságot befolyásolja, hogy y helyére a lehetséges értékek közül melyiket választjuk, ezért több megoldásunk is lesz. Ha y = 1, akkor x = 1, 4, 7. Ha y = 3, akkor x = 2, 5, 8. Ha y = 5, akkor x = 0, 3, 6, 9. Ha y = 7, akkor x = 1, 4, 7. Ha y = 9, akkor x = 2, 5, 8. Ezek alapján a következő számpárok lesznek a megfelelő megoldások (első az x, második az y érték): (1; 1), (4; 1), (7; 1), (2; 3), (5; 3), (8; 3), (0; 5), (3; 5), (6; 5), (9; 5), (1; 7), (4; 7), (7; 7), (2; 9), (5; 9), (8; 9). 7

8 9. Írj fel 4 számot törtalakban a 3 7 és 5 7 között! Ahhoz, hogy fel tudjunk írni törteket a két szám között, a nevezőket bővítsük a megfelelő mértékig: 3 = = Ezek alapján 4 ilyen megfelelő szám lehet a következő: 10 21, 11 21, 12 21, Írd fel törtalakban a következő tizedestörteket! 1, 23 2, 58 3, 2 14 Első esetben véges tizedestörtről van szó, vagyis a megoldás a következő: 1,23 = A második és harmadik esetben arra kell törekednünk, hogy két különböző számmal megszorozva az adott számot, olyan számokat kapjunk, melyekben a tizedesvessző után ugyanazok az ismétlődő számjegyek szerepeljenek. Ekkor ugyanis, ha ezeket kivonjuk egymásból, akkor eltűnnek a tizedesvessző utáni számjegyek. 100x = 258,888 10x = 25,888 90x = 233 x = x = 3214, x = 3, x = 3211 x =

9 11. Számítsd ki a következő kifejezések pontos értékét! [( ) ] ( ) Az első esetben belülről bontjuk ki az emeletes törtet, s azt kell tudnunk hozzá, hogy egy számot törttel úgy osztunk, hogy szorozzuk a tört reciprokával = = = = = 2 52 = 4 = A második esetben a műveleti sorrendeket kell tudnunk: balról jobbra haladva végezzük el a műveleteket, s először a zárójeles kifejezéseket bontjuk fel, illetve a hatványozást szorzást osztást végezzük el, s csak ezután az összeadást és kivonást. Továbbá azt kell még tudnunk, hogy az egy vegyes szám, amelynek értéke 4 3, illetve a negatív hatvány az adott számot a reciprokára változtatja. [( ) ] ( ) = ( ) ( 1 6 ) = = ( 6 5 ) ( 6) + 7 = = = Bizonyítsd be a 4-gyel való oszthatóság szabályát! Először tekintsünk egy tetszőleges A számot, s írjuk fel a helyiértékek segítségével a következő módon: A = 1 a a n a n (ahol a 1, a 2,, a n a számjegyeket jelölik). A 4-gyel való oszthatóság bizonyításához alakítsuk tovább az A számot: A = 1 a a n a n = 1 a a (a a n 2 a n ). Ebből látszik, hogy a zárójeles kifejezés 100-zal szorozva biztosan osztható lesz 4-gyel, ezért maga az A szám csak akkor lesz osztható 4-gyel, ha a zárójel előtt álló tagok összege is osztható 4-gyel. A zárójel előtt álló tagokat megvizsgálva azt kapjuk, hogy azok összege éppen az A szám utolsó két számjegyéből képzett szám, vagyis az A szám csak akkor lesz osztható 4-gyel, ha az utolsó két számjegyéből képzett szám osztható 4-gyel. 9

10 13. Bizonyítsd be a 3-mal és 9-cel való oszthatóság szabályát! Először tekintsünk egy tetszőleges A számot, s írjuk fel a helyiértékek segítségével a következő módon: A = 1 a a n a n (ahol a 1, a 2,, a n a számjegyeket jelölik). A 3-mal és 9-cel való oszthatóság bizonyításához alakítsuk tovább az A számot: A = 1 a a n a n = 1 a 1 + (1 + 9) a ( ) a n = = 1 a a a a n a n = = 1 a a a n + 9 a a n = = 1 a a a n + 9 (1 a a n ) Ebből látszik, hogy a zárójeles kifejezés 9-cel szorozva biztosan osztható lesz 3-mal és 9-cel, ezért maga az A szám csak akkor lesz osztható 3-mal, illetve 9-cel, ha a zárójel előtt álló tagok összege is osztható 3-mal, illetve 9-cel. A zárójel előtt álló tagokat megvizsgálva pedig azt kapjuk, hogy azok éppen az A szám számjegyei, vagyis az A szám csak akkor lesz osztható 3-mal, illetve 9-cel, ha a számjegyeinek összege osztható 3-mal, illetve 9-cel. Brósch Zoltán 10

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Ellentett) Egy szám ellentettjén azt a számot értjük, amelyet a számhoz hozzáadva az 0 lesz. Egy szám ellentettje megegyezik a szám ( 1) szeresével. Számfogalmak kialakítása:

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Törtek. Rendelhetőek nagyon jó szemléltethető eszközök könyvesboltokban és internetek is, pl:

Törtek. Rendelhetőek nagyon jó szemléltethető eszközök könyvesboltokban és internetek is, pl: Törtek A törteknek kétféle értelmezése van: - Egy egészet valamennyi részre (nevező) osztunk, és abból kiválasztunk valahány darabot (számláló) - Valamennyi egészet (számláló), valahány részre osztunk

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Számelmélet. 7 8. évfolyam. Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György. 2015. október 19.

Számelmélet. 7 8. évfolyam. Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György. 2015. október 19. Számelmélet 7 8. évfolyam Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György 2015. október 19. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás,

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez 1. Számtani műveletek 1. Összeadás 73 + 19 = 92 összeadandók (tagok) összeg Összeadáskor a tagok felcserélhetőek, az összeg nem változik. a+b = b+a Összeadáskor a tagok tetszőlegesen csoportosíthatóak

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

2. témakör: Számhalmazok

2. témakör: Számhalmazok 2. témakör: Számhalmazok Olvassa el figyelmesen az elméleti áttekintést, és értelmezze megoldási lépéseket, a definíciókat, tételeket. Próbálja meg a minta feladatokat megoldani! Feldolgozáshoz szükségesidö:

Részletesebben

SZÁMELMÉLET FELADATSOR

SZÁMELMÉLET FELADATSOR SZÁMELMÉLET FELADATSOR Oszthatóság 1. Az 123x4 számban milyen számjegy állhat x helyén, ha a szám osztható a) 3-mal; e) 6-tal; b) 9-cel; f) 24-gyel; c) 4-gyel; g) 36-tal; d) 8-cal; h) 72-vel? 2. Határozd

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK!

MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK! MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK! Készítette: Kovács Károlyné MATEMATIKA C 9. ÉVFOLYAM 4. MODUL: OSZTOZZUNK! TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam eszközök diákok és csoportok részére 1. félév A kiadvány KHF/4632-14/2008. engedélyszámon 2008.12.16. időponttól tankönyvi engedélyt kapott Educatio

Részletesebben

3. Algebrai kifejezések, átalakítások

3. Algebrai kifejezések, átalakítások I Elméleti összefoglaló Műveletek polinomokkal Algebrai kifejezések, átalakítások Az olyan betűs kifejezéseket, amelyek csak valós számokat, változók pozitív egész kitevőjű hatványait, valamint összeadás,

Részletesebben

Komplex számok algebrai alakja

Komplex számok algebrai alakja Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z

Részletesebben

Hossó Aranka Márta. Matematika. pontozófüzet. a speciális szakiskola 9 10. osztálya számára összeállított. Felmérő feladatokhoz. Novitas Kft.

Hossó Aranka Márta. Matematika. pontozófüzet. a speciális szakiskola 9 10. osztálya számára összeállított. Felmérő feladatokhoz. Novitas Kft. Hossó Aranka Márta Matematika pontozófüzet a speciális szakiskola 9 10. osztálya számára összeállított Felmérő feladatokhoz Novitas Kft. Debrecen, 2007 Összeállította: Hossó Aranka Márta Kiadja: Pedellus

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. 5. Add meg az összeadásban szereplő Add meg a kivonásban szereplő Add meg a szorzásban szereplő Add meg az osztásban szereplő Hogyan függ két szám előjelétől a két szám szorzata, hányadosa?

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =?

148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =? 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

OECD adatlap - Tanmenet

OECD adatlap - Tanmenet OECD adatlap - Tanmenet Iskola neve: IV. Béla Általános Iskola Iskola címe: 3664, Járdánháza IV. Béla út 131. Tantárgy: Matematika Tanár neve: Lévai Gyula Csoport életkor (év): 13 Kitöltés dátuma 2003.

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Algebrai egész kifejezések (polinomok)

Algebrai egész kifejezések (polinomok) Algebrai egész kifejezések (polinomok) Betűk használata a matematikában Feladat Mekkora a 107m 68m oldalhosszúságú téglalap alakú focipála kerülete, területe? a = 107 m b = 68 m Terület T = a b = 107m

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató 1. A 23-as szám című misztikus filmben

Részletesebben

Juhász Tibor. Diszkrét matematika

Juhász Tibor. Diszkrét matematika Juhász Tibor Diszkrét matematika Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Juhász Tibor Diszkrét matematika Eger, 2013 Bíráló:??? Készült a TÁMOP-412A/1-11/2011-0038 támogatásával

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz)

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz) 6. OSZTÁLY Óraszám 1. 1. Az évi munka szervezése, az érdeklõdés felkeltése a 6. osztály anyagából Tk. 13/elsõ mintapélda 42/69 70. 96/elsõ mintapélda 202/16. 218/69. 2 3. 2 3. Halmazok Ismétlés (halmaz

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

Irracionális egyenletek, egyenlôtlenségek

Irracionális egyenletek, egyenlôtlenségek 9 Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek /I a) Az egyenlet bal oldala a nemnegatív számok halmazán, a jobb oldal minden valós szám esetén

Részletesebben

Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa

Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa 1. Mutasd meg, hogy a tízes számrendszerben felírt 111111111111 tizenhárom jegyű szám összetett szám, azaz

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Mechatronika Modul 1: Alapismeretek

Mechatronika Modul 1: Alapismeretek Mechatronika Modul : Alapismeretek Oktatói segédlet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser Adrienn Corvinus

Részletesebben

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis I. ALAPALGORITMUSOK 1. Prímszámvizsgálat Adott egy n természetes szám. Írjunk algoritmust, amely eldönti, hogy prímszám-e vagy sem! Egy számról úgy fogjuk eldönteni, hogy prímszám-e, hogy megvizsgáljuk,

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Első rész 1. Bevezetés Tekintsük az ak + b számtani sorozatot, ahol a > 0. Ha a és b nem relatív prímek, akkor (a,b) > 1 osztója

Részletesebben

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Számrendszerek. A római számok írására csak hét jelt használtak. Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat.

Számrendszerek. A római számok írására csak hét jelt használtak. Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat. Számrendszerek A római számok írására csak hét jelt használtak Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat Római számjegyek I V X L C D M E számok értéke 1 5 10

Részletesebben

Tanmenet a Matematika 10. tankönyvhöz

Tanmenet a Matematika 10. tankönyvhöz Tanmenet a Matematika 10. tankönyvhöz (111 óra, 148 óra, 185 óra) A tanmenetben olyan órafelosztást adunk, amely alkalmazható mind a középszintû képzés (heti 3 vagy heti 4 óra), mind az emelt szintû képzés

Részletesebben

MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA

MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA JELÖLÉSEK: Nem szakrendszerű órák jelölése zöld színnel, számok a programterv A 6. évfolyam tanmenetből valók Infokommunikációs technológia

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

MATEMATIKA tanterv emelt szint 11-12. évfolyam

MATEMATIKA tanterv emelt szint 11-12. évfolyam MATEMATIKA tanterv emelt szint 11-12. évfolyam Batthyány Kázmér Gimnázium, 2004. 1 TARTALOM 11.osztály (222 óra)... 3 1. Gondolkodási műveletek (35 óra)... 3 2. Számelmélet, algebra (64 óra)... 3 3. Függvények,

Részletesebben

TANANYAGBEOSZTÁS. Kompetencia alapú matematika 6. osztály. A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése Mátészalkán

TANANYAGBEOSZTÁS. Kompetencia alapú matematika 6. osztály. A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése Mátészalkán TANANYAGBEOSZTÁS TÁMOP 3.1.4. 08/2-2008-0149 A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése Mátészalkán Implementáló pedagógus: Nagy Gusztávné Implementációs terület: Kompetencia alapú matematika

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám rendje A rend fogalma A 1-nek két darab egész kitevőjű hatványa van: 1 és 1. Az i-nek 4 van: i, i 2 = 1, i 3 = i, i 4 = 1. Innentől kezdve ismétlődik: i 5 = i, i 6 = i 2 = 1, stb. Négyesével

Részletesebben

Készítette: Ernyei Kitti. Halmazok

Készítette: Ernyei Kitti. Halmazok Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

Református Iskolák XXI. Országos Matematikaversenye 2013 7. osztály

Református Iskolák XXI. Országos Matematikaversenye 2013 7. osztály 1. Egy nap Mariska néni vett egy tyúkot a piacon. Miután a tyúk tojt két tojást, a tyúkot megették vacsorára. Vagy mindkét tojásból tyúk, vagy mindkét tojásból kakas kelt ki. Minden kakast megettek, a

Részletesebben

Melléklet a Matematika című részhez

Melléklet a Matematika című részhez Melléklet a Matematika című részhez Az arányosság bemutatása Az első könyvsorozatban 7. osztály, Tk-2 és Tk-3-ban 6. osztály, Tk-3b-ben 5. osztály(!), Tk-4-ben ismét 6. osztály, és végül Tk-4b-ben 5-6.

Részletesebben

Maple. Maple. Dr. Tóth László egyetemi docens Pécsi Tudományegyetem, 2007

Maple. Maple. Dr. Tóth László egyetemi docens Pécsi Tudományegyetem, 2007 Maple Dr. Tóth László egyetemi docens Pécsi Tudományegyetem, 2007 A Maple egy matematikai formula-manipulációs (vagy számítógép-algebrai) rendszer, amelyben nem csak numerikusan, hanem formális változókkal

Részletesebben

KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 6. ÉVFOLYAM MEGOLDÁSOK

KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 6. ÉVFOLYAM MEGOLDÁSOK KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 6. ÉVFOLYAM MEGOLDÁSOK Egész számok.. a) Igaz; b) igaz; c) hamis; d) igaz; e) igaz; f) hamis.. A felsorolt számok közül a legkisebb szám: 0, a legkisebb

Részletesebben

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója SZAKKÖZÉPISKOLA A 006-007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója. Feladat: Egy számtani sorozat három egymást követő tagjához rendre 3-at, -et, 3-at adva

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Gál Józsefné Tanmenetjavaslat a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Dinasztia Tankönyvkiadó Budapest, 2002 Írta: Gál Józsefné Felelôs szerkesztô: Ballér Judit ISBN 963 657 144 9

Részletesebben

Matematikai alapismeretek. Huszti Andrea

Matematikai alapismeretek. Huszti Andrea Tartalom 1 Matematikai alapismeretek Algebrai struktúrák Oszthatóság Kongruenciák Algebrai struktúrák Az S = {x, y, z,... } halmazban definiálva van egy művelet, ha az S-nek minden x, y elempárjához hozzá

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 9 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

SZÁMRENDSZEREK. c) 136; 253 7. c) 3404; 6514 8. = 139 c) 31210 4. = 508 e) 150 6 = 5843.

SZÁMRENDSZEREK. c) 136; 253 7. c) 3404; 6514 8. = 139 c) 31210 4. = 508 e) 150 6 = 5843. SZÁMRENDSZEREK 1933. A megadott sorrendet követve írtuk át a számokat: a) 2-es számrendszerben: 11; 1001; 1100; 10001; 10111; 100110; 1011011. b) 3-as számrendszerben: 21;110;1011; 1020; 10100; 10102;

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

TANANYAGBEOSZTÁS. Kompetencia alapú matematika 6. osztály. A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése

TANANYAGBEOSZTÁS. Kompetencia alapú matematika 6. osztály. A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése TANANYAGBEOSZTÁS TÁMOP 3.1.4. 08/2-2008-0149 A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése Mátészalkán Implementáló pedagógus: Nagy Gusztávné Implementációs terület: Kompetencia alapú matematika

Részletesebben

Számológép nélkül! százasokra:,,zsinór ; ezresekre:,,lótuszvirág ; tízezresekre:,,ujj ; százezresekre:

Számológép nélkül! százasokra:,,zsinór ; ezresekre:,,lótuszvirág ; tízezresekre:,,ujj ; százezresekre: Számológép nélkül! Manapság az iskolában a matematika órán szinte mindenhez megengedett a számológép használata. Persze mindezen a mai világban már meg se lepődünk, hiszen a mindennapi tevékenységeink

Részletesebben

SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban:

SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban: SZÁMTANI SOROZATOK Egyszerű feladatok. Egy számtani sorozatban: a) a, a 29, a? 0 b) a, a, a?, a? 80 c) a, a 99, a?, a? 0 20 d) a 2, a2 29, a?, a90? 2 e) a, a, a?, a00? 2. Hány eleme van az alábbi sorozatoknak:

Részletesebben

SZAKDOLGOZAT. Sempergel József

SZAKDOLGOZAT. Sempergel József SZAKDOLGOZAT Sempergel József Debrecen 2007 Debreceni Egyetem Matematikai Intézet A SZÁMELMÉLET MEGJELENÉSE A KÖZÉPISKOLAI OKTATÁSBAN Témavezető: Dr. Bérczes Attila Készítette: Sempergel József Informatika

Részletesebben

SZAKDOLGOZAT. Krivián Marianna DEBRECEN

SZAKDOLGOZAT. Krivián Marianna DEBRECEN SZAKDOLGOZAT Krivián Marianna DEBRECEN 2008 DEBRECENI EGYETEM TERMÉSZETTUDOMÁNYI KAR MATEMATIKAI INTÉZET SZÁMELMÉLET A KÖZÉPISKOLÁBAN Témavezetı: Dr. Bérczes Attila Egyetemi Adjunktus Készítette: Krivián

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

I. Racionális szám fogalma és tulajdonságai

I. Racionális szám fogalma és tulajdonságai 2. modul: MŰVELETEK A RACIONÁLIS SZÁMOK KÖRÉBEN 9 I. Racionális szám fogalma és tulajdonságai Természetes számok 0; 1; 2; 3; 4; 5; 6; 7, 8; 9; 10; 11; 12... Módszertani megjegyzés: Ráhangolódás, csoportalakítás

Részletesebben

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

Számrendszerek. Bináris, hexadecimális

Számrendszerek. Bináris, hexadecimális Számrendszerek Bináris, hexadecimális Mindennapokban használt számrendszerek Decimális 60-as számrendszer az időmérésre DNS-ek vizsgálata négyes számrendszerben Tetszőleges természetes számot megadhatunk

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Az írásbeli eredménye 75%-ban, a szóbeli eredménye 25%-ban számít a végső értékelésnél.

Az írásbeli eredménye 75%-ban, a szóbeli eredménye 25%-ban számít a végső értékelésnél. Matematika A vizsga leírása: írásbeli és szóbeli vizsgarészből áll. A matematika írásbeli vizsga egy 45 perces feladatlap írásbeli megoldásából áll. Az írásbeli feladatlap tartalmi jellemzői az alábbiak:

Részletesebben

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu Polinomgy r k Dr. Vattamány Szabolcs 1. Bevezet Ezen jegyzet célja, hogy megismertesse az olvasót az egész, a racionális, a valós és a komplex számok halmaza fölötti polinomokkal. A szokásos jelölést használjuk:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

Prof. Báthori Éva, Prof. Betuker Enikő, Prof. Gyulai Andrea, Prof. István Zoltán, Prof. Nagy Olga, Prof. Pálhegyi-Farkas László ÉRETTSÉGI SEGÉDANYAG

Prof. Báthori Éva, Prof. Betuker Enikő, Prof. Gyulai Andrea, Prof. István Zoltán, Prof. Nagy Olga, Prof. Pálhegyi-Farkas László ÉRETTSÉGI SEGÉDANYAG Prof. Báthori Éva, Prof. Betuker Enikő, Prof. Gyulai Andrea, Prof. István Zoltán, Prof. Nagy Olga, Prof. Pálhegyi-Farkas László ÉRETTSÉGI SEGÉDANYAG MATEMATIKA M TECHNOLÓGIAI SZAKOSZTÁLYOK RÉSZÉRE 05 ORADEA

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? blokk-titkosító

Részletesebben