Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Nagy Gábor compalg.inf.elte.hu/ nagy ősz"

Átírás

1 Diszkrét matematika 1. középszint ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra Tanszék ősz

2 Számelmélet Diszkrét matematika 1. középszint ősz 2. Számelmélet alaptétele Tétel Minden nem-nulla, nem egység egész szám sorrendtől és asszociáltaktól eltekintve egyértelműen feĺırható prímszámok szorzataként. Bizonyítás Csak nemnegatív számokra. Létezés: Indukcióval: n = 2, n = 3 esetén igaz (prímek). Általában ha n prím, akkor készen vagyunk, ha nem, akkor szorzatra bomlik nemtriviális módon. A tényezők már felbonthatók indukció alapján. Egyértelműség: Indukcióval: n = 2, n = 3 esetén igaz (felbonthatatlanok). Tfh. n = p 1 p 2 p k = q 1 q 2 q l, ahol p 1, p 2,..., p k, q 1, q 2,..., q l prímek, és n a legkisebb olyan szám, aminek két lényegesen különböző előálĺıtása van. p 1 osztja a bal oldalt, ezért osztja a jobb oldalt, így a prímtulajdonság miatt osztja annak valamelyik tényezőjét; feltehető p 1 q 1. Mivel q 1 felbonthatatlan (hiszen prím), ezért p 1 = q 1. Egyszerűsítve: n = p 2 p k = q 2 q l. Indukció alapján ez már egyértelmű.

3 Számelmélet Diszkrét matematika 1. középszint ősz 3. Számelmélet alaptétele Definíció Egy n nem-nulla egész szám kanonikus alakja: l n = ±p α1 1 pα2 2 pα l l = ± p α i i, ahol p 1, p 2,..., p l különböző pozitív i=1 prímek, α 1, α 2,..., α l pozitív egészek. Következmény Legyenek n, m > 1 pozitív egészek: n = p α1 1 pα2 2 pα l l, m = p β1 1 pβ2 2 pβ l l, (ahol most α i, β i 0 nemnegatív egészek!). Ekkor (n, m) = p min{α1,β1} 1 p min{α2,β2} 2 p min{α l,β l } l, [n, m] = p max{α1,β1} 1 p max{α2,β2} 2 p max{α l,β l } l, (n, m) [n, m] = n m.

4 Számelmélet Diszkrét matematika 1. középszint ősz 4. Osztók száma Definíció Egy n > 1 egész esetén legyen τ(n) az n pozitív osztóinak száma. Példa τ(6) = 4, osztók: 1, 2, 3, 6; τ(96) = 12, osztók: 1, 2, 3, 4, 6, 8,... Tétel Legyen n > 1 egész, n = p α1 1 pα2 2 pα l l τ(n) = (α 1 + 1) (α 2 + 1) (α l + 1). Bizonyítás kanonikus alakkal. Ekkor n lehetséges osztóit úgy kapjuk, hogy a d = p β1 1 pβ2 2 pβ l l kifejezésben az összes β i kitevő végigfut a {0, 1,..., α i } halmazon. Így ez a kitevő α i + 1-féleképpen választható. Példa τ(2 3) = (1 + 1) (1 + 1) = 4; τ(2 5 3) = (5 + 1) (1 + 1) = 12.

5 Számelmélet Diszkrét matematika 1. középszint ősz 5. Prímekről Tétel (Euklidesz) Végtelen sok prím van. Bizonyítás Indirekt tfh. csak véges sok prím van. Legyenek ezek p 1,..., p k. Tekintsük az n = p 1 p k + 1 számot. Ez nem osztható egyetlen p 1,..., p k prímmel sem (Miért?), így n prímtényezős felbontásában kell szerepelnie egy újabb prímszámnak. Tétel (Dirichlet, NB) Ha a, d egész számok, d > 0, (a, d) = 1, akkor végtelen sok ak + d alakú (k Z) prím van.

6 Számelmélet Diszkrét matematika 1. középszint ősz 6. Prímekről Prímszámtétel: x-ig a prímek száma Prímek száma: x. (Sok prím van!) ln x x prímek száma x/ ln x , , , , 73 Eratoszthenész szitája: Keressük meg egy adott n-ig az összes prímet. Soroljuk fel 2-től n-ig az egész számokat. Ekkor 2 prím. A 2 (valódi) többszörösei nem prímek, ezeket húzzuk ki. A következő (ki nem húzott) szám a 3, ez szintén prím. A 3 (valódi) többszörösei nem prímek, ezeket húzzuk ki... Ismételjük az eljárást n-ig. A ki nem húzott számok mind prímek.

7 Kongruenciák Diszkrét matematika 1. középszint ősz 7. Kongruenciák Oszthatósági kérdésekben sokszor csak a maradékos osztás esetén kapott maradék fontos: hét napjai; órák száma. Példa 16 mod 3 = 1, 4 mod 3 = 1: 3-mal való oszthatóság esetén 16 = 4. Definíció Legyenek a, b, m egészek, ekkor a b (modm) (a és b kongruensek modulo m), ha m a b, és a b (modm) (a és b inkongruensek), ha m a b. Ekvivalens megfogalmazás: a b (modm) a mod m = b mod m, azaz m-mel osztva ugyanazt az osztási maradékot adják. Példa 16 4 (mod 3) ui mod 3 = 1 = 4 mod 3; 16 4 (mod 2) ui mod 2 = 0 = 4 mod 2; 16 4 (mod 5) ui mod 5 = 1 4 = 4 mod 5.

8 Kongruenciák Diszkrét matematika 1. középszint ősz 8. Kongruencia tulajdonságai Tétel Minden a, b, c, d, m és m egész számra igaz: 1. a a (modm); 2. a b (modm), m m a b (modm ); 3. a b (modm) b a (modm); 4. a b (modm), b c (modm) a c (modm); 5. a b (modm), c d (modm) a + c b + d (modm); 6. a b (modm), c d (modm) ac bd (modm). Bizonyítás 1. m 0 = a a; 2. m m a b m a b; 3. m a b m b a = (a b); 4. m a b, m b c m a c = (a b) + (b c); 5. m a b, m c d m (a + c) (b + d) = (a b) + (c d); 6. a = q 1m + b, c = q 2m + d ac = (q 1m + b)(q 2m + d) = m(q 1q 2m + q 1d + q 2b) + bd.

9 Kongruenciák Diszkrét matematika 1. középszint ősz 9. Kongruencia tulajdonságai Példa Mi lesz 345 mod 7 =? 345 = = = 9 2 (mod 7). Emlékeztető: a b (modm), c d (modm) ac bd (modm). Következmény: a b (modm) ac bc (modm). Példa 14 6 (mod 8) (mod 8) A másik irány nem igaz! (mod 8) 7 3 (mod 8).

10 Kongruenciák Diszkrét matematika 1. középszint ősz 10. Kongruencia tulajdonságai Tétel Legyenek a, b, c, m egész számok. ( Ekkor ) ac bc (modm) a b mod m (c,m) Következmény: (c, m) = 1 esetén ac bc (modm) a b (modm). Példa (mod 8) 7 3 (mod 8 2 ). Bizonyítás Legyen d = (c, m). Ekkor ac bc (modm) m c(a b) m c ( m d d (a b). Mivel d, c ) = 1, d ezért m c d d (a b) m ( (a b) a b mod m ). d d

11 Kongruenciák Diszkrét matematika 1. középszint ősz 11. Lineáris kongruenciák Oldjuk meg a 2x 5 (mod 7) kongruenciát! Ha x egy megoldás és x y (mod 7), akkor y szintén megoldás. Keressük a megoldást a {0, 1,..., 6} halmazból! x = 0 2x = 0 5 (mod 7); x = 1 2x = 2 5 (mod 7); x = 2 2x = 4 5 (mod 7); x = 3 2x = 6 5 (mod 7); x = 4 2x = (mod 7); x = 5 2x = (mod 7); x = 6 2x = 12 5 (mod 7). A kongruencia megoldása: {6 + 7l : l Z}. Van-e jobb módszer? Oldjuk meg a 23x 4 (mod 211) kongruenciát! Kell-e 211 próbálkozás?

12 Kongruenciák Diszkrét matematika 1. középszint ősz 12. Lineáris kongruenciák Tétel Legyenek a, b, m egész számok, m > 1. Ekkor az ax b (modm) kongruencia pontosan akkor oldható meg, ha (a, m) b. Ez esetben pontosan (a, m) darab páronként inkongruens megoldás van modm. Bizonyítás ax b (modm) m ax b ax + my = b valamely y egészre. Ez egy kétváltozós, lineáris, diofantikus egyenlet, ami pontosan akkor oldató meg, ha (a, m) b. Ha ennek x 0 megoldása, akkor az összes megoldás feĺırható x t = x 0 + m t alakban, ahol t Z tetszőleges. Ebből x t x 0 = m (a,m) t, így m (a,m) megoldás, ha x x 0 (mod m (a,m) Tekintsük a következő (a, m) db megoldást: m (a,m) (a,m) x t x 0, vagyis x pontosan akkor ). x k = x 0 + k : k = 0, 1,..., (a, m) 1. Ezek páronként inkongruensek modm (Miért?), és bármely x megoldás esetén van köztük x-szel kongruens modm (Miért?).

13 Kongruenciák Diszkrét matematika 1. középszint ősz 13. Lineáris kongruenciák 1. ax b (modm) ax + my = b. 2. Pontosan akkor van megoldás, ha (a, m) b. 3. Oldjuk meg az ax + my = (a, m) egyenletet (bővített euklideszi algoritmus)! 4. Megoldások: x k = b (a,m) x + k m (a,m): k = 0, 1,..., (a, m) 1. Példa Oldjuk meg a 23x 4 (mod 211) kongruencát! i r i q i x i Összes megoldás: { l : l Z}. Algoritmus: r i 2 = r i 1 q i + r i, Algoritmus: x 1 = 1, x 0 = 0, Algoritmus: x i = x i 2 q ix i 1. Lnko: (23, 211) = 1 4 Egy megoldás: x 0 = 4( 55) 202 (mod 211). Ezek megoldások: 23 ( l) 4 = l = (22 + l) 211

14 Kongruenciák Diszkrét matematika 1. középszint ősz 14. Lineáris kongruenciák Példa Oldjuk meg a 10x 8 (mod 22) kongruenciát! i r i q i x i Algoritmus: r i 2 = r i 1 q i + r i, Algoritmus: x 1 = 1, x 0 = 0, Algoritmus: x i = x i 2 q ix i 1 Lnko: (10, 22) = 2 8 Két inkongruens megoldás: x 0 = 4( 2) 14 (mod 22) x 1 = 4( 2) (mod 22). Összes megoldás: { l : l Z} {3 + 22l : l Z}. Ezek megoldások: x 0 = 14: = 132 = 6 22, Ezek megoldások: x 1 = 3: = 22 = 1 22.

15 Kongruenciák Diszkrét matematika 1. középszint ősz 15. Diofantikus egyenletek Diofantikus egyenletek: egyenletek egész megoldásait keressük. Kétváltozós lineáris diofantikus egyenletek: ax + by = c, ahol a, b, c egészek adottak. Ez ekvivalens az ax c (modb), by c (moda) kongruenciákkal. Az ax + by = c pontosan akkor oldható meg, ha (a, b) c, és ekkor a megoldások megkaphatók a bővített euklideszi algoritmussal. További diofantikus egyenletek: x 2 + y 2 = 4: nincs valós megoldás. x 2 4y 2 = 3: nincs megoldás, ui. 4-gyel való osztási maradékok: x 2 3 (mod 4). De ez nem lehet, a négyzetszám maradéka 0 vagy 1: x x 2 mod 4 4k 0 4k k k + 3 1

16 Kongruenciák Diszkrét matematika 1. középszint ősz 16. Szimultán kongruenciák Szeretnénk olyan x egészet, mely egyszerre elégíti ki a következő kongruenciákat: } 2x 1 (mod 3) 4x 3 (mod 5) A kongruenciákat külön megoldva: Látszik, hogy x = 2 megoldás lesz! Vannak-e más megoldások? x 2 (mod 3) x 2 (mod 5) 2, 17, 32,...,2 + 15l; további megoldások? hogyan oldjuk meg az általános esetben: x 2 (mod 3) x 3 (mod 5) } }

17 Kongruenciák Diszkrét matematika 1. középszint ősz 17. Szimultán kongruenciák Feladat: Oldjuk meg a következő kongruenciarendszert: a 1x b 1 (modm 1) a 2x b 2 (modm 2). a nx b n (modm n) Az egyes a i x b i (modm i ) lineáris kongruenciák külön megoldhatóak: x c 1 (modm 1) x c 2 (modm 2). x c n (modm n)

18 Kongruenciák Diszkrét matematika 1. középszint ősz 18. Szimultán kongruenciák Feladat: Oldjuk meg a következő kongruenciarendszert: x c 1 (modm 1) x c 2 (modm 2). x c n (modm n) Feltehető, hogy az m 1, m 2,..., m n modulusok relatív prímek: ha pl. m 1 = m 1 d, m 2 = m 2 d, akkor az első két sor helyettesíthető: x c 1 (modm 1) x c 1 (modd) x c 2 (modm 2) x c 2 (modd) Ha itt c 1 c 2 (modd), akkor nincs megoldás, különben az egyik sor törölhető.

19 Kongruenciák Diszkrét matematika 1. középszint ősz 19. Kínai maradéktétel Tétel Legyenek 1 < m 1, m 2,..., m n páronként relatív prím számok, c 1, c 2,..., c n egészek. Ekkor az x c 1 (modm 1) x c 2 (modm 2). x c n (modm n) kongruenciarendszer megoldható, és bármely két megoldás kongruens egymással modulo m 1 m 2 m n.

20 Kongruenciák Diszkrét matematika 1. középszint ősz 20. Kínai maradéktétel x c 1 (modm 1 ), x c 2 (modm 2 ),..., x c n (modm n ). x =? Bizonyítás A bizonyítás konstruktív! Legyen m = m 1 m 2. A bővített euklideszi algoritmussal oldjuk meg az m 1 x 1 + m 2 x 2 = 1 egyenletet. Legyen c 1,2 = m 1 x 1 c 2 + m 2 x 2 c 1. Ekkor c 1,2 c j (modm j ) (j = 1, 2). Ha x c 1,2 (modm), akkor x megoldása az első két kongruenciának. Megfordítva: ha x megoldása az első két kongruenciának, akkor x c 1,2 osztható m 1 -gyel, m 2 -vel, így a szorzatukkal is: x c 1,2 (modm). Az eredeti kongruenciarendszer ekvivalens az x c 1,2 (modm 1m 2) x c 3 (modm 3). x c n (modm n) kongruenciarendszerrel. n szerinti indukcióval adódik az álĺıtás.

21 Kongruenciák Diszkrét matematika 1. középszint ősz 21. Szimultán kongruenciák Példa x 2 (mod 3) x 3 (mod 5) } Oldjuk meg az 3x 1 + 5x 2 = 1 egyenletet! Megoldások: x 1 = 3, x 2 = 2. c 1,2 = 3 ( 3) = = 7. Összes megoldás: { l : l Z}={8 + 15l : l Z}. Példa x 2 (mod 3) x 3 (mod 5) x 4 (mod 7) c 1,2=8 = x 8 (mod 15) x 4 (mod 7) } Oldjuk meg a 15x 1,2 + 7x 3 = 1 egyenletet! Megoldások: x 1,2 = 1, x 3 = 2. c 1,2,3 = ( 2) 8 = = 52. Összes megoldás: { l : l Z}={ l : l Z}.

22 Kongruenciák Diszkrét matematika 1. középszint ősz 22. Maradékosztályok Sokszor egy adott probléma megoldása nem egy konkrét szám (számok családja), hanem egy egész halmaz (halmazok családja): 2x 5 (mod 7), megoldások: {6 + 7l : l Z} 10x 8 (mod 22), megoldások: { l : l Z}, 10x 8 mod 22, megoldások: {3 + 22l : l Z}. Definíció Egy rögzített m modulus és a egész esetén, az a-val kongruens elemek halmazát az a által reprezentált maradékosztálynak nevezzük: a = {x Z : x a (modm)}={a + lm : l Z}.

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

Számelmélet. 1. Oszthatóság Prímszámok

Számelmélet. 1. Oszthatóság Prímszámok Számelmélet Legnagyobb közös osztó, Euklideszi algoritmus. Lineáris diofantoszi egyenletek. Számelméleti kongruenciák, kongruenciarendszerek. Euler-féle ϕ-függvény. 1. Oszthatóság 1. Definíció. Legyen

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

SzA XIII. gyakorlat, december. 3/5.

SzA XIII. gyakorlat, december. 3/5. SzA XIII. gyakorlat, 2013. december. 3/5. Drótos Márton 3 + 2 = 1 drotos@cs.bme.hu 1. Határozzuk meg az Euklidészi algoritmussal lnko(504, 372)-t! Határozzuk meg lkkt(504, 372)-t! Hány osztója van 504-nek?

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.

Részletesebben

2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N}

2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N} 2. Feladatsor Oszthatóság, legnagyobb közös osztó, prímfaktorizáció az egész számok körében 1 Kötelező házi feladat(ok) 2., Határozzuk meg a ϕ:z Z, z [ z 5] leképezés magját. Adjuk meg a ker(ϕ)-hez tartozó

Részletesebben

Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán):

Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Oszthatóság Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Azt mondjuk, hogy az a osztója b-nek (jel: a b), ha van olyan c egész, amelyre ac = b. A témakörben a betűk egész

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat 8.2. Gyűrűk Fogalmak, definíciók: Gyűrű, kommutatív gyűrű, integritási tartomány, test Az (R, +, ) algebrai struktúra gyűrű, ha + és R-en binér műveletek, valamint I. (R, +) Abel-csoport, II. (R, ) félcsoport,

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? a Fibonacci számsorozat

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,... RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

Matematikai alapismeretek. Huszti Andrea

Matematikai alapismeretek. Huszti Andrea Tartalom 1 Matematikai alapismeretek Algebrai struktúrák Oszthatóság Kongruenciák Algebrai struktúrák Az S = {x, y, z,... } halmazban definiálva van egy művelet, ha az S-nek minden x, y elempárjához hozzá

Részletesebben

Jelölés. Az egyszerűség kedvéért (a, b) ρ helyett gyakran azt írjuk, hogy aρb.

Jelölés. Az egyszerűség kedvéért (a, b) ρ helyett gyakran azt írjuk, hogy aρb. BEVEZETÉS A SZÁMELMÉLETBE vázlat az előadáshoz (2013 őszi félév Waldhauser Tamás 1. Oszthatóság, legnagyobb közös osztó, rímfaktorizáció az egész számok körében Az oszthatósági reláció alavető tulajdonságai

Részletesebben

Szakdolgozat. Számelmélet feladatok szakkörre

Szakdolgozat. Számelmélet feladatok szakkörre Eötvös Loránd Tudományegyetem Természettudományi Kar Szakdolgozat Számelmélet feladatok szakkörre Nagy Orsolya Matematikai elemz szakirány Témavezet : Szalay Mihály egyetemi docens Algebra és Számelmélet

Részletesebben

LÁNG CSABÁNÉ SZÁMELMÉLET. Példák és feladatok. ELTE IK Budapest 2010-10-24 2. javított kiadás

LÁNG CSABÁNÉ SZÁMELMÉLET. Példák és feladatok. ELTE IK Budapest 2010-10-24 2. javított kiadás LÁNG CSABÁNÉ SZÁMELMÉLET Példák és feladatok ELTE IK Budapest 2010-10-24 2. javított kiadás Fels oktatási tankönyv Lektorálták: Kátai Imre Bui Minh Phong Burcsi Péter Farkas Gábor Fülöp Ágnes Germán László

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

Diszkrét matematika 1.

Diszkrét matematika 1. Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz 014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM)

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) Javítási értékelési útmutató 1. Melyek azok a pozitív p és q prímek, amelyekre a számok mindegyike

Részletesebben

Prímszámok. A cikkben szereplő eredmények 2008 decemberéből származnak.

Prímszámok. A cikkben szereplő eredmények 2008 decemberéből származnak. A cikkben szereplő eredmények 2008 decemberéből származnak. Bevezetés on vagy felbonthatatlan számokon olyan pozitív egész számokat értünk, amelyeknek csak két pozitív osztójuk van, nevezetesen az 1 és

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 11. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? legnagyobb közös

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül

Részletesebben

Juhász Tibor. Diszkrét matematika

Juhász Tibor. Diszkrét matematika Juhász Tibor Diszkrét matematika Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Juhász Tibor Diszkrét matematika Eger, 2013 Bíráló:??? Készült a TÁMOP-412A/1-11/2011-0038 támogatásával

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/01-ös tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. Adott az alábbi két egyenletrendszer:

Részletesebben

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu Polinomgy r k Dr. Vattamány Szabolcs 1. Bevezet Ezen jegyzet célja, hogy megismertesse az olvasót az egész, a racionális, a valós és a komplex számok halmaza fölötti polinomokkal. A szokásos jelölést használjuk:

Részletesebben

SZAKDOLGOZAT. Sempergel József

SZAKDOLGOZAT. Sempergel József SZAKDOLGOZAT Sempergel József Debrecen 2007 Debreceni Egyetem Matematikai Intézet A SZÁMELMÉLET MEGJELENÉSE A KÖZÉPISKOLAI OKTATÁSBAN Témavezető: Dr. Bérczes Attila Készítette: Sempergel József Informatika

Részletesebben

A folyammenti kultúrák. (a, b, c) N 3 Pithagoraszi számhármas, ha. Pithagoraszi számhármasok, a Fermat problémakör. a 2 + b 2 = c 2.

A folyammenti kultúrák. (a, b, c) N 3 Pithagoraszi számhármas, ha. Pithagoraszi számhármasok, a Fermat problémakör. a 2 + b 2 = c 2. Pithagoraszi számhármasok, Klukovits Lajos TTIK Bolyai Intézet 014. április 1. Definíciók. (a, b, c) N 3 Pithagoraszi számhármas, ha a + b = c. Az x + y = z egyenletet szokás Pithagoraszi egyenletnek nevezni.

Részletesebben

Diszkrét matematika I. bizonyítások

Diszkrét matematika I. bizonyítások Diszkrét matematika I. bizonyítások Készítette: Szegedi Gábor SZGRACI.ELTE DYDHMF (http://szegedigabor.web.elte.hu) Burcsi Péter tanár úr előadása alapján készült 2010-2011. őszi félév 1. Fogalmazza meg

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Pécsi Tudományegyetem

Pécsi Tudományegyetem Számelmélet Dr. Tóth László Pécsi Tudományegyetem 2006 Bevezetés Ez az anyag tartalmazza a Számelmélet című VI. féléves tárgy kötelező elméleti anyagának a nagy részét. Tartalmaz továbbá olyan kiegészítő

Részletesebben

1. Hatvány és többszörös gyűrűben

1. Hatvány és többszörös gyűrűben 1. Hatvány és többszörös gyűrűben Hatvány és többszörös Definíció (K2.2.19) Legyen asszociatív művelet és n pozitív egész. Ekkor a n jelentse az n tényezős a a... a szorzatot. Ez az a elem n-edik hatványa.

Részletesebben

Versenyfeladatok. Bács-Kiskun Megyei Matematikaverseny és KÖMAL feladatok megoldása, elemzése. Készítette: Perity Dóra Témavezető: Somfai Zsuzsa

Versenyfeladatok. Bács-Kiskun Megyei Matematikaverseny és KÖMAL feladatok megoldása, elemzése. Készítette: Perity Dóra Témavezető: Somfai Zsuzsa Versenyfeladatok Bács-Kiskun Megyei Matematikaverseny és KÖMAL feladatok megoldása, elemzése Készítette: Perity Dóra Témavezető: Somfai Zsuzsa 2013. Eötvös Loránd Tudományegyetem Természettudományi Kar

Részletesebben

11. osztály. 1. Oldja meg az egyenletrendszert a valós számok halmazán! (10 pont) Megoldás: A három egyenlet összege: 2 ( + yz + zx) = 22.

11. osztály. 1. Oldja meg az egyenletrendszert a valós számok halmazán! (10 pont) Megoldás: A három egyenlet összege: 2 ( + yz + zx) = 22. osztály Oldja meg az egyenletrendszert a valós számok halmazán! y + yz = 8 yz + z = 9 z + y = 5 (0 pont) Megoldás: A három egyenlet összege: ( + yz + z) = Ebből kivonva az egyenleteket: y =, yz = 6, z

Részletesebben

Alapvető polinomalgoritmusok

Alapvető polinomalgoritmusok Alapvető polinomalgoritmusok Maradékos osztás Euklideszi algoritmus Bővített euklideszi algoritmus Alkalmazás: Véges testek konstrukciója Irodalom: Iványi Antal: Informatikai algoritmusok II, 18. fejezet.

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Az eddig leadott anyag Diszkrét matematika II tárgyhoz tavasz

Az eddig leadott anyag Diszkrét matematika II tárgyhoz tavasz Az eddig leadott anyag Diszkrét matematika II tárgyhoz 2011. tavasz A (+)-szal jelzett tételek bizonyítással együtt, a (-)-szal anélkül értendők! A tételek esetleges neve, vagy száma a fóliákkal van szinkronban,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Prímek a középiskolai szakkörön

Prímek a középiskolai szakkörön Eötvös Loránd Tudományegyetem Természettudományi Kar Prímek a középiskolai szakkörön Szakdolgozat Készítette: Zsilinszky Dorina Matematika BSc Tanári szakirány Témavezet : Dr. Freud Róbert egyetemi docens

Részletesebben

Algebrai alapismeretek az Algebrai síkgörbék c. tárgyhoz. 1. Integritástartományok, oszthatóság

Algebrai alapismeretek az Algebrai síkgörbék c. tárgyhoz. 1. Integritástartományok, oszthatóság Algebrai alapismeretek az Algebrai síkgörbék c tárgyhoz 1 Integritástartományok, oszthatóság 11 Definíció A nullaosztómentes, egységelemes kommutatív gyűrűket integritástartománynak nevezzük 11 példa Integritástartományra

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

1. A maradékos osztás

1. A maradékos osztás 1. A maradékos osztás Egész számok osztása. 223 = 7 31 + 6. Visszaszorzunk 223 : 7 = 31 21 13 7 6 Állítás (számelméletből) Minden a, b Z esetén, ahol b 0, létezik olyan q, r Z, hogy a = bq + r és r < b.

Részletesebben

megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:

megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye: Az RSA módszer Az RSA módszer titkossága a prímtényezős felbontás nehézségén, a prímtényezők megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:

Részletesebben

5. Az Algebrai Számelmélet Elemei

5. Az Algebrai Számelmélet Elemei 5. Az Algebrai Számelmélet Elemei 5.0. Bevezetés. Az algebrai számelmélet legegyszerűbb kérdései az ún. algebrai számtestek egészei gyűrűjének aritmetikai tulajdonságainak vizsgálata. Ezek legegyszerűbb

Részletesebben

Versenyfeladatok. Bács-Kiskun Megyei Matematikaverseny és KÖMAL feladatok megoldása, elemzése. Készítette: Perity Dóra Témavezető: Somfai Zsuzsa

Versenyfeladatok. Bács-Kiskun Megyei Matematikaverseny és KÖMAL feladatok megoldása, elemzése. Készítette: Perity Dóra Témavezető: Somfai Zsuzsa Versenyfeladatok Bács-Kiskun Megyei Matematikaverseny és KÖMAL feladatok megoldása, elemzése Készítette: Perity Dóra Témavezető: Somfai Zsuzsa 2013. Eötvös Loránd Tudományegyetem Természettudományi Kar

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Megoldások 9. osztály

Megoldások 9. osztály XXV. Nemzetközi Magyar Matematikaverseny Budapest, 2016. március 1115. Megoldások 9. osztály 1. feladat Nevezzünk egy számot prímösszeg nek, ha a tízes számrendszerben felírt szám számjegyeinek összege

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Első rész 1. Bevezetés Tekintsük az ak + b számtani sorozatot, ahol a > 0. Ha a és b nem relatív prímek, akkor (a,b) > 1 osztója

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem

RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem RSA algoritmus Smidla József Rendszer- és Számítástudományi Tanszék Pannon Egyetem 2012. 3. 27. Smidla József (RSZT) RSA algoritmus 2012. 3. 27. 1 / 29 Tartalom 1 Aszimmetrikus kódolók 2 Matematikai alapok

Részletesebben

Permutációk véges halmazon (el adásvázlat, február 12.)

Permutációk véges halmazon (el adásvázlat, február 12.) Permutációk véges halmazon el adásvázlat 2008 február 12 Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: ismétlés nélküli variáció leképezés indulási és érkezési halmaz

Részletesebben

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 008-009. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára. Határozzuk meg az alábbi egyenletrendszer valós megoldásait. ( x

Részletesebben

Diszkrét matematika II. feladatok

Diszkrét matematika II. feladatok Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden

Részletesebben

Így a Bálint számára kedvező esetek száma +, hiszen duplán számoltuk azokat az eseteket, amikor a számok sem 2-vel, sem 5-tel nem oszthatók.

Így a Bálint számára kedvező esetek száma +, hiszen duplán számoltuk azokat az eseteket, amikor a számok sem 2-vel, sem 5-tel nem oszthatók. Országos Középiskolai Tanulmányi Verseny, 2006 2007-es tanév MATEMATIKA, III. kategória a gimnáziumok speciális matematikai osztályainak tanulói részére Az első forduló feladatainak megoldásai Kérjük a

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

LÁNG CSABÁNÉ POLINOMOK ALAPJAI. Példák és megoldások

LÁNG CSABÁNÉ POLINOMOK ALAPJAI. Példák és megoldások LÁNG CSABÁNÉ POLINOMOK ALAPJAI Példák és megoldások Lektorálta Ócsai Katalin c Láng Csabáné, 008 ELTE IK Budapest 008-11-08. javított kiadás Tartalomjegyzék 1. El szó..................................

Részletesebben

(4 pont) Második megoldás: Olyan számokkal próbálkozunk, amelyek minden jegye c: c( t ). (1 pont)

(4 pont) Második megoldás: Olyan számokkal próbálkozunk, amelyek minden jegye c: c( t ). (1 pont) Országos Középiskolai Tanulmányi Verseny, 2005 2006-os tanév MATEMATIKA, III. kategória a gimnáziumok speciális matematikai osztályainak tanulói részére Az első forduló feladatainak megoldásai Kérjük a

Részletesebben

LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak

LINEÁRIS EGYENLETRENDSZEREK október 12. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak LINEÁRIS EGYENLETRENDSZEREK 004. október. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László:

Részletesebben

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel 5. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel Axióma: Bizonyítás: olyan állítás, amelynek igazságát bizonyítás nélkül elfogadjuk.

Részletesebben

MEMO (Middle European Mathematical Olympiad) Szoldatics József, Dunakeszi

MEMO (Middle European Mathematical Olympiad) Szoldatics József, Dunakeszi Szoldatics József: MEMO MEMO (Middle European Mathematical Olympiad) Szoldatics József, Dunakeszi A feladatmegoldó szemináriumon első részében egy rövid beszámolót fognak hallani a 010. szeptember 9. és

Részletesebben

Fermat karácsonyi tétele

Fermat karácsonyi tétele Budapest, 2015. december 17. A karácsonyi tétel Tétel. Minden 4k + 1 alakú p prímszámhoz léteznek a, b egészek, amelyekkel p = a 2 + b 2. Az állítás nem igaz egyetlen 4k + 3 alakú prímre sem. Fermat 1640.

Részletesebben

SZAKDOLGOZAT. Tóth Géza Bence. Debrecen 2008.

SZAKDOLGOZAT. Tóth Géza Bence. Debrecen 2008. SZAKDOLGOZAT Tóth Géza Bence Debrecen 008. Debreceni Egyetem Természettudományi Kar Matematikai Intézet Számelmélet a középiskolában Témavezető: Dr. Bérczes Attila egyetemi adjunktus Készítette: Tóth Géza

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 1. MA3-1 modul. Kombinatorika

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 1. MA3-1 modul. Kombinatorika Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 1. MA3-1 modul Kombinatorika SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI.

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 5. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Számfogalom bővítése Diszkrét matematika I. középszint

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

Magasabbfokú egyenletek

Magasabbfokú egyenletek 86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Megoldások és javítási útmutató 1. Az a b pozitív egészek és tudjuk hogy a 2

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

Számelmélet. 7 8. évfolyam. Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György. 2015. október 19.

Számelmélet. 7 8. évfolyam. Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György. 2015. október 19. Számelmélet 7 8. évfolyam Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György 2015. október 19. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás,

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Algoritmuselmélet 18. előadás

Algoritmuselmélet 18. előadás Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok

Részletesebben

Acta Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) PARTÍCIÓK PÁRATLAN SZÁMOKKAL. Orosz Gyuláné (Eger, Hungary)

Acta Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) PARTÍCIÓK PÁRATLAN SZÁMOKKAL. Orosz Gyuláné (Eger, Hungary) Acta Acad. Paed. Agriensis, Sectio Mathematicae 9 (00) 07 4 PARTÍCIÓK PÁRATLAN SZÁMOKKAL Orosz Gyuláné (Eger, Hungary) Kiss Péter professzor emlékére Abstract. In this article, we characterize the odd-summing

Részletesebben

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2. TARTALOMJEGYZÉK Polinomok konvolúviója A DFT és a maradékos osztás Gyűrűk támogatás nélkül Második nekifutás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. október 2. TARTALOMJEGYZÉK Polinomok

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

MBL013E Számelmélet és Alkalmazásai

MBL013E Számelmélet és Alkalmazásai MBL013E Számelmélet és Alkalmazásai előadás vázlat 2013 0. Korábbi kurzusok alapján ismertnek föltételezett anyag. 1. Az MBL112E kódú, Bevezetés a száelméletbe c. kurzus anyaga, különösen a következők:

Részletesebben

SZÁMELMÉLET FELADATSOR

SZÁMELMÉLET FELADATSOR SZÁMELMÉLET FELADATSOR Oszthatóság 1. Az 123x4 számban milyen számjegy állhat x helyén, ha a szám osztható a) 3-mal; e) 6-tal; b) 9-cel; f) 24-gyel; c) 4-gyel; g) 36-tal; d) 8-cal; h) 72-vel? 2. Határozd

Részletesebben

A Dirichlet-tétel. Matematika BSc szakdolgozat. Témavezető: Dr. Waldhauser Tamás Algebra és Számelmélet Tanszék. Szerző: Körmendi Kristóf

A Dirichlet-tétel. Matematika BSc szakdolgozat. Témavezető: Dr. Waldhauser Tamás Algebra és Számelmélet Tanszék. Szerző: Körmendi Kristóf A Dirichlet-tétel Matematika BSc szakdolgozat Szerző: Körmendi Kristóf Témavezető: Dr. Waldhauser Tamás Algebra és Számelmélet Tanszék Szegedi Tudományegyetem Bolyai Intézet 2009 Bevezetés Az analitikus

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. A 2014-et felírtuk három természetes szám összegeként úgy, hogy ha az első számot elosztjuk

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor

Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket

Részletesebben

Érdekességek az elemi matematika köréből

Érdekességek az elemi matematika köréből Érdekességek az elemi matematika köréből Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Kutatók éjszakája Szeged, SZTE L. Csizmadia (Szeged) Kutatók éjszakája 2011. 2011.09.23. 1 / 17 Társasház

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 7. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? az ord, chr függvények

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám rendje A rend fogalma A 1-nek két darab egész kitevőjű hatványa van: 1 és 1. Az i-nek 4 van: i, i 2 = 1, i 3 = i, i 4 = 1. Innentől kezdve ismétlődik: i 5 = i, i 6 = i 2 = 1, stb. Négyesével

Részletesebben

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 3. Fuzzy aritmetika Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Intervallum-aritmetika 2 Fuzzy intervallumok és fuzzy számok Fuzzy intervallumok LR fuzzy intervallumok

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Egyenletek, egyenlőtlenségek V.

Egyenletek, egyenlőtlenségek V. Egyenletek, egyenlőtlenségek V. DEFINÍCIÓ: (Másodfokú egyenlet) Az ax + bx + c = 0 alakban felírható egyenletet (a, b, c R; a 0), ahol x a változó, másodfokú egyenletnek nevezzük. TÉTEL: Az ax + bx + c

Részletesebben

Diszkrét matematika II. gyakorlat

Diszkrét matematika II. gyakorlat Név: EHA-kód: 1. 2. 3. 4. 5. Diszkrét matematika II. gyakorlat 1. ZH 2014. március 19. Uruk-hai csoport 1. Feladat. 4 pont) Oldja meg az 5 122 x mod 72) kongruenciát? Érdekesség: az 5 122 szám 86 számjegyű.)

Részletesebben