RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,..."

Átírás

1 RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk egy olyan d számot, amelyre ed = 1 mod φ(n). 5. Az RSA nyilvános kulcs a P = (e,n) pár lesz. 6. Az RSA titkos kulcs az S = (d,n) pár lesz. Ebben a sémában az elküldhető üzenetek halmaza Z n = {0,1,...,n 1}. A kódolás a P = (e,n) nyilvános kulccsal: A dekódolás a titkos kulccsal: P(M) = M e mod n. Def: Z n = {a Z n : lnko(a,n) = 1}. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér Def: Az Euler függvény a Z n halmaz elemszáma, jele φ(n), értéke ahol p prím. Tétel (Euler) Bármely n > 1 számra φ(n) = n (1 1/p), p n minden a Z n esetén. Tétel (Fermat) Minden p prímre a φ(n) = 1 mod n, a p 1 = 1 mod p, ha p nem osztója a-nak. Tétel (Kínai maradéktétel) Legyen n = n 1 n 2...n k, ahol n i -k páronként relatív prímek. Tekintsük az a (a 1,a 2,...,a k ), megfeleltetést, ahol a Z n, és a i Z ni, továbbá a i = a mod n i minden i = 1,2,...,k-ra. A megfeleltetés kölcsönösen egyértelmű megfeleltetés a Z n halmaz és a Z n1 Z n2 Z nk direktszorzat között. A Z n elemein végezhető műveletek végrehajthatók a k-asokkal. Tehát, ha a (a 1,a 2,...,a k ) és b (b 1,b 2,...,b k ), akkor (a + b) mod n ((a 1 + b 1 ) mod n 1,...,(a k + b k ) mod n k ) (a b) mod n ((a 1 b 1 ) mod n 1,...,(a k b k ) mod n k ) 1

2 (ab) mod n ((a 1 b 1 ) mod n 1,...,(a k b k ) mod n k ) Következmény Ha n 1,n 2,...,n k páronként relatív prímek és n = n 1 n 2...n k, akkor minden a 1,a 2,...,a k, egész számra az x = a i mod n i, i = 1,2,...,k, kongruenciarendszernek modulo n az x ismeretlenre egyetlen megoldása van. Következmény Ha n 1,n 2,...,n k páronként relatív prímek és n = n 1 n 2...n k, akkor az x és a egészekre x = a mod n i minden i = 1,2,...,k-ra akkor és csak akkor teljesül, ha x = a mod n. Példa: Legyen n = 65, akkor n 1 = 5 és n 2 = 13. Ha a = 42 (2,3) és b = 24 (4,11), akkor a+b = 1 (1,1). RSA helyessége Tétel. (Az RSA helyessége.) Az RSA algoritmusban definiált függvények egymás inverzei. Bizonyítás. M Z n esetén P(S(M)) = S(P(M)) = M ed mod n. Mivel e és d egymás multiplikatív inverzei modulo φ(n) = (p 1)(q 1), ezért ed = 1+k(p 1)(q 1), valamely alkalmas k egész számra. Ekkor M 0 mod p esetén M ed = M(M p 1 ) k(q 1) mod p = M(1) k(q 1) mod p a Fermat tétel alapján. Tehát M ed = M mod p ha M 0 mod p. Következésképpen M ed = M mod p teljesül. Hasonlóképpen kapjuk, hogy M ed = M mod q. Így a kínai maradéktétel következménye miatt, mivel n = pq ezért M ed = M mod n. 2

3 Lineáris kongruencia megoldása Az e elem inverzének megtalálásához meg kell oldanunk egy lineáris kongruenciát. Általánosan a feladat az, hogy oldjuk meg az ax = b mod n egyenletet. Jelölje G(a) az a elem által generált additív részcsoportját Z n -nek. Tehát G(a) = {ax mod n : x > 0}. A megoldandó kongruenciának akkor és csak akkor van megoldása, ha b G(a). Tétel. Legyen d = lnko(a,n). Ekkor G(a) = G(d) = {0,d,2d,...,((n/d) 1)d}, így G(a) = n/d. Bizonyítás Először igazoljuk, hogy d G(a). A Bővített-Euklidesz algoritmus olyan x és y számokat ad, amelyekre ax + ny = d, így ax = d mod n, azaz d G(a). Így d többszörösei is szerepelnek G(a)-ban, tehát G(d) G(a). Belátjuk, hogy G(a) G(d) is teljesül. Ha m G(a), akkor m = ax mod n valamely x-re, ezért m = ax + ny. De d a és d n, így adódik, hogy d m, azaz m G(d). Következmény: Az ax = b mod n kongruencia akkor és csak akkor oldható meg, ha lnko(a,n) b teljesül. Ha van megoldás, akkor pontosan d darab van. Tétel Legyen d = lnko(a,n) = ax + ny. Ha d b, akkor az ax = b mod n kongruenciának az egyik megoldása x 0, amelyre: Bizonyítás: x 0 = x (b/d) mod n. ax 0 = ax (b/d) mod n = d(b/d) mod n = b mod n. Tétel: Legyen d = lnko(a,b). Tegyük fel, hogy az ax = b mod n kongruencia megoldható és x 0 egy megoldása. Ekkor pontosan d különböző megoldása van, az x i = x 0 + i(n/d) i = 0,1,...,d 1 megoldások. Bizonyítás: Mivel n/d > 0 és 0 i(n/d) < n, i = 0,1,...,d 1-re, ezért az x i -k mind különbözők Mivel x 0 megoldás, ezért ax 0 mod n = b. Ekkor az i = 0,1,...,d 1-re ax i mod n = a(x 0 + in/d) mod n = (ax 0 + ain/d) mod n = ax 0 mod n = b. mod n-re. LINEÁRIS-KONGRUENCIA-MEGOLDÓ(A,B,N) (d,x0,y0):=bővített-euklidesz(a,n) if d b then x0:=x0(b/d) mod n for i := 0 to d-1 print(x0+i(n/d) mod n) else print(nincs megoldás) Példa 14x = 30 mod 100. (d,x,y) = 2, 7,1), x 0 = ( 7)(15) mod 100 = 95, így a két megoldás 95 és 45. Prímtesztelés 3

4 További kérdés miként találhatunk nagy prímeket. Ismert, hogy végtelen sok prím van, így tetszőlegesen nagy prím található. Továbbá a prímek nem helyezkednek el nagyon ritkán, ha π(n) jelöli az n-nél nem nagyobb prímek számát, akkor lim n lnnπ(n)/n = 1. A prímek kereséséhez fontos részfeladat a prímtesztelés, amely során adott számról akarjuk eldönteni prím -e? A legegyszerűbb módszer az osztási próba. Az n számot rendre elosztjuk a 2,3,5, n egészek mindegyikével, ha valahol egész számot kapunk, akkor n összetett. Az algoritmus lassú, mivel az input mérete nem n, hanem logn. A továbbiakban olyan módszereket mutatunk be, amelyek nem feltétlenül adnak helyes választ. Ha azt kapjuk válaszként, hogy az adott szám összetett, akkor valóban összetett számról van szó, de a pozitív válasz nem garantálja, hogy valóban prímről van szó. Álprímek és Carmichael számok A Fermat tétel alapján, minden prímre és minden a = 1,..., p 1-re a p 1 = 1 mod p. Az első prímtesztelő algoritmus kiszámolja az MODULÁRIS-HATVÁNYOZÓ(2,n-1,n) értéket, és ha nem 1-et kapunk, akkor tudjuk, hogy n összetett szám. Az algoritmus, akkor hibázik, ha n olyan összetett szám, amelyre 2 n 1 = 1 mod n. Általában azokat az összetett számokat, amelyekre a n 1 = 1 mod n a alapú álprímnek nevezzük. Egy n számot a alapú álprímnek nevezünk, ha a n 1 = 1 mod n. Természetesen adódik a kérdés, hogy milyen gyakran téved az algoritmus, azaz milyen gyakran fordulnak elő 2 alapú álprímek nél kisebb 2 alapú álprím 22 van, az álprímek aránya tart a 0-hoz. Kézenfekvő ötlet, hogy használjunk a teszteléshez a 2 számon kívül más alapokat is. Ez nem oldja meg a problémát, mert vannak olyan számok, amelyek minden a-ra a alapú álprímek. Ezeket a számokat nevezzük Carmichael számoknak. Ezekből még kevesebb van, nél kisebb Carmichael szám 255 van, a legkisebb az 561. Miller Rabin valószínűségi prímteszt A prímteszt két lépésből áll, egyrészt véletlenül választott a értékekre ellenőrzi, hogy a vizsgált szám a alapú álprím-e, továbbá megvizsgálja, hogy van -e nemtriviális négyzetgyöke 1-nek modulo n. A második részbeli elutasítás helyessége az alábbi tételen alpul. Tétel Ha p páratlan prím, akkor az x 2 = 1 mod p kongruenciának, csak 2 megoldása van, az x = 1 és az x = 1. def: Az x szám 1 nem triviális négyzetgyöke modulo n, ha megoldása az x 2 = 1 mod n kongruenciának, és nem egyezik meg a triviális 1,1 négyzetgyökökkel. (Pl a 6 nem triviális négyzetgyöke 1-nek, modulo 35.) Következmény Ha az 1-nek létezik nemtriviális négyzetgyöke modulo n, akkor az n összetett szám. A prímteszt használja a következő TANÚ(a,n) algoritmust. Ehhez legyen n 1 = 2 t u, ahol t 1 és u páratlan. TANÚ(a,n) x(0):=moduláris-hatványozó(a,u,n) for i=1 to t x(i):=(x(i-1))(x(i-1)) mod n if x(i)=1 and x(i-1)!=1 and x(i-1)!=n-1 then return Igaz if x(t)!=1 then return igaz return hamis Lemma. Ha a TANÚ(a,n) eljárás Igaz értéket ad vissza, akkor az n szám összetett. Bizonyítás. Két esetben kaphatunk Igaz értéket, ha x(i 1) nem triviális négyzetgyöke 1-nek modulo n, vagy ha nem teljesül n-re a Fermat tétel. Mindkét esetben egyből adódik, hogy n nem lehet prím. 4

5 Miller-Rabin(n,s) for j=1 to s a:=veletlengeneralt(1,n-1) If TANÚ(a,n) Then return ÖSSZETETT return PRÍM(Valószínűleg) Tétel Az n páratlan összetett számnak legalább (n 1)/2 darab összetettséget igazoló tanúja van. Következmény Legyen n > 2 páratlan egész, s pedig pozitív egész. A Miller-Rabin(n,s) teszt tévedési valószínűsége legfeljebb 2 s. Bizonyítás A fenti tétel alapján ha n nem prím, akkor a Miller-Rabin(n,s) teszt minden iterációja 1/2 valószínűséggel felfedez egy tanút. Így annak a valószínűsége, hogy s lépésben nem találunk egyetlen tanút sem, kisebb, mint 2 s. Példa: Legyen n = 561 a legkisebb Carmichael szám. Ekkor n 1 = Legyen a = 7, ekkor elsőként kiszámoljuk az x(0) = 7 35 = 241 mod 561 értéket, majd ezt többször négyzetre emelve a (298,166,67,1) sorozatot, amely utolsó előtti eleme talált egy nemtriviális négyzetgyökét 1-nek modulo 561. Mersenne prímek Def: Mersenne-prímnek nevezzük a kettő-hatványnál eggyel kisebb, azaz a 2 n 1 alakban felírható prímszámokat, ahol n szintén prímszám ban fedezték fel a 45-ödik Mersenne-prímet, ez a szám, amely számjegyű. Ez a jelenleg ismert legnagyobb prímszám. 5

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? a Fibonacci számsorozat

Részletesebben

Nyilvános kulcsú titkosítás RSA algoritmus

Nyilvános kulcsú titkosítás RSA algoritmus Nyilvános kulcsú titkosítás RSA algoritmus OpenPGP NYILVÁNOS KULCSÚ TITKOSÍTÁS Legyen D a titkosítandó üzenetek halmaza. Tegyük fel, hogy Bob titkosítottan szeretné elküldeni Aliznak az M D üzenetet. A

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

Számelmélet. 1. Oszthatóság Prímszámok

Számelmélet. 1. Oszthatóság Prímszámok Számelmélet Legnagyobb közös osztó, Euklideszi algoritmus. Lineáris diofantoszi egyenletek. Számelméleti kongruenciák, kongruenciarendszerek. Euler-féle ϕ-függvény. 1. Oszthatóság 1. Definíció. Legyen

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem

RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem RSA algoritmus Smidla József Rendszer- és Számítástudományi Tanszék Pannon Egyetem 2012. 3. 27. Smidla József (RSZT) RSA algoritmus 2012. 3. 27. 1 / 29 Tartalom 1 Aszimmetrikus kódolók 2 Matematikai alapok

Részletesebben

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint

Részletesebben

Algoritmuselmélet 18. előadás

Algoritmuselmélet 18. előadás Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok

Részletesebben

megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:

megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye: Az RSA módszer Az RSA módszer titkossága a prímtényezős felbontás nehézségén, a prímtényezők megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:

Részletesebben

SzA XIII. gyakorlat, december. 3/5.

SzA XIII. gyakorlat, december. 3/5. SzA XIII. gyakorlat, 2013. december. 3/5. Drótos Márton 3 + 2 = 1 drotos@cs.bme.hu 1. Határozzuk meg az Euklidészi algoritmussal lnko(504, 372)-t! Határozzuk meg lkkt(504, 372)-t! Hány osztója van 504-nek?

Részletesebben

Matematikai alapismeretek. Huszti Andrea

Matematikai alapismeretek. Huszti Andrea Tartalom 1 Matematikai alapismeretek Algebrai struktúrák Oszthatóság Kongruenciák Algebrai struktúrák Az S = {x, y, z,... } halmazban definiálva van egy művelet, ha az S-nek minden x, y elempárjához hozzá

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak... Biztos, hogy titkos? Szabó István előadása Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...) Története Az ókortól kezdve rengeteg feltört titkosírás létezik. Monoalfabetikus

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 11. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? legnagyobb közös

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 7. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? az ord, chr függvények

Részletesebben

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis I. ALAPALGORITMUSOK 1. Prímszámvizsgálat Adott egy n természetes szám. Írjunk algoritmust, amely eldönti, hogy prímszám-e vagy sem! Egy számról úgy fogjuk eldönteni, hogy prímszám-e, hogy megvizsgáljuk,

Részletesebben

Prímszámok. A cikkben szereplő eredmények 2008 decemberéből származnak.

Prímszámok. A cikkben szereplő eredmények 2008 decemberéből származnak. A cikkben szereplő eredmények 2008 decemberéből származnak. Bevezetés on vagy felbonthatatlan számokon olyan pozitív egész számokat értünk, amelyeknek csak két pozitív osztójuk van, nevezetesen az 1 és

Részletesebben

Mintafeladat az RSA algoritmus szemléltetésére

Mintafeladat az RSA algoritmus szemléltetésére Mintafeladat az RSA algoritmus szemléltetésére Feladat Adottak a p = 269 és q = 24 prímszámok, továbbá az e = 5320 nyilvános kulcs és az x = 48055 nyílt szöveg. Számolja ki n = p q és ϕ(n) értékét! Igazolja

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

Jelölés. Az egyszerűség kedvéért (a, b) ρ helyett gyakran azt írjuk, hogy aρb.

Jelölés. Az egyszerűség kedvéért (a, b) ρ helyett gyakran azt írjuk, hogy aρb. BEVEZETÉS A SZÁMELMÉLETBE vázlat az előadáshoz (2013 őszi félév Waldhauser Tamás 1. Oszthatóság, legnagyobb közös osztó, rímfaktorizáció az egész számok körében Az oszthatósági reláció alavető tulajdonságai

Részletesebben

Fermat kongruencia-tétele, pszeudoprímszámok

Fermat kongruencia-tétele, pszeudoprímszámok Fermat kongruencia-tétele, pszeudoprímszámok Dr. Tóth László Pécsi Tudományegyetem 2005. december 15. Bolyai János születésének napja 1. Fermat kongruencia-tétele A kínai matematikusok már K. e. 500 körül

Részletesebben

Maple. Maple. Dr. Tóth László egyetemi docens Pécsi Tudományegyetem, 2007

Maple. Maple. Dr. Tóth László egyetemi docens Pécsi Tudományegyetem, 2007 Maple Dr. Tóth László egyetemi docens Pécsi Tudományegyetem, 2007 A Maple egy matematikai formula-manipulációs (vagy számítógép-algebrai) rendszer, amelyben nem csak numerikusan, hanem formális változókkal

Részletesebben

Miller-Rabin prímteszt

Miller-Rabin prímteszt Az RSA titkosítás Nyílt kulcsú titkosításnak nevezünk egy E : A B és D : B A leképezés-párt, ha bármely a A-ra D(E(a)) = a (ekkor E szükségképpen injektív leképezés), E ismeretében E(a) könnyen számítható,

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N}

2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N} 2. Feladatsor Oszthatóság, legnagyobb közös osztó, prímfaktorizáció az egész számok körében 1 Kötelező házi feladat(ok) 2., Határozzuk meg a ϕ:z Z, z [ z 5] leképezés magját. Adjuk meg a ker(ϕ)-hez tartozó

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

MBL013E Számelmélet és Alkalmazásai

MBL013E Számelmélet és Alkalmazásai MBL013E Számelmélet és Alkalmazásai előadás vázlat 2013 0. Korábbi kurzusok alapján ismertnek föltételezett anyag. 1. Az MBL112E kódú, Bevezetés a száelméletbe c. kurzus anyaga, különösen a következők:

Részletesebben

Információs társadalom alapismeretek

Információs társadalom alapismeretek Információs társadalom alapismeretek Szabó Péter Gábor Titkosítás és számítástechnika Titkosítás alapfogalmai A Colossus Kriptográfia A rejtjelezés két fı lépésbıl áll: 1) az üzenet titkosítása (kódolás)

Részletesebben

Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán):

Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Oszthatóság Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Azt mondjuk, hogy az a osztója b-nek (jel: a b), ha van olyan c egész, amelyre ac = b. A témakörben a betűk egész

Részletesebben

Algoritmusok helyességének bizonyítása. A Floyd-módszer

Algoritmusok helyességének bizonyítása. A Floyd-módszer Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? blokk-titkosító

Részletesebben

KÓDOLÁSTECHNIKA PZH. 2006. december 18.

KÓDOLÁSTECHNIKA PZH. 2006. december 18. KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

LÁNG CSABÁNÉ SZÁMELMÉLET. Példák és feladatok. ELTE IK Budapest 2010-10-24 2. javított kiadás

LÁNG CSABÁNÉ SZÁMELMÉLET. Példák és feladatok. ELTE IK Budapest 2010-10-24 2. javított kiadás LÁNG CSABÁNÉ SZÁMELMÉLET Példák és feladatok ELTE IK Budapest 2010-10-24 2. javított kiadás Fels oktatási tankönyv Lektorálták: Kátai Imre Bui Minh Phong Burcsi Péter Farkas Gábor Fülöp Ágnes Germán László

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április Hány osztója van egy adott számnak? Hány osztója van egy adott számnak? Dr. Tóth László http://www.ttk.pte.hu/matek/ltoth előadásanyag, Pécsi Tudományegyetem, TTK 2008. április. Bevezetés Lehetséges válaszok:

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket

Részletesebben

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat 8.2. Gyűrűk Fogalmak, definíciók: Gyűrű, kommutatív gyűrű, integritási tartomány, test Az (R, +, ) algebrai struktúra gyűrű, ha + és R-en binér műveletek, valamint I. (R, +) Abel-csoport, II. (R, ) félcsoport,

Részletesebben

Komplex számok. (a, b) + (c, d) := (a + c, b + d)

Komplex számok. (a, b) + (c, d) := (a + c, b + d) Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)

Részletesebben

Programozási módszertan. Mohó algoritmusok

Programozási módszertan. Mohó algoritmusok PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Kolozsvár 2008 május 23-24

Kolozsvár 2008 május 23-24 ZÉRUSOSZTÓK TANULMÁNYOZÁSA A MARADÉKOSZTÁLYOK GYŰRŰJÉBEN Horobeţ Emil, Babeş Bolyai Tudományegyetem, Matematika-Informatika szak, I év Témavezető: prof.dr.mǎrcuş Andrei, Babeş Bolyai Tudományegyetem, Algebra

Részletesebben

Diszkrét matematika II. feladatok

Diszkrét matematika II. feladatok Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden

Részletesebben

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Első rész 1. Bevezetés Tekintsük az ak + b számtani sorozatot, ahol a > 0. Ha a és b nem relatív prímek, akkor (a,b) > 1 osztója

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 2. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? Követelmények,

Részletesebben

Diszkrét matematika II. gyakorlat

Diszkrét matematika II. gyakorlat Név: EHA-kód: 1. 2. 3. 4. 5. Diszkrét matematika II. gyakorlat 1. ZH 2014. március 19. Uruk-hai csoport 1. Feladat. 4 pont) Oldja meg az 5 122 x mod 72) kongruenciát? Érdekesség: az 5 122 szám 86 számjegyű.)

Részletesebben

Acta Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) PARTÍCIÓK PÁRATLAN SZÁMOKKAL. Orosz Gyuláné (Eger, Hungary)

Acta Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) PARTÍCIÓK PÁRATLAN SZÁMOKKAL. Orosz Gyuláné (Eger, Hungary) Acta Acad. Paed. Agriensis, Sectio Mathematicae 9 (00) 07 4 PARTÍCIÓK PÁRATLAN SZÁMOKKAL Orosz Gyuláné (Eger, Hungary) Kiss Péter professzor emlékére Abstract. In this article, we characterize the odd-summing

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 00/009-es tanév első (iskolai) forduló haladók II.

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

Gyakorló feladatok Gyakorló feladatok

Gyakorló feladatok Gyakorló feladatok Gyakorló feladatok előző foglalkozás összefoglalása, gyakorlató feladatok a feltételes elágazásra, a while ciklusra, és sokminden másra amit eddig tanultunk Változók elnevezése a változók nevét a programozó

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Diszkrét matematika I. bizonyítások

Diszkrét matematika I. bizonyítások Diszkrét matematika I. bizonyítások Készítette: Szegedi Gábor SZGRACI.ELTE DYDHMF (http://szegedigabor.web.elte.hu) Burcsi Péter tanár úr előadása alapján készült 2010-2011. őszi félév 1. Fogalmazza meg

Részletesebben

A prímszámok eloszlása, avagy az első 50 millió

A prímszámok eloszlása, avagy az első 50 millió Bevezetés Pímszámok A prímszámok eloszlása, avagy az első 50 millió prímszám. Klukovits Lajos TTIK Bolyai Intézet 2014. április 8. Néhány definíció. 1 A klasszikus számelméleti. p N prím, ha a p a = ±1,

Részletesebben

MÁRTON GYÖNGYVÉR KRIPTOGRÁFIAI ALAPISMERETEK

MÁRTON GYÖNGYVÉR KRIPTOGRÁFIAI ALAPISMERETEK MÁRTON GYÖNGYVÉR KRIPTOGRÁFIAI ALAPISMERETEK SAPIENTIA ERDÉLYI MAGYAR TUDOMÁNYEGYETEM M SZAKI ÉS HUMÁNTUDOMÁNYOK KAR MATEMATIKAINFORMATIKA TANSZÉK MÁRTON GYÖNGYVÉR KRIPTOGRÁFIAI ALAPISMERETEK Scientia

Részletesebben

6. előadás Faktorizációs technikák közepes méretű osztókra

6. előadás Faktorizációs technikák közepes méretű osztókra 6. előadás Faktorizációs technikák közepes méretű osztókra Dr. Kallós Gábor 2016 2017 1 Tartalom Feladatok, megjegyzések Irodalom 2 Eml.: Próbaosztásos algoritmus (teljes felbontás) 14-18 jegyű számokig

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Az eddig leadott anyag Diszkrét matematika II tárgyhoz tavasz

Az eddig leadott anyag Diszkrét matematika II tárgyhoz tavasz Az eddig leadott anyag Diszkrét matematika II tárgyhoz 2011. tavasz A (+)-szal jelzett tételek bizonyítással együtt, a (-)-szal anélkül értendők! A tételek esetleges neve, vagy száma a fóliákkal van szinkronban,

Részletesebben

4. Előadás Titkosítás, RSA algoritmus

4. Előadás Titkosítás, RSA algoritmus 4. Előadás Titkosítás, RSA algoritmus Dr. Kallós Gábor 2014 2015 1 Tartalom A kriptográfia meghatározása, alaphelyzete Szimmetrikus (titkos) kulcsú titkosítás A Caesar-eljárás Aszimmetrikus (nyilvános)

Részletesebben

RSA. 1. Véletlenszerűen választunk két "nagy" prímszámot: p1, p2

RSA. 1. Véletlenszerűen választunk két nagy prímszámot: p1, p2 RS z algoritmus. Véltlnszrűn választunk két "nagy" prímszámot: p, p, p p. m= pp, φ ( m) = ( p -)( p -)., < φ( m), ( φ( m ),) = - 3. d = ( mod φ( m) ) 4. k p s = ( m,), = ( d, p, p ) k. Kódolás: y = x (

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

Matematika javítóvizsga témakörök 10.B (kompetencia alapú )

Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) 1. A négyzetgyök fogalma, a négyzetgyökvonás művelete 2. A négyzetgyökvonás azonosságai 3. Műveletek négyzetgyökökkel 4. A nevező gyöktelenítése

Részletesebben

Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT

Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT NetworkShop 2004 2004.. április 7. Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT Bevezetés Ma használt algoritmusok matematikailag alaposan teszteltek

Részletesebben

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Mi a véletlen? Determinisztikus vs. Véletlen esemény? Véletlenszám: számok sorozata, ahol véletlenszerűen követik egymást az elemek Pszeudo-véletlenszám

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Mohó algoritmusok. Példa:

Mohó algoritmusok. Példa: Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus sokszor olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Ezt gyakran dinamikus programozás alapján

Részletesebben

FÜGGVÉNYTANI ALAPOK A) ÉRTELMEZÉSI TARTOMÁNY

FÜGGVÉNYTANI ALAPOK A) ÉRTELMEZÉSI TARTOMÁNY FÜGGVÉNYTANI ALAPOK Foglalkoztunk az alaptulajdonságnak tekinthető értelmezési tartománnyal, és a paritással, továbbá az összetett függvények képzési módjával, illetve ezeknek az elemi függvényekre való

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

SZÁMELMÉLET. Szigeti Jenő

SZÁMELMÉLET. Szigeti Jenő SZÁMELMÉLET Sigeti Jeő. OSZTHATÓSÁG A osthatósággal kapcsolatba égy alapvető eredméyt kölük bioyítás élkül. Jelölje φ() a {,,..., } halmaból ao elemek sámát, amelyek relatív prímek a -he. Ha például p

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens

Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens A nyílt kulcsú titkosítás és a digitális aláírás Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens Budapest Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar Műszertechnikai és Automatizálási

Részletesebben

Programozási módszertan. Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer

Programozási módszertan. Függvények rekurzív megadása Oszd meg és uralkodj elv, helyettesítő módszer, rekurziós fa módszer, mester módszer PM-03 p. 1/13 Programozási módszertan Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer Werner Ágnes Villamosmérnöki és Információs Rendszerek

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel 5. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel Axióma: Bizonyítás: olyan állítás, amelynek igazságát bizonyítás nélkül elfogadjuk.

Részletesebben

PRÍMSZÁMOK ÉS A TITKOSÍRÁS

PRÍMSZÁMOK ÉS A TITKOSÍRÁS PRÍMSZÁMOK ÉS A TITKOSÍRÁS Meszéna Tamás Ciszterci Rend Nagy Lajos Gimnáziuma és Kollégiuma, Pécs, meszena.tamas@gmail.com, az ELTE Fizika Tanítása doktori program hallgatója ÖSSZEFOGLALÁS Úgy tapasztaltam,

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a tömb általánosításaként

Részletesebben

Fejezetek a. csodálatos életéből

Fejezetek a. csodálatos életéből Fejezetek a prímszámok csodálatos életéből Bolyai János véleménye Az egész számtan, sőt az egész tan mezején alig van szebb és érdekesebb s a legnagyobb nyitászok (matematikusok) figyelme és eleje óta

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat

Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat PM-07 p. 1/13 Programozási módszertan Dinamikus programozás: A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-07

Részletesebben

Függvény fogalma, jelölések 15

Függvény fogalma, jelölések 15 DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat

Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat PM-04 p. 1/18 Programozási módszertan Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben