Prímszámok. A cikkben szereplő eredmények 2008 decemberéből származnak.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Prímszámok. A cikkben szereplő eredmények 2008 decemberéből származnak."

Átírás

1 A cikkben szereplő eredmények 2008 decemberéből származnak. Bevezetés on vagy felbonthatatlan számokon olyan pozitív egész számokat értünk, amelyeknek csak két pozitív osztójuk van, nevezetesen az 1 és önmaguk. Ezeket szokták triviális (nyilvánvaló) osztóknak is hívni. A prímszámok 2, 3, 5, 7, 11, 13, 17,... sorozata a matematika egyik legegyszerűbben megadott, ugyanakkor talán legtitokzatosabb halmaza. A sok eredmény között ugyanis rengeteg a tisztázatlan kérdés, megoldatlan probléma. Néhány érdekes eredményt, illetve sejtést szeretnék az alábbiakban megfogalmazni. A továbbiakban csak pozitív egész számokról lesz szó, tehát számokon ezentúl mindig ilyen számokat fogok érteni. Ha egy számnak triviálistól különböző osztója is van, akkor összetett számnak nevezzük. Talán a legismertebb, prímszámokkal kapcsolatos tétel a számelmélet alaptétele, mely szerint minden 1-nél nagyobb szám felbontható prímszámok szorzatára, és a felbontás a tényezők sorrendjétől eltekintve egyértelmű. Könnyű bebizonyítani, hogy ha n összetett szám, akkor a legkisebb prímosztója nem lehet nagyobb n-nél. Így ha el szeretnénk dönteni például a számról, hogy prímszám-e, akkor elég 173 < < 174 miatt 173-ig elosztani a prímszámokkal. Ha elvégeznénk az osztásokat, akkor azt tapasztalnánk, hogy egyik prím se osztja, így prímszám. Hogyan lehet meghatározni egy n számig a prímszámokat? Egyik lehetőség az úgynevezett eratosztenészi szita. Írjuk fel 1-től n-ig a számokat. Húzzuk ki az 1-et, hiszen az nem prímszám. Az első, nem kihúzott számot karikázzuk be, ez prímszám lesz (2). Húzzuk (szitáljuk) ki a 2 többszöröseit n-ig, majd a számok sorozatában az első ki nem húzott és be nem karikázott számot karikázzuk be, ez lesz a következő prímszám (3). Most ennek a többszöröseit kell kiszitálni n-ig, majd az első, ki nem szitált és be nem karikázott számot (5) kell bekarikázni, ez lesz a következő prím. És így tovább. A bekarikázott számok lesznek n-ig a prímszámok. 1 Typeset by LATEX

2 Felmerül a kérdés, hogy van-e tetszőlegesen sok prímszám? A válasz erre igen, végtelen sok prímszám van. Ugyanis, ha véges sok prímszám volna, akkor ezek szorzatához 1-et adva egy újabb prímszámot kapunk. Érdemes meggondolni, hogy miért. Könnyű-e meghatározni egy szám prímtényezős felbontását? Látszólag igen, hiszen csak meg kell nézni rendre, hogy osztható-e 2-vel, 3-mal, stb. Ha találunk egy prímosztót, akkor a hányadost kell tovább bontani. Ha pedig a szám négyzetgyökéig elmenve egyáltalán nem találunk osztót, akkor a szám biztosan prímszám. Ily módon gyorsan fel tudjuk bontani például a 143-at, vagy be tudjuk látni, hogy a 197 prímszám. Próbálkozzunk azonban mondjuk a számmal. Mersenne (ejtsd: mer(s)zen) francia matematikus 1644-ben egy hosszú listát közölt prímszámokról, amelyben erről a számról azt állította, hogy prímszám. Ezt a kérdést több mint 200 évig nem tudták eldönteni ban a szintén francia Lucas (ejtsd: lüká) kimutatta, hogy Mersenne tévedett; ez a szám összetett. Prímtényezőkre azonban neki sem sikerült bontania, csak az összetettség tényét igazolta. Végül 1903-ban az amerikai Cole (ejtsd: kól) találta meg a felbontást, miután sok évig minden vasárnap délutánját ennek a problémának szentelte. A Rivest Shamir Adleman (RSA) nyilvános kulcsú titkosírás Nagy számok prímfelbontásának a kérdésekor a nehézséget az jelenti, hogy olyan sok próbálkozást kellene végrehajtani, amelyhez évmilliárdok sem elegendők. Egy 200 jegyű számot, amelynek nincsenek kis prímosztói, vagy nincs valamilyen speciális tulajdonsága, a jelenlegi leggyorsabb számítógépek sem tudnak a Nap kihűlése előtt tényezőkre bontani. Ugyanakkor vannak olyan eljárások, amelyek gyorsan eldöntik, hogy egy nagy szám prímszám-e vagy összetett (azonban az utóbbi esetben sem tudják megadni a tényezőket). Ha tehát valaki két nagy prímszámot összeszoroz, akkor az így kapott szorzatot senki sem tudja felbontani rajta kívül, ez egyedül az ő titka marad. Ezen alapulnak azok az új titkosírási sémák, amelyeket ma szerte a világon, a katonai, a diplomáciai és az üzleti élet számos területén sikerrel alkalmaznak. A nyilvános kulcsú titkosírás arra használható, hogy úgy kódolja két levelező partner üzenetét, hogy ha valaki meg is tudja szerezni a kódolt üzenetet, akkor sem tudja megfejteni. A nyilvános kulcsú titkosírás lehetővé teszi azt is, hogy a felek hamisíthatatlan digitális aláírással lássák el az elektronikus üzenetet. Ez az aláírás a hivatalos dokumentumok kézirásos aláírásának elektronikus változata. Bárki könnyen összevetheti az eredetivel, de 2

3 nem hamisítható, azaz szavatolja mind az aláíró személyét, mind az aláírt üzenet tartalmát. Az RSA nyilvános kulcsú titkosírás létét annak a szinte drámai különbségnek köszönheti, hogy milyen könnyű nagy prímszámokat találni, és ezzel szemben milyen nehéz két nagy prím szorzatát tényezőkre bontani. Biztonságosnak tűnik ez az eljárás, bár nincs kizárva, hogy valaki talál egy olyan módszert, amellyel gyorsan tud nagy számokat is prímtényezőkre bontani és akkor hozzáfér a megfejtő kulcshoz. Mindez azonban meglehetősen valószínűtlen. eloszlása A továbbiakban a prímszámoknak a számok sorozatában való eloszlását vizsgáljuk. Hézag a szomszédos prímszámok között Igen érdekes tétel az úgynevezett hézag tétel, mely szerint tetszőleges nagy n pozitív számhoz meg lehet adni n számú szomszédos összetett számot. Ez azt jelenti, hogy két szomszédos prímszám között tetszőleges nagy lehet a távolság (hézag). Tehát lehet mondani egymás után mondjuk egymillió összetett számot. Másik érdekes tétel a Csebisev-tétel. A tétel szerint minden 1-nél nagyobb szám és a kétszerese között van prímszám. Ezek szerint például 100 és 200 között kell lenni legalább egy prímszámnak. Fontos megjegyezni, hogy ez a tétel nem áll ellentmondásban a hézag tétellel. A számos megoldatlan problémák egyike: igaz-e, hogy két négyzetszám között mindig van prímszám? Számtani sorozatok prímszámai A 3 5 7, , ,... olyan prímszámok, amelyek egyenlő távolságra helyezkednek el. 3

4 Az eddig talált leghosszabb számtani sorozatnak, amely csupa prímszámból áll, 22 tagja van, ebből hármat ismerünk: k, k = 0, 1,...,21. A differencia k, k = 0, 1,...,21. A differencia k, k = 0, 1,...,21. A differencia Könnyű megmondani viszont, hogy végtelen számtani sorozat már nem állhat elő csupa prímszámokból, ehhez elég csak a hézag tételre hivatkozni. A közelmúltban, 2004-ben bizonyította be Ben Green (University of British Columbia, Vancouver) és Terence Tao (University of California, Los Angeles), hogy van tetszőleges véges hosszú számtani sorozat csupa prímszámból. Nem tudjuk, hogyan lehet 23 tagú sorozatot találni, de már tudjuk, hogy ilyenek léteznek. Egy további érdekes tétel a német Dirichlet (ejtsd: dirislé) nevéhez fűződik. Dirichlet tétele szerint az ak+b, k = 0, 1, 2,... számok között akkor és csak akkor van végtelen sok prímszám, ha a és b relatív prímek. Mivel például a 4 és 1 relatív prímek, ezért a 4k + 1 alakú számok közt (4-gyel osztva 1 maradékot adnak) végtelen sok prímszám van. Megoldatlan probléma, hogy végtelen sok k alakú prím van-e. Prímszámtétel Jelöljük π(x)-szel az x-ig terjedő prímszámok számát. Tehát például π(10) = 4, π(20) = 8, π(100) = 25. Ha érdekel minket, hogy x-ig körülbelül mennyi prímszám van, akkor először ki kell számolnunk, hogy 2,7182-nek hányadik hatványa az x, majd ezzel a számmal el kell osztani x-et. Körülbelül ennyi prímszám van x-ig. Nézzük meg, hogy ig körülbelül mennyi prímszám van! Mivel , ,9078, 4

5 ezért π(1 000) Ez az érték körülbelül 144. A négyjegyű függvénytáblázatok 6, oldala alapján a pontos érték 168. Ez a tétel mutatja, hogy a prímszámok sokkal sűrűbben helyezkednek el az egész számok között, mint például a négyzetszámok. Nevezetes problémák Ikerprímek nek nevezzük az olyan szomszédos páratlan számokat, amelyek mindegyike prímszám. Néhány példa ikerprímekre: 3 5, 5 7, 11 13, A mai napig kérdéses, hogy van-e végtelen sok ikerprím. Valószínűnek tűnik, hogy igen, ennek ellenére még nem nyert bizonyítást ez az állítás. A legnagyobb ismert ikerprím: ± 1, mindkettő számjegyű. Ellenben könnyű belátni, hogy olyan hármasiker ből, mint a 3 5 7, csak ez az egy van. Érdekes probléma az úgynevezett Goldbach-sejtések problémája. 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5, 12 = Igaz-e, hogy minden 4-nél nagyobb vagy egyenlő páros szám felírható két prímszám összegeként? Ez a nyitott kérdés a páros Goldbach-sejtés. A páratlan Goldbach-sejtés szerint minden 7-nél nagyobb vagy egyenlő páratlan szám felírható három prímszám összegeként. Be lehet bizonyítani, hogy ha a páros Goldbachsejtés igaz, akkor igaz a páratlan is. Sajnos csupán csak a páratlan Goldbach-sejtés nyert bizonyítást, ez is csak elég nagy számokra, és ebből a páros Goldbach-sejtés nem következik. Mersenne-prímek és tökéletes számok Mersenne-nek az előbbiekben említett listája a 2 k 1 alakú prímszámokra vonatkozott. Nem nehéz bebizonyítani, hogy ha 2 k 1 prím, akkor szükségképpen maga k is prím. Ezeket a prímszámokat ma Mersenne-prímek nek nevezzük. Jelenleg 46 ilyen prímszám ismert, ezek az alábbi k kitevőkhöz tartoznak: 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1 279, 2 203, 2 281, 3 217, 4 253, 4 423, 9 689, 9 941, , , , , , , , , , , , , , , , , , , , , , , és Közülük az utolsó, a legnagyobb ismert prímszám, számjegyből áll. Ha ezt a számot megpróbálnánk leírni úgy egy spirálfüzetbe, hogy minden egyes számjegyet egy négyzetrácsba írunk, akkor a szám 5

6 hossza közel 65 km lenne. Megoldatlan probléma, hogy végtelen sok ilyen alakú prím van-e. Valószínűnek látszik, hogy a 2 p 1 alakú számok között, ahol p prím, végtelen sok prímszám van, és végtelen sok összetett szám szerepel, de mindkét probléma megoldatlan. Hogyan lehet egy nagy 2 k 1 alakú számról viszonylag gyorsan eldönteni, hogy prím-e? Erre vonatkozik az alábbi teszt, amit a már említett Lucas dolgozott ki, majd azt Lehmer tökéletesítette. Legyen a 1 = 4 és a n+1 = a 2 n 2, ha n 1. Legyen továbbá p > 2 prím. Ekkor az M p = 2 p 1 szám akkor és csak akkor lesz prím, ha M p a p 1. Ennek a tételnek a segítségével találta meg Lucas az első hibát a Mersenne-féle listában, és ma is ilymódon tesztelik a nagy Mersenne-számokat. Természetesen nem szükséges magukat az a i -ket kiszámítani, csak az M p -vel vett maradékukra van szükség. A Lucas- Lehmer teszt nem adja meg az összetett Mersenne-számok egyetlen osztóját sem. Sajnos. A Mersenne-prímek szoros kapcsolatban állnak az úgynevezett tökéletes számok kal. A régi görögök azokat a számokat hívták így, amelyek megegyeztek osztóik összegével, ha magát a számot nem tekintjük osztónak. Ilyen például a 6 = 1+2+3, a 28 = , stb. Egy tétel szerint egy n szám akkor és csak akkor tökéletes, ha ahol 2 k 1 Mersenne-prím. n = 2 k 1 (2 k 1), A tétel akkor részét már Euklidész is ismerte mintegy 2300 évvel ezelőtt, a másik irányt Euler bizonyította be XVIII. században. Ennek alapján tehát jelenleg 46 páros tökéletes számot ismerünk, és megoldatlan probléma, hogy végtelen sokan vannak-e. Az is megoldatlan, hogy létezik-e páratlan tökéletes szám. Biztos sokakban felmerül, hogy kapjuk elő a számológépet és keressünk páratlan tökéletes számot. Nem érdemes! Számítógéppel ig egyet se találtak (a világegyetem részecskéinek számát mindössze ra becsülik). Ha vannak ilyen számok, ennél a számnál biztosan nagyobbak. Ezek talán a matematika legrégibb megoldatlan problémái. Pedig milyen egyszerűen hangzanak! 6

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Fejezetek a. csodálatos életéből

Fejezetek a. csodálatos életéből Fejezetek a prímszámok csodálatos életéből Bolyai János véleménye Az egész számtan, sőt az egész tan mezején alig van szebb és érdekesebb s a legnagyobb nyitászok (matematikusok) figyelme és eleje óta

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán):

Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Oszthatóság Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Azt mondjuk, hogy az a osztója b-nek (jel: a b), ha van olyan c egész, amelyre ac = b. A témakörben a betűk egész

Részletesebben

SzA XIII. gyakorlat, december. 3/5.

SzA XIII. gyakorlat, december. 3/5. SzA XIII. gyakorlat, 2013. december. 3/5. Drótos Márton 3 + 2 = 1 drotos@cs.bme.hu 1. Határozzuk meg az Euklidészi algoritmussal lnko(504, 372)-t! Határozzuk meg lkkt(504, 372)-t! Hány osztója van 504-nek?

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

Számelmélet. 1. Oszthatóság Prímszámok

Számelmélet. 1. Oszthatóság Prímszámok Számelmélet Legnagyobb közös osztó, Euklideszi algoritmus. Lineáris diofantoszi egyenletek. Számelméleti kongruenciák, kongruenciarendszerek. Euler-féle ϕ-függvény. 1. Oszthatóság 1. Definíció. Legyen

Részletesebben

megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:

megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye: Az RSA módszer Az RSA módszer titkossága a prímtényezős felbontás nehézségén, a prímtényezők megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:

Részletesebben

PRÍMSZÁMOK ÉS A TITKOSÍRÁS

PRÍMSZÁMOK ÉS A TITKOSÍRÁS PRÍMSZÁMOK ÉS A TITKOSÍRÁS Meszéna Tamás Ciszterci Rend Nagy Lajos Gimnáziuma és Kollégiuma, Pécs, meszena.tamas@gmail.com, az ELTE Fizika Tanítása doktori program hallgatója ÖSSZEFOGLALÁS Úgy tapasztaltam,

Részletesebben

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak... Biztos, hogy titkos? Szabó István előadása Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...) Története Az ókortól kezdve rengeteg feltört titkosírás létezik. Monoalfabetikus

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,... RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint

Részletesebben

2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N}

2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N} 2. Feladatsor Oszthatóság, legnagyobb közös osztó, prímfaktorizáció az egész számok körében 1 Kötelező házi feladat(ok) 2., Határozzuk meg a ϕ:z Z, z [ z 5] leképezés magját. Adjuk meg a ker(ϕ)-hez tartozó

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Prímek a középiskolai szakkörön

Prímek a középiskolai szakkörön Eötvös Loránd Tudományegyetem Természettudományi Kar Prímek a középiskolai szakkörön Szakdolgozat Készítette: Zsilinszky Dorina Matematika BSc Tanári szakirány Témavezet : Dr. Freud Róbert egyetemi docens

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Első rész 1. Bevezetés Tekintsük az ak + b számtani sorozatot, ahol a > 0. Ha a és b nem relatív prímek, akkor (a,b) > 1 osztója

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? a Fibonacci számsorozat

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

MBL013E Számelmélet és Alkalmazásai

MBL013E Számelmélet és Alkalmazásai MBL013E Számelmélet és Alkalmazásai előadás vázlat 2013 0. Korábbi kurzusok alapján ismertnek föltételezett anyag. 1. Az MBL112E kódú, Bevezetés a száelméletbe c. kurzus anyaga, különösen a következők:

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

4. Sorozatok. 2. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 100 =

4. Sorozatok. 2. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 100 = 4. Sorozatok Megjegyzés: A szakirodalomban használt a sorozat tagjáról, máskor eleméről beszélni. Az alábbiakban mindkét kifejezést használtuk megtartva a feladatok eredeti fogalmazását. I. Feladatok.

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk

Részletesebben

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül

Részletesebben

MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK!

MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK! MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK! Készítette: Kovács Károlyné MATEMATIKA C 9. ÉVFOLYAM 4. MODUL: OSZTOZZUNK! TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem

RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem RSA algoritmus Smidla József Rendszer- és Számítástudományi Tanszék Pannon Egyetem 2012. 3. 27. Smidla József (RSZT) RSA algoritmus 2012. 3. 27. 1 / 29 Tartalom 1 Aszimmetrikus kódolók 2 Matematikai alapok

Részletesebben

0643. MODUL SZÁMELMÉLET. Törzsszám (prímszám), összetett szám, prímtényezős felbontás KÉSZÍTETTE: PINTÉR KLÁRA

0643. MODUL SZÁMELMÉLET. Törzsszám (prímszám), összetett szám, prímtényezős felbontás KÉSZÍTETTE: PINTÉR KLÁRA 0643. MODUL SZÁMELMÉLET Törzsszám (prímszám), összetett szám, prímtényezős felbontás KÉSZÍTETTE: PINTÉR KLÁRA 0643. Számelmélet Törzsszám (prímszám), összetett szám, prímtényezős felbontás Tanári útmutató

Részletesebben

A folyammenti kultúrák. (a, b, c) N 3 Pithagoraszi számhármas, ha. Pithagoraszi számhármasok, a Fermat problémakör. a 2 + b 2 = c 2.

A folyammenti kultúrák. (a, b, c) N 3 Pithagoraszi számhármas, ha. Pithagoraszi számhármasok, a Fermat problémakör. a 2 + b 2 = c 2. Pithagoraszi számhármasok, Klukovits Lajos TTIK Bolyai Intézet 014. április 1. Definíciók. (a, b, c) N 3 Pithagoraszi számhármas, ha a + b = c. Az x + y = z egyenletet szokás Pithagoraszi egyenletnek nevezni.

Részletesebben

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma A Riemann-Siegel zeta függvény kiugró értékeinek keresése A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma 2013 A probléma fontossága és hatása a hétköznapi életre A prímszámok

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Prímszámok statisztikai analízise

Prímszámok statisztikai analízise Prímszámok statisztikai analízise Puszta Adrián 28. április 18. Kivonat Munkám során a prímszámok és a páros prímek eloszlását, illetve különbségét vizsgáltam, majd ebből következtettem a véletlenszerű

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket

Részletesebben

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április Hány osztója van egy adott számnak? Hány osztója van egy adott számnak? Dr. Tóth László http://www.ttk.pte.hu/matek/ltoth előadásanyag, Pécsi Tudományegyetem, TTK 2008. április. Bevezetés Lehetséges válaszok:

Részletesebben

Diszkréció diszkrét logaritmussal

Diszkréció diszkrét logaritmussal Diszkréció diszkrét logaritmussal Professzor dr. Czédli Gábor. SZTE, Bolyai Intézet 2012. április 28. http://www.math.u-szeged.hu/ czedli/ 1 Számolás modulo p Czédli 2012.04.28 2 /18 Alapok: számolás modulo

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

Számelmélet. 7 8. évfolyam. Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György. 2015. október 19.

Számelmélet. 7 8. évfolyam. Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György. 2015. október 19. Számelmélet 7 8. évfolyam Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György 2015. október 19. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás,

Részletesebben

Acta Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) PARTÍCIÓK PÁRATLAN SZÁMOKKAL. Orosz Gyuláné (Eger, Hungary)

Acta Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) PARTÍCIÓK PÁRATLAN SZÁMOKKAL. Orosz Gyuláné (Eger, Hungary) Acta Acad. Paed. Agriensis, Sectio Mathematicae 9 (00) 07 4 PARTÍCIÓK PÁRATLAN SZÁMOKKAL Orosz Gyuláné (Eger, Hungary) Kiss Péter professzor emlékére Abstract. In this article, we characterize the odd-summing

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

24. szakkör (Csoportelméleti alapfogalmak 3.)

24. szakkör (Csoportelméleti alapfogalmak 3.) 24. szakkör (Csoportelméleti alapfogalmak 3.) D) PERMUTÁCIÓK RENDJE Fontos kérdés a csoportelméletben, hogy egy adott elem hanyadik hatványa lesz az egység. DEFINÍCIÓ: A legkisebb olyan pozitív k számot,

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11.

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11. 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló - 2015. április 11. HETEDIK OSZTÁLY - Javítási útmutató 1. Ki lehet-e tölteni a következő táblázat mezőit pozitív egész számokkal úgy, hogy

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. A 2014-et felírtuk három természetes szám összegeként úgy, hogy ha az első számot elosztjuk

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április mal, így a számjegyeinek összege is osztható 3-mal.

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április mal, így a számjegyeinek összege is osztható 3-mal. 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló - 2015. április 11. HATODIK OSZTÁLY - Javítási útmutató 1. Melyik a legkisebb 3-mal osztható négyjegyű szám, amelynek minden számjegye különböző,

Részletesebben

Az ellenpéldával történő cáfolás az elemi matematikában

Az ellenpéldával történő cáfolás az elemi matematikában Az ellenpéldával történő cáfolás az elemi matematikában Tuzson Zoltán, Székelyudvarhely Ismeretes, hogy a logika a helyes gondolkodás törvényeit leíró tudomány, ezért más tudományágakban sem nélkülözhető.

Részletesebben

SZÁMELMÉLET FELADATSOR

SZÁMELMÉLET FELADATSOR SZÁMELMÉLET FELADATSOR Oszthatóság 1. Az 123x4 számban milyen számjegy állhat x helyén, ha a szám osztható a) 3-mal; e) 6-tal; b) 9-cel; f) 24-gyel; c) 4-gyel; g) 36-tal; d) 8-cal; h) 72-vel? 2. Határozd

Részletesebben

Versenyfeladatok. Bács-Kiskun Megyei Matematikaverseny és KÖMAL feladatok megoldása, elemzése. Készítette: Perity Dóra Témavezető: Somfai Zsuzsa

Versenyfeladatok. Bács-Kiskun Megyei Matematikaverseny és KÖMAL feladatok megoldása, elemzése. Készítette: Perity Dóra Témavezető: Somfai Zsuzsa Versenyfeladatok Bács-Kiskun Megyei Matematikaverseny és KÖMAL feladatok megoldása, elemzése Készítette: Perity Dóra Témavezető: Somfai Zsuzsa 2013. Eötvös Loránd Tudományegyetem Természettudományi Kar

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

Megoldások 9. osztály

Megoldások 9. osztály XXV. Nemzetközi Magyar Matematikaverseny Budapest, 2016. március 1115. Megoldások 9. osztály 1. feladat Nevezzünk egy számot prímösszeg nek, ha a tízes számrendszerben felírt szám számjegyeinek összege

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

HEXAÉDEREK. 5. Hányféleképpen lehet kiolvasni Erdős Pál nevét, ha csak jobbra és lefelé haladhatunk?

HEXAÉDEREK. 5. Hányféleképpen lehet kiolvasni Erdős Pál nevét, ha csak jobbra és lefelé haladhatunk? HEXAÉDEREK 0. Két prímszám szorzata 85. Mennyi a két prímszám összege? 1. Nyolc epszilon találkozik egy születésnapi bulin, majd mindenki kézfogással üdvözli egymást. Ha eddig 11 kézfogás történt, hány

Részletesebben

Prímszámok a Fibonacci sorozatban

Prímszámok a Fibonacci sorozatban www.titokta.hu D é e s T a m á s matematikus-kriptográfus e-mail: tdeest@freemail.hu Prímszámok a Fiboacci sorozatba A továbbiakba Fiboacci sorozato az alapsorozatot (u,,,3,5,...), Fiboacci számo az alapsorozat

Részletesebben

A prímszámok eloszlása, avagy az első 50 millió

A prímszámok eloszlása, avagy az első 50 millió Bevezetés Pímszámok A prímszámok eloszlása, avagy az első 50 millió prímszám. Klukovits Lajos TTIK Bolyai Intézet 2014. április 8. Néhány definíció. 1 A klasszikus számelméleti. p N prím, ha a p a = ±1,

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam eszközök diákok és csoportok részére 1. félév A kiadvány KHF/4632-14/2008. engedélyszámon 2008.12.16. időponttól tankönyvi engedélyt kapott Educatio

Részletesebben

III.7. PRÍM PÉTER. A feladatsor jellemzői

III.7. PRÍM PÉTER. A feladatsor jellemzői III.7. PRÍM PÉTER Tárgy, téma A feladatsor jellemzői Számelmélet: osztó, többszörös, prímtényezős felbontás, legkisebb közös többszörös, legnagyobb közös osztó. Előzmények Cél Oszthatóság, prímtényezős

Részletesebben

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú

Részletesebben

SZAKDOLGOZAT. Sempergel József

SZAKDOLGOZAT. Sempergel József SZAKDOLGOZAT Sempergel József Debrecen 2007 Debreceni Egyetem Matematikai Intézet A SZÁMELMÉLET MEGJELENÉSE A KÖZÉPISKOLAI OKTATÁSBAN Témavezető: Dr. Bérczes Attila Készítette: Sempergel József Informatika

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/01-ös tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. Adott az alábbi két egyenletrendszer:

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

Miller-Rabin prímteszt

Miller-Rabin prímteszt Az RSA titkosítás Nyílt kulcsú titkosításnak nevezünk egy E : A B és D : B A leképezés-párt, ha bármely a A-ra D(E(a)) = a (ekkor E szükségképpen injektív leképezés), E ismeretében E(a) könnyen számítható,

Részletesebben

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

SZAKDOLGOZAT. Tóth Géza Bence. Debrecen 2008.

SZAKDOLGOZAT. Tóth Géza Bence. Debrecen 2008. SZAKDOLGOZAT Tóth Géza Bence Debrecen 008. Debreceni Egyetem Természettudományi Kar Matematikai Intézet Számelmélet a középiskolában Témavezető: Dr. Bérczes Attila egyetemi adjunktus Készítette: Tóth Géza

Részletesebben

(1 pont) A súlypont képlete miatt

(1 pont) A súlypont képlete miatt Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny, 2007 2008-as tanév MATEMATIKA, III. kategória a gimnáziumok speciális matematikai osztályainak tanulói részére Az első forduló feladatainak megoldásai

Részletesebben

Számelmélet, 7 8. évfolyam

Számelmélet, 7 8. évfolyam Számelmélet, 7 8. évfolyam Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András és Rubóczky György 2014. június 28. 4 TARTALOMJEGYZÉK Tartalomjegyzék Bevezetés 7 Feladatok 9 1. Bemelegítő feladatok..............................

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 008-009. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára. Határozzuk meg az alábbi egyenletrendszer valós megoldásait. ( x

Részletesebben

2016/2017. Matematika 9.Kny

2016/2017. Matematika 9.Kny 2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 4. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis I. ALAPALGORITMUSOK 1. Prímszámvizsgálat Adott egy n természetes szám. Írjunk algoritmust, amely eldönti, hogy prímszám-e vagy sem! Egy számról úgy fogjuk eldönteni, hogy prímszám-e, hogy megvizsgáljuk,

Részletesebben

Kolozsvár 2008 május 23-24

Kolozsvár 2008 május 23-24 ZÉRUSOSZTÓK TANULMÁNYOZÁSA A MARADÉKOSZTÁLYOK GYŰRŰJÉBEN Horobeţ Emil, Babeş Bolyai Tudományegyetem, Matematika-Informatika szak, I év Témavezető: prof.dr.mǎrcuş Andrei, Babeş Bolyai Tudományegyetem, Algebra

Részletesebben

Algoritmuselmélet 18. előadás

Algoritmuselmélet 18. előadás Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok

Részletesebben

Matematika 9. matematika és fizika szakos középiskolai tanár. II. fejezet (kb. 18 tanóra) > o < november 1.

Matematika 9. matematika és fizika szakos középiskolai tanár. II. fejezet (kb. 18 tanóra) > o < november 1. Matematika 9 Tankönyv és feladatgyűjtemény Juhász László matematika és fizika szakos középiskolai tanár II. fejezet (kb. 18 tanóra) > o < 2015. november 1. copyright: c Juhász László Ennek a könyvnek a

Részletesebben

Versenyfeladatok. Bács-Kiskun Megyei Matematikaverseny és KÖMAL feladatok megoldása, elemzése. Készítette: Perity Dóra Témavezető: Somfai Zsuzsa

Versenyfeladatok. Bács-Kiskun Megyei Matematikaverseny és KÖMAL feladatok megoldása, elemzése. Készítette: Perity Dóra Témavezető: Somfai Zsuzsa Versenyfeladatok Bács-Kiskun Megyei Matematikaverseny és KÖMAL feladatok megoldása, elemzése Készítette: Perity Dóra Témavezető: Somfai Zsuzsa 2013. Eötvös Loránd Tudományegyetem Természettudományi Kar

Részletesebben

Matematika pótvizsga témakörök 9. V

Matematika pótvizsga témakörök 9. V Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális

Részletesebben

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen 10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős

Részletesebben

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel 5. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel Axióma: Bizonyítás: olyan állítás, amelynek igazságát bizonyítás nélkül elfogadjuk.

Részletesebben

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK IV. forduló 1. Hány olyan legfeljebb 5 jegyű, 5-tel nem osztható természetes szám van, amelynek minden jegye prím? Mivel a feladatban számjegyekről van szó, akkor az egyjegyű prímszámokról lehet szó: 2;

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

Gyakorló feladatok az 1. nagy zárthelyire

Gyakorló feladatok az 1. nagy zárthelyire Gyakorló feladatok az 1. nagy zárthelyire 2012. október 7. 1. Egyszerű, bevezető feladatok 1. Kérjen be a felhasználótól egy sugarat. Írja ki az adott sugarú kör kerületét illetve területét! (Elegendő

Részletesebben

Számológép nélkül! százasokra:,,zsinór ; ezresekre:,,lótuszvirág ; tízezresekre:,,ujj ; százezresekre:

Számológép nélkül! százasokra:,,zsinór ; ezresekre:,,lótuszvirág ; tízezresekre:,,ujj ; százezresekre: Számológép nélkül! Manapság az iskolában a matematika órán szinte mindenhez megengedett a számológép használata. Persze mindezen a mai világban már meg se lepődünk, hiszen a mindennapi tevékenységeink

Részletesebben

SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban:

SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban: SZÁMTANI SOROZATOK Egyszerű feladatok. Egy számtani sorozatban: a) a, a 29, a? 0 b) a, a, a?, a? 80 c) a, a 99, a?, a? 0 20 d) a 2, a2 29, a?, a90? 2 e) a, a, a?, a00? 2. Hány eleme van az alábbi sorozatoknak:

Részletesebben

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat

Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat 8.2. Gyűrűk Fogalmak, definíciók: Gyűrű, kommutatív gyűrű, integritási tartomány, test Az (R, +, ) algebrai struktúra gyűrű, ha + és R-en binér műveletek, valamint I. (R, +) Abel-csoport, II. (R, ) félcsoport,

Részletesebben

Diszkrét matematika II. feladatok

Diszkrét matematika II. feladatok Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden

Részletesebben