Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I."

Átírás

1 Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés: Egy szám osztóinak megkeresését elég a szám négyzetgyökéig vizsgálni. Az 1-et és magát a számot nem tekintjük valódi osztónak. A 0 minden számnak többszöröse. DEFINÍCIÓ: (Prímszám) Törzsszámnak, vagy prímszámnak nevezzük azokat a számokat, amelyeknek pontosan két osztója van a természetes számok között. DEFINÍCIÓ: (Összetett szám) Összetett számnak nevezzük azt a 0-tól különböző számot, amelynek kettőnél több osztója van. Megjegyzés: A 0-t és 1-et nem tekintjük prímszámnak és összetett számnak sem. TÉTEL: (Számelmélet alaptétele) Minden összetett szám felírható prímszámok szorzatára és ez a felírás a sorrendtől eltekintve egyértelmű. DEFINÍCIÓ: (Legnagyobb közös osztó) Két vagy több 0-tól különböző természetes szám legnagyobb közös osztója az adott számok mindegyikének osztója és az összes közös osztójuknak többszöröse. Jelölés: (a; b). DEFINÍCIÓ: (Legkisebb közös többszörös) Két vagy több 0-tól különböző természetes szám legkisebb közös többszöröse az adott számok mindegyikének többszöröse és az összes közös többszörösüknek osztója. Jelölés: [a; b]. TÉTEL: Ha az a és b szám legnagyobb közös osztóját és legkisebb közös többszörösét összeszorozzuk, akkor az a és b szám szorzatát kapjuk. Jelölés: a b = (a; b) [a; b]. 1

2 Megjegyzés: Legnagyobb közös osztó meghatározása: a közös prímtényezők szorzata az előforduló legkisebb hatványon Legkisebb közös többszörös meghatározása: az összes különböző prímtényezők szorzata az előforduló legnagyobb hatványon DEFINÍCIÓ: (Relatív prímek) Az olyan természetes számokat, amelyek legnagyobb közös osztója 1, relatív prímeknek nevezzük. TÉTEL: (Oszthatósági szabályok) Egy természetes szám pontosan akkor osztható 2-vel, ha utolsó számjegye osztható 2-vel 5-tel, ha az utolsó számjegye osztható 5-tel 10-zel, ha az utolsó számjegye osztható 10-zel 4-gyel, ha az utolsó két számjegyből álló szám osztható 4-gyel 25-tel, ha az utolsó két számjegyből álló szám osztható 25-tel 8-cal, ha az utolsó három számjegyből álló szám osztható 8-cal 100-zal, ha az utolsó három számjegyből álló szám osztható 100-zal 125-tel, ha az utolsó három számjegyből álló szám osztható 125-tel 16-tal, ha az utolsó négy számjegyből álló szám osztható 16-tal 1000-rel, ha az utolsó négy számjegyből álló szám osztható 1000-rel 3-mal, ha a számjegyek összege osztható 3-mal 9-cel, ha a számjegyek összege osztható 9-cel 11-gyel, ha a váltakozó előjellel vett számjegyeinek összege osztható 11-gyel. TÉTEL: (Euklideszi osztás) Bármely a, b természetes számhoz található olyan egyértelműen meghatározott p, r természetes szám, amelyre a = b p + r teljesül (ahol 0 r < b). Ekkor p-t hányadosnak, r-t maradéknak nevezzük. 2

3 TÉTEL: (Euklideszi algoritmus) Két számon végrehajtott euklideszi algoritmus utolsó nem 0 maradéka a két szám legnagyobb közös osztója. TÉTEL: Ha egy összeg minden tagja osztható egy számmal, akkor az összeg is osztható ezzel a számmal. Jelöléssel: a b és a c a (b + c). TÉTEL: Ha egy szorzat valamelyik tényezője osztható egy számmal, akkor a szorzat is osztható azzal a számmal. Jelöléssel: c a c (a b). DEFINÍCIÓ: (Számelméleti függvény) Az olyan függvényeket, melyek értelmezési tartománya a természetes számok halmaza, számelméleti függvényeknek nevezzük. TÉTEL: Ha n felírható n = p 1 α 1 p 2 α 2 p r α r alakban, ahol p 1, p 2,, p n az n szám prímosztói, akkor megadhatóak a következő számelméleti függvények: az n szám osztóinak száma: d(n) = (α 1 + 1) (α 2 + 1) (α r + 1) az n szám osztóinak összege: σ(n) = p 1 α p 1 1 az n-nél nem nagyobb, n-hez relatív prímek száma: p 2 α2+1 1 p r αr+1 1 p 2 1 p r 1 φ(n) = (p 1 1) p 1 α 1 1 (p 2 1) p 2 α 2 1 (p r 1) p r α r 1 DEFINÍCIÓ: (Racionális számok) Azokat a számokat, amelyek felírhatóak két egész szám hányadosaként (tört alakban), racionális számoknak nevezzük. Megjegyzés: A racionális számok felírhatóak tizedestört alakban is. Véges tizedes tört: A tört alak úgy egyszerűsíthető, illetve bővíthető, hogy nevezője 10-nek valamilyen hatványa legyen. Pl.: 5,6 = 56 14,592 = ,0703 = Végtelen szakaszos tizedestört: A tizedes vessző után álló számjegyek egy szakasza újra és újra ismétlődik. Pl.: 1,03 6 = 1, , 5 = 2,555 3, 1 89 = 3, Bármely két racionális szám között van újabb racionális szám. 3

4 DEFINÍCIÓ: (Irracionális számok) Az olyan tizedestörtet, mely nem véges és nem végtelen szakaszos, irracionális számnak nevezzük. Megjegyzés: A tizedesvessző utáni számjegyek ismétlődésében nincs szabályosság. Nem írhatóak fel két egész szám hányadosaként (tört alakban). Irracionális számok esetében közelítő értékkel számolunk. DEFINÍCIÓ: (Valós számok) A racionális és irracionális számok halmazának uniója a valós számok halmaza. DEFINÍCIÓ: (Reciprok) Egy 0-tól különböző szám reciprokán azt a számot értjük, amellyel a számot megszorozva a szorzat értéke 1 lesz. 4

5 1. Írd fel 0-tól 20-ig a 6 többszöröseit! Azok a számok a 6 többszörösei, melyek felírhatóak 6-nak és egy egész számnak szorzataként. Ezek alapján a megoldás: 0, 6, 12, Mely számok relatív prímek a következőek közül? 11, 14, 15, 18, 25 Először a számokat bontsuk fel prímtényezőkre. 11 = = = = = 5 2 A számok közül azok lesznek relatív prímek, melyek nem tartalmaznak azonos prímtényezőt. Ezek alapján a relatív prímek: (11; 14), (11; 15), (11; 18), (11; 25), (14; 15), (14; 25), (18; 25). 3. Határozd meg 324 és 750 összes osztójának számát, összegét, illetve a relatív prímek számát! Először a számokat bontsuk fel prímtényezőkre: 324 = és 750 = Az osztók számát megkapjuk a d(n) számelméleti függvény segítségével: d(324) = (2 + 1) (4 + 1) = 3 5 = 15 d(750) = (1 + 1) (1 + 1) (3 + 1) = = 16 Az osztók összegét megkapjuk a σ(n) számelméleti függvény segítségével: σ(324) = = = σ(750) = = = A relatív prímek számát megkapjuk a φ(n) számelméleti függvény segítségével: φ(324) = (2 1) 2 1 (3 1) 3 3 = = 108 φ(750) = (2 1) 2 0 (3 1) 3 0 (5 1) 5 2 = = 200 5

6 4. Határozd meg 60 és 198 legnagyobb közös osztóját és legkisebb közös többszörösét! Először a számokat bontsuk prímtényezőkre: 60 = és 198 = A legnagyobb közös osztó meghatározásához a közös prímtényezőket az előforduló legkisebb hatványon összeszorozzuk. Ezek alapján a legnagyobb közös osztó: (60, 198) = 2 3 = 6. A legkisebb közös többszörös meghatározásához a két számban szereplő összes prímtényezőt az előforduló legnagyobb hatványon szorozzuk össze. Ezek alapján a legkisebb közös többszörös: [60, 198] = = Határozd meg a b számot, ha tudjuk, hogy a = ; (a, b) = és [a, b] = ! A b szám prímtényezők szorzataként való felíráshoz a legnagyobb közös osztóból indulunk ki. Abból az következik, hogy a b szám prímtényezős felbontásában biztosan lesz 2 4 (mert az a számban 2 7 szerepelt), s 3-nak valamilyen hatványa (mivel a-nál is éppen 3 5 szerepelt, ezért a hatványt még nem tudjuk kitalálni). Ezek után tekintsük a legkisebb közös többszöröst. Abból pedig azt kapjuk, hogy biztosan lesz a b szám prímtényezős felírásában 5 és 3 9 (mert az a szám felírásában az 5 nem, míg a 3 csak az ötödik hatványon szerepelt). Ezek alapján a b szám a következő: b = = Határozd meg az 1852 és 1972 számok legnagyobb közös osztóját Euklideszi algoritmus segítségével! Az euklideszi algoritmus azt jelenti, hogy minden újabb lépésben az előző lépésben szereplő osztót osztjuk el az ott keletkezett maradékkal: = 1, maradék: = 15, maradék: = 2, maradék: = 3, maradék: = 4, maradék: 0. Az utolsó nem 0 maradék lesz a megoldás, vagyis a két szám legnagyobb közös osztója: 4. 6

7 7. Milyen x érték esetén lesz a 7431x2 szám osztható 24-gyel? Először a 24-et fel kell írnunk két olyan relatív prímszám szorzatára, melyekre tanultunk korábban oszthatósági szabályt. Mivel 24 = 3 8, így ebből következik, hogy egy szám akkor lesz osztható 24-gyel, ha osztható 3-mal és 8-cal is. Az adott szám, akkor lesz osztható 3-mal (számjegyek összege osztható 3-mal), ha x = 1, 4, 7. Az adott szám akkor lesz osztható 8-cal (utolsó 3 számjegyből képzett szám osztható 8-cal), ha x = 1, 5, 9. Ezek alapján a szám csak akkor lesz osztható 24-gyel, ha x = Milyen x és y érték esetén lesz az 1x24y6 szám osztható 12-vel? Mivel 12 = 3 4, így ebből következik, hogy egy szám akkor lesz osztható 12-vel, ha osztható 3-mal és 4-gyel is. Ebben a feladatban két ismeretlen van, ezért el kell döntenünk a két oszthatóság közül melyik az, amelyik biztosan meghatározza az egyik ismeretlent. Az adott szám akkor lesz osztható 4-gyel (utolsó 2 számjegyből képzett szám osztható 4-gyel), ha y = 1, 3, 5, 7, 9. Az x kiszámításánál a 3-mal való oszthatóságot befolyásolja, hogy y helyére a lehetséges értékek közül melyiket választjuk, ezért több megoldásunk is lesz. Ha y = 1, akkor x = 1, 4, 7. Ha y = 3, akkor x = 2, 5, 8. Ha y = 5, akkor x = 0, 3, 6, 9. Ha y = 7, akkor x = 1, 4, 7. Ha y = 9, akkor x = 2, 5, 8. Ezek alapján a következő számpárok lesznek a megfelelő megoldások (első az x, második az y érték): (1; 1), (4; 1), (7; 1), (2; 3), (5; 3), (8; 3), (0; 5), (3; 5), (6; 5), (9; 5), (1; 7), (4; 7), (7; 7), (2; 9), (5; 9), (8; 9). 7

8 9. Írj fel 4 számot törtalakban a 3 7 és 5 7 között! Ahhoz, hogy fel tudjunk írni törteket a két szám között, a nevezőket bővítsük a megfelelő mértékig: 3 = = Ezek alapján 4 ilyen megfelelő szám lehet a következő: 10 21, 11 21, 12 21, Írd fel törtalakban a következő tizedestörteket! 1, 23 2, 58 3, 2 14 Első esetben véges tizedestörtről van szó, vagyis a megoldás a következő: 1,23 = A második és harmadik esetben arra kell törekednünk, hogy két különböző számmal megszorozva az adott számot, olyan számokat kapjunk, melyekben a tizedesvessző után ugyanazok az ismétlődő számjegyek szerepeljenek. Ekkor ugyanis, ha ezeket kivonjuk egymásból, akkor eltűnnek a tizedesvessző utáni számjegyek. 100x = 258,888 10x = 25,888 90x = 233 x = x = 3214, x = 3, x = 3211 x =

9 11. Számítsd ki a következő kifejezések pontos értékét! [( ) ] ( ) Az első esetben belülről bontjuk ki az emeletes törtet, s azt kell tudnunk hozzá, hogy egy számot törttel úgy osztunk, hogy szorozzuk a tört reciprokával = = = = = 2 52 = 4 = A második esetben a műveleti sorrendeket kell tudnunk: balról jobbra haladva végezzük el a műveleteket, s először a zárójeles kifejezéseket bontjuk fel, illetve a hatványozást szorzást osztást végezzük el, s csak ezután az összeadást és kivonást. Továbbá azt kell még tudnunk, hogy az egy vegyes szám, amelynek értéke 4 3, illetve a negatív hatvány az adott számot a reciprokára változtatja. [( ) ] ( ) = ( ) ( 1 6 ) = = ( 6 5 ) ( 6) + 7 = = = Bizonyítsd be a 4-gyel való oszthatóság szabályát! Először tekintsünk egy tetszőleges A számot, s írjuk fel a helyiértékek segítségével a következő módon: A = 1 a a n a n (ahol a 1, a 2,, a n a számjegyeket jelölik). A 4-gyel való oszthatóság bizonyításához alakítsuk tovább az A számot: A = 1 a a n a n = 1 a a (a a n 2 a n ). Ebből látszik, hogy a zárójeles kifejezés 100-zal szorozva biztosan osztható lesz 4-gyel, ezért maga az A szám csak akkor lesz osztható 4-gyel, ha a zárójel előtt álló tagok összege is osztható 4-gyel. A zárójel előtt álló tagokat megvizsgálva azt kapjuk, hogy azok összege éppen az A szám utolsó két számjegyéből képzett szám, vagyis az A szám csak akkor lesz osztható 4-gyel, ha az utolsó két számjegyéből képzett szám osztható 4-gyel. 9

10 13. Bizonyítsd be a 3-mal és 9-cel való oszthatóság szabályát! Először tekintsünk egy tetszőleges A számot, s írjuk fel a helyiértékek segítségével a következő módon: A = 1 a a n a n (ahol a 1, a 2,, a n a számjegyeket jelölik). A 3-mal és 9-cel való oszthatóság bizonyításához alakítsuk tovább az A számot: A = 1 a a n a n = 1 a 1 + (1 + 9) a ( ) a n = = 1 a a a a n a n = = 1 a a a n + 9 a a n = = 1 a a a n + 9 (1 a a n ) Ebből látszik, hogy a zárójeles kifejezés 9-cel szorozva biztosan osztható lesz 3-mal és 9-cel, ezért maga az A szám csak akkor lesz osztható 3-mal, illetve 9-cel, ha a zárójel előtt álló tagok összege is osztható 3-mal, illetve 9-cel. A zárójel előtt álló tagokat megvizsgálva pedig azt kapjuk, hogy azok éppen az A szám számjegyei, vagyis az A szám csak akkor lesz osztható 3-mal, illetve 9-cel, ha a számjegyeinek összege osztható 3-mal, illetve 9-cel. Brósch Zoltán 10

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

SZÁMELMÉLET FELADATSOR

SZÁMELMÉLET FELADATSOR SZÁMELMÉLET FELADATSOR Oszthatóság 1. Az 123x4 számban milyen számjegy állhat x helyén, ha a szám osztható a) 3-mal; e) 6-tal; b) 9-cel; f) 24-gyel; c) 4-gyel; g) 36-tal; d) 8-cal; h) 72-vel? 2. Határozd

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam eszközök diákok és csoportok részére 1. félév A kiadvány KHF/4632-14/2008. engedélyszámon 2008.12.16. időponttól tankönyvi engedélyt kapott Educatio

Részletesebben

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

Komplex számok algebrai alakja

Komplex számok algebrai alakja Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Első rész 1. Bevezetés Tekintsük az ak + b számtani sorozatot, ahol a > 0. Ha a és b nem relatív prímek, akkor (a,b) > 1 osztója

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám rendje A rend fogalma A 1-nek két darab egész kitevőjű hatványa van: 1 és 1. Az i-nek 4 van: i, i 2 = 1, i 3 = i, i 4 = 1. Innentől kezdve ismétlődik: i 5 = i, i 6 = i 2 = 1, stb. Négyesével

Részletesebben

MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA

MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA JELÖLÉSEK: Nem szakrendszerű órák jelölése zöld színnel, számok a programterv A 6. évfolyam tanmenetből valók Infokommunikációs technológia

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

Melléklet a Matematika című részhez

Melléklet a Matematika című részhez Melléklet a Matematika című részhez Az arányosság bemutatása Az első könyvsorozatban 7. osztály, Tk-2 és Tk-3-ban 6. osztály, Tk-3b-ben 5. osztály(!), Tk-4-ben ismét 6. osztály, és végül Tk-4b-ben 5-6.

Részletesebben

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis I. ALAPALGORITMUSOK 1. Prímszámvizsgálat Adott egy n természetes szám. Írjunk algoritmust, amely eldönti, hogy prímszám-e vagy sem! Egy számról úgy fogjuk eldönteni, hogy prímszám-e, hogy megvizsgáljuk,

Részletesebben

I. Racionális szám fogalma és tulajdonságai

I. Racionális szám fogalma és tulajdonságai 2. modul: MŰVELETEK A RACIONÁLIS SZÁMOK KÖRÉBEN 9 I. Racionális szám fogalma és tulajdonságai Természetes számok 0; 1; 2; 3; 4; 5; 6; 7, 8; 9; 10; 11; 12... Módszertani megjegyzés: Ráhangolódás, csoportalakítás

Részletesebben

TANANYAGBEOSZTÁS. Kompetencia alapú matematika 6. osztály. A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése

TANANYAGBEOSZTÁS. Kompetencia alapú matematika 6. osztály. A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése TANANYAGBEOSZTÁS TÁMOP 3.1.4. 08/2-2008-0149 A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése Mátészalkán Implementáló pedagógus: Nagy Gusztávné Implementációs terület: Kompetencia alapú matematika

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Munkaformák Módszerek Eszközök Modul készségek, célok Szervezési feladatok Rendezés, a füzet vezetése EM Magyarázat Tankönyv, füzetek.

Munkaformák Módszerek Eszközök Modul készségek, célok Szervezési feladatok Rendezés, a füzet vezetése EM Magyarázat Tankönyv, füzetek. Idő Óraszám 09. 01. 1. 09. 03. 1. 09. 04. 2. 09.07. 3. 09. 08. 4. 09. 10. 2. 09.11. 5. 09.14. 6 09.15. 7. Tananyag Fejlesztési képességek, Munkaformák Módszerek Eszközök Modul készségek, célok Szervezési

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu Polinomgy r k Dr. Vattamány Szabolcs 1. Bevezet Ezen jegyzet célja, hogy megismertesse az olvasót az egész, a racionális, a valós és a komplex számok halmaza fölötti polinomokkal. A szokásos jelölést használjuk:

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma A Riemann-Siegel zeta függvény kiugró értékeinek keresése A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma 2013 A probléma fontossága és hatása a hétköznapi életre A prímszámok

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

A prímszámok eloszlása, avagy az első 50 millió

A prímszámok eloszlása, avagy az első 50 millió Bevezetés Pímszámok A prímszámok eloszlása, avagy az első 50 millió prímszám. Klukovits Lajos TTIK Bolyai Intézet 2014. április 8. Néhány definíció. 1 A klasszikus számelméleti. p N prím, ha a p a = ±1,

Részletesebben

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak... Biztos, hogy titkos? Szabó István előadása Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...) Története Az ókortól kezdve rengeteg feltört titkosírás létezik. Monoalfabetikus

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015

7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015 7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015 Évi óraszá: 108 óra Heti óraszá: 3 óra 1. téa: Racionális száok, hatványozás 11 óra 2. téa: Algebrai kifejezések 12 óra 1. téazáró dolgozat 3. téa: Egyenletek,

Részletesebben

Az osztályozó vizsgák tematikája matematikából

Az osztályozó vizsgák tematikája matematikából Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama

Részletesebben

Matematika, 1 2. évfolyam

Matematika, 1 2. évfolyam Matematika, 1 2. évfolyam Készítette: Fülöp Mária Budapest, 2014. április 29. 1. évfolyam Az előkészítő időszakot megnyújtottuk (4-6 hét). A feladatok a tanulók tevékenységére épülnek. Az összeadás és

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné. tankönyv. Hetedik, javított kiadás

Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné. tankönyv. Hetedik, javított kiadás Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné tankönyv 6 Hetedik, javított kiadás Mozaik Kiadó Szeged, 0 Tartalomjegyzék Oszthatóság. A természetes számok

Részletesebben

ÁLTALÁNOS JELLEMZŐK, FELÉPÍTÉS

ÁLTALÁNOS JELLEMZŐK, FELÉPÍTÉS ÁLTALÁNOS JELLEMZŐK, FELÉPÍTÉS "Az iskola dolga, hogy megtaníttassa velünk, hogyan kell tanulni, hogy felkeltse a tudás iránti étvágyunkat, hogy megtanítson bennünket a jól végzett munka örömére és az

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0813 ÉRETTSÉGI VIZSGA 008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Molnár Györgynének, aki korrekt szigorúságával a középiskolában alapozta

Molnár Györgynének, aki korrekt szigorúságával a középiskolában alapozta Ajánlom ezt a könyvet illetve sorozatot mind közül is legkedvesebb tanáraimnak, Molnár Györgynének, aki korrekt szigorúságával a középiskolában alapozta meg szeretetemet a matematika iránt, és Pósa Lajosnak,

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április Hány osztója van egy adott számnak? Hány osztója van egy adott számnak? Dr. Tóth László http://www.ttk.pte.hu/matek/ltoth előadásanyag, Pécsi Tudományegyetem, TTK 2008. április. Bevezetés Lehetséges válaszok:

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA 1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

Matematika (alsó tagozat)

Matematika (alsó tagozat) Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

Tanári kézikönyv. a 7 8. évfolyamokhoz. Szerkesztette: Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György. 2015. augusztus 4.

Tanári kézikönyv. a 7 8. évfolyamokhoz. Szerkesztette: Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György. 2015. augusztus 4. Tanári kézikönyv a 7 8. évfolyamokhoz Szerkesztette: Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György 2015. augusztus 4. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás,

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

Könnyebb-a a középszintű érettségi a régi házi érettségi vizsgánál? II.

Könnyebb-a a középszintű érettségi a régi házi érettségi vizsgánál? II. Könnyebb-a a középszintű érettségi a régi házi érettségi vizsgánál? II. Írta: dr. Majoros Mária Ebben a tanulmányban a jelenlegi érettségin kitűzött feladatokat olyan szempontból fogom összehasonlítani,

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

MÁV 51 55 39-30 016-7 AB

MÁV 51 55 39-30 016-7 AB Ellenőrző jegyek Hraskó András és Salát Máté gyűjtése Tartalom A fejezetcímre duplán kattintva a megfelelő részhez ugorhatsz Vasúti kocsik ISBN Bookland Az adózó polgár adóazonosító jelének képzési szabályai

Részletesebben

MATEMATIKA HELYI TANTERV Kéttannyelvű magyar-francia előkészítő év számára

MATEMATIKA HELYI TANTERV Kéttannyelvű magyar-francia előkészítő év számára MATEMATIKA HELYI TANTERV Kéttannyelvű magyar-francia előkészítő év számára Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

16. Sorozatok. I. Elméleti összefoglaló. A sorozat fogalma

16. Sorozatok. I. Elméleti összefoglaló. A sorozat fogalma 16. Sorozatok I. Elméleti összefoglaló A sorozat fogalma Sorozatnak nevezzük az olyan függvényt, amelynek értelmezési tartománya a pozitív egész számok halmaza. Számsorozat olyan sorozat, amelynek értékkészlete

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Tanárverseny 2012. Megoldásvázlatok

Tanárverseny 2012. Megoldásvázlatok Tanárverseny 0 középiskolában tanító tanároknak vázlatok Kidolgozta: Csordásné Szécsi Jolán, Csordás Péter A verseny támogatói: Typotex Kiadó Maxim Kiadó MATEGYE Alapítvány . Mennyivel egyenlő a K E D

Részletesebben

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja) Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja

Részletesebben

Kalandtúra 6. Tanári kézikönyv

Kalandtúra 6. Tanári kézikönyv Kalandtúra 6. Tanári kézikönyv A Klett Kiadó 6. osztályos matematika-ének és munkafüzetének használatához Makara Ágnes Általános jellemzők, felépítés Az iskola dolga, hogy megtaníttassa velünk, hogyan

Részletesebben

Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens

Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens A nyílt kulcsú titkosítás és a digitális aláírás Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens Budapest Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar Műszertechnikai és Automatizálási

Részletesebben

NUMERIKUS MÓDSZEREK PÉLDATÁR

NUMERIKUS MÓDSZEREK PÉLDATÁR EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR NUMERIKUS MÓDSZEREK PÉLDATÁR Bozsik József, Krebsz Anna Budapest, Tartalomjegyzék Előszó............................................... 6. GÉPI SZÁMÁBRÁZOLÁS

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

Év végi ismétlés 9. - Érettségi feladatok

Év végi ismétlés 9. - Érettségi feladatok Halmazok, logika Év végi ismétlés 9. - Érettségi feladatok 1. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először

Részletesebben

5. A kiterjesztési elv, nyelvi változók

5. A kiterjesztési elv, nyelvi változók 5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK Telefon: 37-8900 Fax: 37-8901 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. 1. Egy osztási műveletben az osztandó és az osztó összege 89.

Részletesebben

Skatulya-elv. Sava Grozdev

Skatulya-elv. Sava Grozdev Skatulya-elv Sava Grozdev Egy alapvető szabály, azaz elv azt állítja, hogy: ha m testet szétosztunk n csoportba és m > n, akkor legalább két test azonos csoportba fog kerülni. Ezt az elvet különböző országokban

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

1. Algebrai alapok: Melyek műveletek az alábbiak közül? 1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy

Részletesebben

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály)

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály) MEGOLDÓKULCSOK 1. feladatsor (1. osztály) 1. feladat 8 9 10 14 15 16 10 11 12 18 19 20 1. pontdoboz: Hibátlan számszomszédok írása 1 pont, hiba 0 pont. 2. feladat 20 17 14 11 8 5 2 2. pontdoboz: Szabályfelismerésért

Részletesebben

MATEMATIKA 5-6. Motiváció és közelítés a mindennapokhoz az OFI kísérleti tankönyveiben

MATEMATIKA 5-6. Motiváció és közelítés a mindennapokhoz az OFI kísérleti tankönyveiben A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 MATEMATIKA 5-6. Motiváció és közelítés a mindennapokhoz az OFI kísérleti

Részletesebben

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba

Részletesebben

TANÁRI KÉZIKÖNYV a MATEMATIKA

TANÁRI KÉZIKÖNYV a MATEMATIKA El sz Csahóczi Erzsébet Csatár Katalin Kovács Csongorné Morvai Éva Széplaki Györgyné Szeredi Éva TANÁRI KÉZIKÖNYV a MATEMATIKA 7. évfolyam II. kötetéhez TEX 014. június. 0:43 (1. lap/1. old.) Matematika

Részletesebben

4. Előadás Titkosítás, RSA algoritmus

4. Előadás Titkosítás, RSA algoritmus 4. Előadás Titkosítás, RSA algoritmus Dr. Kallós Gábor 2014 2015 1 Tartalom A kriptográfia meghatározása, alaphelyzete Szimmetrikus (titkos) kulcsú titkosítás A Caesar-eljárás Aszimmetrikus (nyilvános)

Részletesebben

Megoldott programozási feladatok standard C-ben

Megoldott programozási feladatok standard C-ben Megoldott programozási feladatok standard C-ben MÁRTON Gyöngyvér Sapientia Erdélyi Magyar Tudományegyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro Tartalomjegyzék

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

BEVEZETŐ MATEMATIKA 5-8. Célok, feladatok:

BEVEZETŐ MATEMATIKA 5-8. Célok, feladatok: BEVEZETŐ Célok, feladatok: Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

Tantárgytömbösítés matematika tantárgyból a 6.a osztályban az Illyés Gyula Általános Iskolában

Tantárgytömbösítés matematika tantárgyból a 6.a osztályban az Illyés Gyula Általános Iskolában TÁMOP- 3.1.4/08/2-2009-0134 K o m p e ten c ia a la p ú o kt a t á s, e g y e n l ő h o zz á f é r é s bev e z e t é s e H é v í z k ö z o k ta tá s i n e v e l é s i in té zm é n y e ib en Tantárgytömbösítés

Részletesebben

1. A TERMÉSZETES SZÁMOK A TÍZES SZÁMRENDSZER

1. A TERMÉSZETES SZÁMOK A TÍZES SZÁMRENDSZER 1. A TERMÉSZETES SZÁMOK Ebben a fejezetben átismételjük mindazt, amit az alsó tagozatban a természetes számokról és a velük végzett műveletekről tanultunk. Közben kibővítjük ismereteinket, magasabb számkörbe

Részletesebben

Kombinatorika jegyzet és feladatgyűjtemény

Kombinatorika jegyzet és feladatgyűjtemény Kombinatorika jegyzet és feladatgyűjtemény Király Balázs, Tóth László Pécsi Tudományegyetem 2011 2 Lektor: Kátai Imre egyetemi tanár, az MTA rendes tagja Tartalomjegyzék Előszó 5 I. Jegyzet 7 I.1. Permutációk,

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

Matematika Mozaik Kiadó. 5. osztály

Matematika Mozaik Kiadó. 5. osztály Matematika Mozaik Kiadó 5. osztály Tematikai egység címe órakeret Gondolkodási módszerek, halmazok, matematikai logika, 3+folyamatos kombinatorika, gráfok Számtan, algebra 78 Függvények, az analízis elemei

Részletesebben

IBAN: INTERNATIONAL BANK ACCOUNT NUMBER. I. Az IBAN formái

IBAN: INTERNATIONAL BANK ACCOUNT NUMBER. I. Az IBAN formái IBAN: INTERNATIONAL BANK ACCOUNT NUMBER A EUROPEAN COMMITTEE FOR BANKING STANDARDS (ECBS) által 2001. februárban kiadott, EBS204 V3 jelű szabvány rögzíti a nemzetközi számlaszám formáját, valamint eljárást

Részletesebben

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013 Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó Második félév Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 0 SZORZÁS ÉS OSZTÁS -VEL Mesélj a képrõl! Hány kerékpár és kerék van a képen?

Részletesebben

1 A Szent István Reálgimnázium

1 A Szent István Reálgimnázium 100 éve született Erdős Pál Gyárfás András Rényi Alfréd Matematikai Kutatóintézet April 25, 2013 1 A Szent István Reálgimnázium Hat éves szibériai hadifogságból hazatérve, itt tanított 1920-tól Erdős Pál

Részletesebben

SKATULYA-ELV. Sava Grozdev

SKATULYA-ELV. Sava Grozdev SKATULYA-ELV Sava Grozdev Ha 3 apró labdát akarunk elhelyezni a nadrágunk 2 zsebébe, akkor kétség sem férhet hozzá, hogy legalább 2 labda azonos zsebbe fog kerülni. Hasonlóan, ha 4 kicsi dobozt akarunk

Részletesebben

Kezdők és Haladók (I., II. és III. kategória)

Kezdők és Haladók (I., II. és III. kategória) ARANY DÁNIEL MATEMATIKAI TANULÓVERSENY 013/014-ES TANÉV Kezdők és Haladók (I., II. és III. kategória) Feladatok és megoldások A verseny az NTP-TV-13-0068 azonosító számú pályázat alapján a Nemzeti Tehetség

Részletesebben