KÓDOLÁSTECHNIKA PZH december 18.
|
|
- Anikó Dobosné
- 9 évvel ezelőtt
- Látták:
Átírás
1 KÓDOLÁSTECHNIKA PZH december Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.) Perfekt-e a kód? (4 p) c.) Adja meg a szisztematikus paritásellenőrző mátrixát. (2 p) d.) Adja meg a szindróma dekódolási táblázatát. (4 p) e.) Adja meg a dekódolás lépéseit a táblázat használatával. Dekódolja az vett szót. (3p) f.) Adjon felső becslést a dekódolási hibavalószínűséget emlékezetnélküli BSC(p) esetére! (3 p, pontos érték 5 p) 2. Definiálja a következőket: a.) minimális távolságú dekódolás (1p) b.) perfekt tulajdonságú hibajavító kód (2 p) c.) Reed Solomon kód generátorpolinomja (magyarázza el a jelöléseket) (3 p) d.) szorzatkód, a kétdimenziós bináris paritáskód paraméterei (3 p) 3. RSA kódoló algoritmus esetén a kulcsok előállításához p=7, q=17 prímekből indultunk ki. a.) Adja meg a lehető legkisebb kódoló kulcsként használható exponenst! (2p) b.) Számítsa ki az x=11 nyílt szöveghez tartozó y rejtett szöveget! (2 p) c.) Határozza meg a dekódoló kulcsot! (3p) d.) Mi az ismételt négyzetre emelés és szorzás módszere? (2p) e.) Mennyi moduláris szorzás és négyzetremelés szükséges esetünkben. (2p) 4.) Tömören, formálisan fejtse ki : a.) ütközés-ellenálló hash függvény (2 p) b.) kulcstanúsítvány lánc (kis példán elmagyarázva) (3 p) c.) üzenet integritásvédelem célja (CBC-MAC példáján elmagyarázva) (3 p) 5. a.) Legyen X valószínűségi kimenetelei (x 1, x 2, x 3, x 4, x 5 ), eloszlása (1/3, 1/4, 1/6, 1/6, 1/12). Konstruáljon Huffman kódot ehhez az eloszláshoz. (5 p) b.) Adja meg a kódszóhossz várható értékét (2p) 6. Tömören, formálisan fejtse ki: a.) Prefix kód fogalma. Adjon 4 kódszóból álló prefix kódot. (2 p) b.) Optimális prefix kódok tulajdonságai (3 p) c.) DPCM kódolás (blokkséma a jelölések magyarázatával) (3 p) Pontozás: 1: <=21 2: : : :
2 1. a.) (3p) kódszavak: n=, k=,d= b.) (4p) igen Kódolástechnika PZH eredmények december 18. (Ügyeljen a pontos fogalomhasználatra, pontos, formális definíciókra, részletes indoklásokra!) nem indoklás: Név:... Neptun kód:... c.) (2p) H = d.) (4p) szindróma dekódolási táblázat (T): e.) (3p) dekódolás lépései dekódolása: f.) (3/5p) Pe 2. a. b. c. d. (karikázza be, amire válaszolt) 3. a.) (2p) e= b.) (2p) y= c.) (3p) d= d.) (2p) módszer: e.) (3p) szorzás db: négyzetremlés db: indoklás: 4. a. b. c. (karikázza be, amire válaszolt) 5. (8p) a.) kódszavak: (x 1 : x 2 : x 3 : x 4 : x 5 : ) (2p) várható kódszóhossz= 6. a. b. c. (karikázza be, amire válaszolt) 2
3 Kódolástechnika PZH megoldások december a.) (3p) kódszavak: 00000, 10110, 01101, n= 5, k= 2,d= 3 b.) (4p) igen nem indoklás: 1+5 < 2 3 = c.) (2p) H= d.) (4p) szindróma dekódolási táblázat (T): szindróma hibavektor e.) (3p) dekódolás lépései. s=hv T, e =T(s), c =v-e dekódolása: s T =(100), 00100=T(100), 11011= f.) (3/5p) 1 ((1 ) 5 5 (1 ) Pe p p p ), Pe 1 (( 1 p) 5p( 1 p) 2 p ( 1 p) ) 3. p=7, q=17 m = p*q =7*17 = 119 fi(m) = (p-1)*(q-1) =6*16 = 96 a.) Az exponenssel kapcsolatos feltétel, hogy relatív prím legyen fi(m)-hez. A legkisebb ilyen szám a 5. Tehát e = 5. b.) y = x e (mod m) 11 5 = = 44 (mod 119) Tehát y = 44. c.) A dekódoló kulcs a kódoló kulcs multiplikatív inverze a modulo fi(m) 96=19*5+1, d= -19 = 77 (mod 96) Tehát d = 77. d.) x = y 77 (mod 119), 77= , 3 szorzás, 6 négyzetremelés (összesen 9 szorzás) 5. (8p) két megoldás a.) kódszavak: (11, 10, 01, 001, 000), (11, 01, 00, 101, 100), (2p) várható kódszóhossz= 27/12= 2.25 bit 2. Definiálja a következőket: a.) minimális távolságú dekódolás (1p) 3
4 A vett szót a Hamming távolságra legközelebbi kódszóra dekódoljuk. b.) perfekt tulajdonságú hibajavító kód (2 p) Abban az esetben, ha a gömbi dekódolási tartományokkal hézagmentesen le tudjuk fedni a szavak terét perfekt kódról beszelünk. Bináris egy hibát javító C(n,k,3) perfekt kód esetén: 1+n=2 n-k. n n Bináris t hibát javító perfekt kód esetén: 1 n... 2 n k. 2 t c.) Reed Solomon kód generátorpolinomja (magyarázza el a jelöléseket) (3 p) Tekintsünk egy GF(q) véges testet, s egy n-edrendű α elemet. C(n, k, d=n-k+1) Reed Solomon kód generátorpolinomja: d.) szorzatkód, a kétdimenziós bináris paritáskód paraméterei kétdimenziós bináris paritáskód paraméterei: n=(k 1 +1)*(k 2 +1), k=k 1 *k 2, d=4 4.) Tömören, formálisan fejtse ki : a.) ütközés-ellenálló hash függvény (2 p) Nehéz két olyan elemet olyan ősképtérbeli elemet találni, amelynek hash értéke azonos. Iterációs hash függvények esetén, ha az iterációs (kompressziós) függvény ütközésellenálló és MD padding-et alkalmazunk, a hash függvény is ütközésellenálló lesz. Pl. Digitális aláírás csalást hajthatna végre az aláíró, ha nem lenne ütközésellenálló a hash függvény. b.) kulcstanúsítvány lánc (kis példán elmagyarázva) (3 p) 4
5 c.) üzenet integritásvédelem célja (CBC-MAC példáján elmagyarázva) (3 p) [x 1,..., x n, MAC(x 1,...,x n )] inic. blokk N bites regiszt. + E üzenet blokkok m bit kiválasztás MAC kulcs MAC generálás Formálisan MAC = g(y n ), ahol y n az y i =E k (x i y i-1 ), i=1,...,n rekurzió n-edik lépésbeli eredménye, továbbá y 0 = I (inicializáló. blokk). A g függvény y n N bitjébõl valamely m bitet választja ki, s az eredmény a kriptográfiai ellenõrzõ összeg. 6. Tömören, formálisan fejtse ki: a.) Prefix kód fogalma. Adjon 4 kódszóból álló prefix kódot. (2 p) 5
6 Pl. {01, 10, 11, 001} b.) Optimális prefix kódok tulajdonságai (3 p) c.) DPCM kódolás (blokkséma a jelölések magyarázatával) (3 p) 6
13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem
1. A Huffman-kód prefix és forráskiterjesztéssel optimálissá tehető, ezért nem szükséges hozzá a forrás valószínűség-eloszlásának ismerete. 2. Lehet-e tökéletes kriptorendszert készíteni? Miért? a. Lehet,
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Hibadetektáló és javító kódolások
Hibadetektáló és javító kódolások Számítógépes adatbiztonság Hibadetektálás és javítás Zajos csatornák ARQ adatblokk meghibásodási valószínségének csökkentése blokk bvítése redundáns információval Hálózati
Diszkrét matematika 2.
Diszkrét matematika 2. 2019. május 3. 1. Diszkrét matematika 2. 10. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Mérai László diái alapján Komputeralgebra Tanszék 2019. május
Hibajavító kódok május 31. Hibajavító kódok 1. 1
Hibajavító kódok 2007. május 31. Hibajavító kódok 1. 1 Témavázlat Hibajavító kódolás Blokk-kódok o Hamming-távolság, Hamming-súly o csoportkód o S n -beli u középpontú t sugarú gömb o hibajelzı képesség
Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós
Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Visontay Péter (sentinel@sch.bme.hu) 2002. január. 1. Alapfogalmak
Kódelmélet összefoglaló Visontay Péter (sentinel@schbmehu) 2002 január 1 Alapfogalmak Kódolás: a k hosszú u üzenetet egy n hosszú c kódszóba képézzük le Hibák: a csatorna két végén megjelenő c bemeneti
Diszkrét matematika II. feladatok
Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden
Kódelméleti és kriptográai alkalmazások
Kódelméleti és kriptográai alkalmazások Wettl Ferenc 2015. május 14. Wettl Ferenc Kódelméleti és kriptográai alkalmazások 2015. május 14. 1 / 11 1 Hibajavító kódok 2 Általánosított ReedSolomon-kód Wettl
Alapfogalmak a Diszkrét matematika II. tárgyból
Alapfogalmak a Diszkrét matematika II. tárgyból (A szakirány, 2015-2016 tavaszi félév) A számonkérés során ezeknek a definícióknak, tételkimondásoknak az alapos megértését is számon kérjük. A példakérdések
A kódok típusai Kódolás: adatok megváltoztatása. Dekódolás: a megváltoztatott adatból az eredeti visszanyerése.
1. Hibajavító kódok A kódok típusai Kódolás: adatok megváltoztatása. Dekódolás: a megváltoztatott adatból az eredeti visszanyerése. Célok Titkosírás (kriptográfia). A megváltoztatott adat illetéktelenek
A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk
1. Kódelmélet Legyen X = {x 1,..., x n } egy véges, nemüres halmaz. X-et ábécének, elemeit betűknek hívjuk. Az X elemeiből képzett v = y 1... y m sorozatokat X feletti szavaknak nevezzük; egy szó hosszán
Hamming-kód. Definíció. Az 1-hibajavító, perfekt lineáris kódot Hamming-kódnak nevezzük. F 2 fölötti vektorokkal foglalkozunk.
Definíció. Hamming-kód Az -hibajavító, perfekt lineáris kódot Hamming-kódnak nevezzük. F fölötti vektorokkal foglalkozunk. Hamming-kód készítése: r egész szám (ellenırzı jegyek száma) n r a kódszavak hossza
megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:
Az RSA módszer Az RSA módszer titkossága a prímtényezős felbontás nehézségén, a prímtényezők megtalálásának hihetetlen nehéz voltán alapszik. Az eljárás matematikai alapja a kis FERMAT-tétel egy következménye:
Digitális aláírás és kriptográfiai hash függvények. 1. az aláírás generálása (az X üzenetet küldő A fél végzi): A B: X, D A (X)
Digitális aláírás és kriptográfiai hash függvények A digitális aláírás protokollok feladatai: 1. az aláírás generálása (az X üzenetet küldő A fél végzi): A B: X, D A (X) 2. az aláírás ellenőrzése (B címzett
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2016. ősz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2016.
FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest
FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest 2007-07-25 A 2. és a 4. fejezet feladatai megoldva megtalálhatók a Testb vítés, véges testek;
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Algoritmuselmélet 6. előadás
Algoritmuselmélet 6. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 4. ALGORITMUSELMÉLET 6. ELŐADÁS 1 Hash-elés
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Data Security: Protocols Integrity
Integrity Az üzenethitelesítés (integritásvédelem) feladata az, hogy a vételi oldalon detektálhatóvá tegyük azon eseményeket, amelyek során az átviteli úton az üzenet valamilyen módosulást szenvedett el.
Adja meg, hogy ebben az esetben mely handshake üzenetek kerülnek átvitelre, és vázlatosan adja meg azok tartalmát! (8p)
Adatbiztonság a gazdaságinformatikában PZH 2013. december 9. 1. Tekintsük a következő rejtjelező kódolást: nyílt üzenetek halmaza {a,b}, kulcsok halmaza {K1,K2,K3,K4,K5}, rejtett üzenetek halmaza {1,2,3,4,5}.
Infokommuniká cio Forrá sko dolá s e s hibátu ro ko dolá s
Infokommuniká cio Forrá sko dolá s e s hibátu ro ko dolá s 1 Forráskódolás Jelölje X = {x1, x2,..., xn} a forrásábécét, azaz a forrás által előállított betűk (szimbólumok) halmazát, és X* a forrásábécé
Data Security: Public key
Nyilvános kulcsú rejtjelezés RSA rejtjelező El-Gamal rejtjelező : Elliptikus görbe kriptográfia RSA 1. Véletlenszerűen választunk két "nagy" prímszámot: p1, p2 2. m= p1p2 φ ( ) = ( p -1)( p -1) m 1 2 3.
Bevezetés az algebrába 2 Lineáris algebra alkalmazásai
Bevezetés az algebrába 2 Lineáris algebra alkalmazásai Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M
Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz
Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot
Zárthelyi dolgozat feladatainak megoldása 2003. õsz
Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység
Kódolástechnika. Buttyán Levente Györfi László Győri Sándor Vajda István december 18.
Kódolástechnika Buttyán Levente Györfi László Győri Sándor Vajda István 2006. december 18. Tartalomjegyzék Előszó 5 1. Bevezetés 7 2. Hibajavító kódolás 9 2.1. Kódolási alapfogalmak.......................
Kódolástechnika - 2006 - crysys web változat - 6. Kódolástechnika. Buttyán Levente Györfi László Győri Sándor Vajda István. 2006. december 18.
Kódolástechnika Buttyán Levente Györfi László Győri Sándor Vajda István 2006. december 18. Tartalomjegyzék Előszó 5 1. Bevezetés 7 2. Hibajavító kódolás 9 2.1. Kódolási alapfogalmak.......................
Az állítást nem bizonyítjuk, de a létezést a Paley-féle konstrukció mutatja: legyen H a
. Blokkrendszerek Definíció. Egy (H, H), H H halmazrendszer t (v, k, λ)-blokkrendszer, ha H = v, B H : B = k, és H minden t elemű részhalmazát H-nak pontosan λ eleme tartalmazza. H elemeit blokkoknak nevezzük.
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 207. tavasz. Diszkrét matematika 2.C szakirány 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 207.
Informatikai Rendszerek Alapjai
Informatikai Rendszerek Alapjai Dr. Kutor László A redundancia fogalma és mérése Minimális redundanciájú kódok 1. http://uni-obuda.hu/users/kutor/ IRA 2014 könyvtár Óbudai Egyetem, NIK Dr. Kutor László
RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...
RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk
2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,
Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:
1. feladatsor Komplex számok
. feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4
Diszkrét matematika 2.
Diszkrét matematika 2. A szakirány 11. előadás Ligeti Péter turul@cs.elte.hu www.cs.elte.hu/ turul Nagy hálózatok Nagy hálózatok jellemzése Internet, kapcsolati hálók, biológiai hálózatok,... globális
Bevezetés az algebrába 2
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 2 BMETE91AM37 Alkalmazások H607 2017-05-10 Wettl Ferenc ALGEBRA
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika II. feladatok
Diszkrét matematika II. feladatok 1. Gráfelmélet 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot. Hány összefüggő, illetve reguláris van közöttük? 2. Hány olyan, páronként
Data Security: Access Control
Data Security 1. Alapelvek 2. Titkos kulcsú rejtjelezés 3. Nyilvános kulcsú rejtjelezés 4. Kriptográfiai alapprotokollok I. 5. Kriptográfiai alapprotokollok II. Data Security: Access Control A Rossz talált
Data Security: Access Control
Data Security 1. Alapelvek 2. Titkos kulcsú rejtjelezés 3. Nyilvános kulcsú rejtjelezés 4. Kriptográfiai alapprotokollok I. 5. Kriptográfiai alapprotokollok II. Data Security: Access Control A Rossz talált
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF
Labancz Norbert. Hibajavító kódolás
Eötvös Loránd Tudományegyetem Természettudományi kar Labancz Norbert Matematika BSc Alkalmazott matematikus szakirány Hibajavító kódolás Szakdolgozat Témavezet : Dr. Hermann Péter egyetemi docens Algebra
1. Gráfok alapfogalmai
1. Gráfok alapfogalmai Definiáld az irányítatlan gráf fogalmát! Definiáld az illeszkedik és a végpontja fogalmakat! Definiáld az illeszkedési relációt! Definiáld a véges/végtelen gráf fogalmát! Definiáld
Miller-Rabin prímteszt
Az RSA titkosítás Nyílt kulcsú titkosításnak nevezünk egy E : A B és D : B A leképezés-párt, ha bármely a A-ra D(E(a)) = a (ekkor E szükségképpen injektív leképezés), E ismeretében E(a) könnyen számítható,
D I G I T Á L I S T E C H N I K A G Y A K O R L Ó F E L A D A T O K 1.
D I G I T Á L I S T E C H N I K A G Y A K O R L Ó F E L A D A T O K 1. Kötelezően megoldandó feladatok: A kódoláselmélet alapjai részből: 6. feladat 16. feladat A logikai függvények részből: 19. feladat
Információs társadalom alapismeretek
Információs társadalom alapismeretek Szabó Péter Gábor Titkosítás és számítástechnika Titkosítás alapfogalmai A Colossus Kriptográfia A rejtjelezés két fı lépésbıl áll: 1) az üzenet titkosítása (kódolás)
RSA algoritmus. Smidla József. Rendszer- és Számítástudományi Tanszék Pannon Egyetem
RSA algoritmus Smidla József Rendszer- és Számítástudományi Tanszék Pannon Egyetem 2012. 3. 27. Smidla József (RSZT) RSA algoritmus 2012. 3. 27. 1 / 29 Tartalom 1 Aszimmetrikus kódolók 2 Matematikai alapok
Kódoláselmélet. (Humann kód, hibajavító kódok, véges testek konstrukciója. Reed-Solomon kód és dekódolása.)
Kódoláselmélet. (Humann kód, hibajavító kódok, véges testek konstrukciója. Reed-Solomon kód és dekódolása.) 1 Kommunikáció során az adótól egy vev ig viszünk át valamilyen adatot egy csatornán keresztül.
Kulcsgondozás. Kulcskiosztás
Slide 1 Kulcsgondozás Egy kriptográfiai eszközöket is használó rendszer csak annyira lehet biztonságos, amennyire a kulcsgondozása az. A kulcsgondozás alapvető feladatai, a biztonságos kulcs-: generálás
Az Informatika Elméleti Alapjai
Az Informatika Elméleti Alapjai Dr. Kutor László Az üzenet információ-tartalma és redundanciája Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html
Adatbiztonság a gazdaságinformatikában ZH 2015. december 7. Név: Neptun kód:
Adatbiztonság a gazdaságinformatikában ZH 015. december 7. Név: Neptun kód: 1. Tekintsük a következő rejtjelező kódolást: nyílt üzenetek almaza {a,b}, kulcsok almaza {K1,K,K3,K4,K5}, rejtett üzenetek almaza
Data Security: Concepts
Data Security 1. Alapelvek 2. Titkos kulcsú rejtjelezés 3. Nyilvános kulcsú rejtjelezés 4. Kriptográfiai alapprotokollok I. 5. Kriptográfiai alapprotokollok II. Data Security: Concepts 1. Hozzáférésvédelem
Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro
Kriptográfia és Információbiztonság 10. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Vizsgatematika 1 Klasszikus kriptográfiai rendszerek
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
Modern szimmetrikus kulcsú rejtjelezők kriptoanalízise
Modern szimmetrikus kulcsú rejtjelezők kriptoanalízise - kimerítő kulcskeresés: határa ma 64 bit számítási teljesítmény költsége feleződik 18 havonta 25 éven belül 80 bit - differenciális kriptoanalízis:
Data Security: Protocols Digital Signature (Tk.7.fejezet)
Digital Signature (Tk.7.fejezet) A digitális aláírás protokollok feladatai: 1. az aláírás generálása (az X üzenetet küldő A fél végzi): A B: X, D A (X) 2. az aláírás ellenőrzése (B címzett által) B: X
Sapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? az RSA titkosító
Kriptográfiai protokollok
Kriptográfiai protokollok Protokollosztályok - partnerhitelesítés - kulcskiosztás - üzenetintegritás - digitális aláírás - egyéb(titokmegosztás, zero knowledge...) 1 Shamir "háromlépéses" protokollja Titok
Ennek két lépéssel balra történõ ciklikus eltolása az alábbi.
CIKLIKUS KÓDOK (Az alábbiak feltételezik a "Hiradástechnika" c. könyv "7. Hibakorlátozó kódolás" fejezetének és a modulo-2 algebra alapjainak ismeretét.) 1. Alapfogalmak Definíció: egy lineáris kód ciklikus,
Prímtesztelés, Nyilvános kulcsú titkosítás
Prímtesztelés, Nyilvános kulcsú titkosítás Papp László BME December 8, 2018 Prímtesztelés Feladat: Adott egy nagyon nagy n szám, döntsük el, hogy prímszám-e! Naív kísérletek: 1. Nézzük meg minden nála
Kvantum-hibajavítás III.
LOGO Kvantum-hibaavítás III. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar A kvantum hibaavítási folyamat formális leírása Eredmények formalizálása Legyen A egy x-es komplex mátrix: ahol a,
Híradástechikai jelfeldolgozás
Híradástechikai jelfeldolgozás 13. Előadás 015. 04. 4. Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu
Véletlen lineáris kódok hibajavító rátáiról
Szegedi Tudományegyetem Természettudományi és Informatikai Kar Bolyai Intézet Geometria Tanszék Diplomamunka Véletlen lineáris kódok hibajavító rátáiról Mezőfi Dávid Csaba alkalmazott matematikus hallgató
Aleksziev Rita Antónia Matematika BSc Alkalmazott matematikus szakirány. Golay-kódok
Eötvös Loránd Tudományegyetem Természettudományi Kar Aleksziev Rita Antónia Matematika BSc Alkalmazott matematikus szakirány Golay-kódok Szakdolgozat Témavezető: Szőnyi Tamás Számítógéptudományi Tanszék
Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro
Kriptográfia és Információbiztonság 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? blokk-titkosító
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
Diszkrét matematika alapfogalmak
2014 tavaszi félév Diszkrét matematika alapfogalmak 1 GRÁFOK 1.1 GRÁFÁBRÁZOLÁSOK 1.1.1 Adjacenciamátrix (szomszédsági mátrix) Szomszédok felsorolása, csak egyszerű gráfok esetén használható 1.1.2 Incidenciamátrix
Adatbiztonság PPZH 2011. május 20.
Adatbiztonság PPZH 2011. május 20. 1. Mutassa meg, hogy a CBC-MAC kulcsolt hashing nem teljesíti az egyirányúság követelményét egy a k kulcsot ismerő fél számára, azaz tetszőleges MAC ellenőrzőösszeghez
Kódelmélet. Tartalomjegyzék. Jelölések. Wettl Ferenc V A. Függelék: Véges testek 21
Kódelmélet Wettl Ferenc V0.5024 Tartalomjegyzék. Zajmentes csatorna, forráskód 2.. Entrópia = információ = bizonytalanság... 2.2. Feltételes entrópia............... 3.3. Egyértelm dekódolhatóság..........
Kódolás. Informatika alapjai-3 Kódolás 1/9
Informatika alapjai-3 Kódolás 1/9 Kódolás A hétköznapi életben a mennyiségek kétféleképpen jelennek meg: Analóg érték: folyamatosan változó, például pillanatnyi idı, egy test tömege. A valóságot leíró
Mintafeladat az RSA algoritmus szemléltetésére
Mintafeladat az RSA algoritmus szemléltetésére Feladat Adottak a p = 269 és q = 24 prímszámok, továbbá az e = 5320 nyilvános kulcs és az x = 48055 nyílt szöveg. Számolja ki n = p q és ϕ(n) értékét! Igazolja
Digitális jelfeldolgozás
Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés
Kódolás. 1. Kódoláselméleti alapfogalmak. Informatika alapjai-3 Kódolás 1/8
Informatika alapjai-3 Kódolás 1/8 Kódolás Analóg érték: folyamatosan változó, például pillanatnyi idő, egy test tömege. A valóságot leíró jellemzők nagyobbrészt ilyenek (a fizika szerint csak közelítéssel,
Waldhauser Tamás december 1.
Algebra és számelmélet előadás Waldhauser Tamás 2016. december 1. Tizedik házi feladat az előadásra Hányféleképpen lehet kiszínezni az X-pentominót n színnel, ha a forgatással vagy tükrözéssel egymásba
Hibajavítás, -jelzés. Informatikai rendszerek alapjai. Horváth Árpád november 24.
Hibajavítás és hibajelzés Informatikai rendszerek alapjai Óbudai Egyetem Alba Regia M szaki Kar (AMK) Székesfehérvár 2016. november 24. Vázlat 1 Hibákról 2 Információátvitel diagrammja forrás csatorna
AST_v3\ 3.1.3. 3.2.1.
AST_v3\ 3.1.3. 3.2.1. Hibakezelés Az adatfolyam eddig megismert keretekre bontása hasznos és szükséges, de nem elégséges feltétele az adatok hibamentes és megfelelő sorrendű átvitelének. Az adatfolyam
DIGITÁLIS TECHNIKA I KÓD IRODALOM SZIMBÓLUMKÉSZLET KÓDOLÁS ÉS DEKÓDOLÁS
DIGITÁLIS TECHNIKA I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet 7. ELİADÁS 7. ELİADÁS 1. Kódok és kódolás alapfogalmai 2. Numerikus kódok. Tiszta bináris kódok (egyenes kód, 1-es
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Mohó algoritmusok. Példa:
Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus sokszor olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Ezt gyakran dinamikus programozás alapján
Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris
Megoldás Digitális technika I. (vimia102) 4. gyakorlat: Sorrendi hálózatok alapjai, állapot gráf, állapottábla
Megoldás Digitális technika I. (vimia102) 4. gyakorlat: Sorrendi hálózatok alapjai, állapot gráf, állapottábla Elméleti anyag: Amikor a hazárd jó: élekből impulzus előállítás Sorrendi hálózatok alapjai,
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.
1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy
Algoritmuselmélet 7. előadás
Algoritmuselmélet 7. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 11. ALGORITMUSELMÉLET 7. ELŐADÁS 1 Múltkori
Adatbiztonság ZH, GaIn
Adatbiztonság ZH, GaIn November 30, 2010 Név: Neptun kód: 1. a.) Definiálja az RSA algoritmust! 5p b.) RSA algoritmus esetén a kulcsok előállításához p=101, q=113 prímekből indultunk ki. b1.) Adja meg
2018, Diszkre t matematika. 10. elo ada s
Diszkre t matematika 10. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,
Minden egész szám osztója önmagának, azaz a a minden egész a-ra.
1. Számelmélet Definíció: Az a egész szám osztója a egész számnak, ha létezik olyan c egész szám, melyre = ac. Ezt a következőképpen jelöljük: a Tulajdonságok: Minden egész szám osztója önmagának, azaz
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
12. Képtömörítés. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (
12. Képtömörítés Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Miért van szükség tömörítésre? A rendelkezésre álló adattárolási és továbbítási
Inverz Laplace-transzformáció. Vajda István március 4.
Analízis előadások Vajda István 2009. március 4. Definíció: Ha az f (t) függvény laplace-transzformáltja F (s), akkor f (t)-t az F (s) függvény inverz Laplace-transzformáltjának nevezzük. Definíció: Ha
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 11. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Kongruenciák Diszkrét matematika I. középszint 2014.
Infokommunikáció vizsga arnold-aaron5 - csodav - gyezo12 - mdavid94
Infokommunikáció vizsga 2016.01.12. arnold-aaron5 - csodav - gyezo12 - mdavid94 1. Adott egy lineáris, szisztematikus kód generátor mátrixa. G= [ 1000110 0100101 0010011 0001111 ] a, Adja meg a paritásellenőrző
Sapientia Egyetem, Matematika-Informatika Tanszék.
Kriptográfia és Információbiztonság 7. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? Kriptográfiai
DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 1. Megoldások
DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 1. Megoldások I. A kódoláselmélet alapjai 1. Adja meg az alábbi számokat 12 bites előjeles abszolutértékes, egyes komplemens, kettes komplemens, offset kódú bináris
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
2014. szeptember 24. és 26. Dr. Vincze Szilvia
2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai
SSL elemei. Az SSL illeszkedése az internet protokoll-architektúrájába
SSL 1 SSL elemei Az SSL illeszkedése az internet protokoll-architektúrájába 2 SSL elemei 3 SSL elemei 4 SSL Record protokoll 5 SSL Record protokoll Az SSL Record protokoll üzenet formátuma 6 SSL Record