Híradástechikai jelfeldolgozás

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Híradástechikai jelfeldolgozás"

Átírás

1 Híradástechikai jelfeldolgozás 13. Előadás Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék

2 Tartalom Bevezetés Kvantálás Differenciális, prediktív kódolás Részsávú kódolás Transzformációs kódolás

3 Bevezetés Lehetséges szinoním címek: Forrás kódolás Jel-forrás (nem adat forrás) veszteséges, hűség kritériummal Jel digitalizálás (és rekonstrukció) Jeltömörítés veszteséges, hűség kritériummal jel átvitele digitális csatornán 3

4 Bevezetés: az alapmodell forrás (t) Kódoló c n Digitális csatorna c n Dekódoló y(t) nyelő jel (hang, kép, adat, stb.): Időben, térben változó (elektronikusan reprezentálható) fizikai jellemző matematikai modell: Digitális jel forrás: (t) folytonos idő/tér valós függvénye(i) (egy, két, tőbb változós, skalár, vektor...értékű) folytonos sztochasztikus folyamatok c n rekonstrált: y(t) véges (binárisan kódolható) szimbólumhalmaz elemeinek sorozatai (időben, címtartományban) matematikai modell számsorozat c n valószínűségi változó sorozat, diszkrét sztochasztikus folyamat 4

5 Bevezetés: az alapmodell forrás (t) Kódoló c n Digitális csatorna c n Dekódoló y(t) nyelő Digitális csatorna Térbeli transzláció: (digitális) távközlés Időbeli transzláció: (digitális) jelrögzítés Kódoló: digitalizálás: idő(tér) és amplitúdó diszkretizálás Mintavételezés: idő(tér) diszkretizálás valós számsorozat, val. vált. sorozat Kvantálás: amplitúdó diszkretizálás véges értékkészlet kódolás digitális kód szekvencia Dekódoló: rekonstrukció Dekódolás minta inde analóg minta rekonstrukció diszkrét minta sorozat simító szűrés, interpoláció: időben (térben) folytonos analóg kimenet 5

6 Bevezetés: az alapmodell forrás (t) Kódoló c n Digitális csatorna c n Dekódoló y(t) nyelő Minősítés Hibajel: e(t) y(t) (t) Torzítás Zaj Additív hiba (torzítás, zaj) modell: forrás (t) + e(t) y(t) nyelő SNR (Signal to Noise Ratio) SNR jel teljesítmény hiba teljesítmény e (t) (t) (t) ( y(t) (t) ) SNRdb SNRdb 10log10SNR Hullámforma kódolás! (van más is!) 6

7 Bevezetés: az alapmodell (t) n i n c n c n i n y n y(t) forrás Q C Digitális csatorna C -1 Q -1 LPF nyelő f s Kódoló dekódoló Kódoló: digitalizálás: idő(tér) és amplitúdó diszkretizálás Mintavételezés: idő(tér) diszkretizálás valós számsorozat, val. vált. sorozat Kvantálás: amplitúdó diszkretizálás véges értékkészlet kódolás digitális kód szekvencia Dekódoló: rekonstrukció Dekódolás minta inde analóg minta rekonstrukció diszkrét minta sorozat simító szűrés, interpoláció: időben (térben) folytonos analóg kimenet 7

8 Bevezetés: mintavételezés (t) n i n c n c n i n y n y(t) forrás Q C Digitális C -1 Q -1 LPF csatorna nyelő f s Kódoló dekódoló Ideális csatorna: c n c n és nincs kvantálás: y n n (t) n y(t) Ha (t) sávhatárolt: forrás LPF nyelő F{(t)}X(f)0, f > B és f s B f s és LPF határfrekvencia f h B akkor y(t)(t) 8

9 Kvantálás (t) n i n c n c n i n y n y(t) forrás Q C Digitális C -1 Q -1 LPF csatorna nyelő f s Kódoló dekódoló n i n c n c n i n y n Diszkrét (idejű) analóg forrás Q C Digitális C -1 Q -1 csatorna Diszkrét (idejű) analóg nyelő Ideális csatorna: c n c n i n i n Diszkrét (idejű) analóg forrás n i n Q Q -1 y n Diszkrét (idejű) analóg nyelő n q() y n 9

10 Kvantáló, Kvantálás mint diszkrét idejű input-output doboz n q() y n valós memória mentes: y n q(n, n ) invariáns: y n q( n ) véges kimeneti értékkészlet: y n [Y 1, Y,... Y L ] nem lineáris monoton 10

11 Kvantáló, Kvantálás mint diszkrét idejű input-output doboz n X 1 X q() q() Y Y 1 y n Y 5 Y 4 Y 3 X 3 X 4 L szintű lépcsős kvantálási karakterisztika: bemeneti intervallum felosztás: X 1, X,... X L-1 döntési intervallumok kimeneti lehetséges értékek:y 1, Y,... Y L döntött (rekonstruált) értékek Y 1, ha (, X1) y q() Y i, ha [Xi 1,X L ), i YL, ha [X L-1, ),...,L 1 11

12 Kvantáló, inverz kvantáló, kódoló, dekódoló Kvantáló bemeneti döntés + kimeneti rekonstrukció: kvantáló, inverz kvantáló n q() y n Ξ n i n Q Q -1 y n i n : inde sorozat Kvantáló, kvantálás, kódolás, csatorna, dekódolás, rekonstrukció n q() y n Ξ n c n c n i n Q C Channel C -1 Q -1 i n y n c n : kód (szimbólum) sorozat 1

13 Kvantálási hiba Kvantálási karakterisztika: y n q( n ) lépcsős függvény q() Y 5 Kvantálási hiba: e n y n - n hiba karakterisztika: E() q() fűrész függvény additív kvantáló modell: y n n + E( n ) X 1 X Y Y 1 Y 3 Y 4 X 3 X 4 E() Y 5 X 1 X Y Y 1 Y 3 Y 4 X 3 X 4 13

14 Nevezetes kvantáló (karakterisztika) típusok szimmetrikus: Q( ) Q() egyenletes: Y i+1 Y i dy q d X i+1 X i kerekítéses csonkolásos nem egyenletes logaritmikus Ma-Lloyd i1...(l-1) 14

15 Szimmetrikus, egyenletes kvantáló Jellemzői: szintek száma L 8 szintű bitek száma: blog(l) kvantálási lépcső: q1 Dinamika tartomány: ahol a hiba q/ [-d,d] d4 15

16 Szimmetrikus, egyenletes kvantáló Üzemmódok: nagy jelű túlvezérléses: >d kis jelű < q/ nullabemenetű normál üzemmód q/< <d kerekítéses, granuláris 16

17 Szimmetrikus, egyenletes kvantáló Példa: 3 bites kvantálási és hibakarakterisztikák: páros szintű páratlan szintű Kis jelű viselkedés: Iddle channel noise : nulla bemenetű zaj teljesítmény: P q /4 17

18 Stacioner forrás kvantálása ξ n q() ζ n ζ n q (ξ n ) ξ n e() + ε n ζ n ε n ζ n -ξ n A ζ n stacioner forrás: f ξ () pdf f ξ () Kvantáló: q(), e() q() bemeneti eloszlás tartója a kvantáló dinamika tartománya kimeneti diszkrét eloszlás: túlvezérlés, normál működés valószínűsége hibajel eloszlása, teljesítménye 18

19 Stacioner forrás finom kvantálása A kvantáló normál működési tartományban A kvantálási hiba eloszlása: Finom kvantálás lineáris, additív zaj modellje, helyettesítő képe: ε n, σ q /1 ξ ζ n n ξ Q n + ζ n 19

20 Kvantálás minősítése: SNR SNR átlagos jelteljesítmény / átlagos hibateljesítmény SNR P P ξ ε E { ξ } { } Eε E{ ξ } { ζ) } E (ξ ξ n q() ζ n ξ n e() + ε n ζ n 0

21 Egyenletes eloszlás egyenletes kvantálása P ξ { } Eξ fξ ()d ma ma 1 ma d ma 3 nulla várható érték szimmetrikus kvantáló SNR d ε { normal} Pε normal pr{ overload} Pε overload P pr + Pξ ma 3 d L r ma 4 4 L Pε normal q q 1 ( { ε ξ > d} r bites kvantáló: SNR db ma 6 r [db] P ε normal P ε overload d q 1 E y min ) d f f ξ ξ ( ) d + ( ) d + d d ( f ξ y ma ) ( ) d f ξ ( ) d 1

22 Egyenletes eloszlás egyenletes kvantálása

23 Nem egyenletes kvantálás y Q g( ) u Q 0 z g -1 ( ) y Q : nem egyenletes kvantáló Q 0 : egyenletes kvantáló g() : kompander larakterisztika g() -1 : eander larakterisztika 3

24 Logaritmikus kvantálás Szimmetrikus, logaritmikus kvantáló 1 bit előjel r-1 bit abszolut érték kvantálás Szint független SNR: i SNR SNR i q i 1 Méretezés: adott: SNR, min, min kérdés: r ln( ma ) ln( d L -1 ma ln min L + 1 d r 1 log(l) min ) i q i d ln i 4 + q ln 1+ q i i i 1 ln 1 i q i

25 Logaritmikus kvantálás Példa: 4 bites logaritmikus kvantálási és hibakarakterisztikák: 5

26 Logaritmikus kvantálás 6

27 Ma-Lloyd kvantáló PDF optimalizált (nem egyenletes) kvantáló Adott a forrás eloszlása, és a kvantáló szintjeinek L száma. Meghatározandó az X 1, X,... X (L-1) döntési intervallum határok és Y1, Y,... YL döntési szintek optimális (SNR-t maimalizáló) értékei A megoldást az alábbi iterációval éretjük el: Kiindulás: i1,, 0 0 0,,..., ; y,..., y ( ) ( ) ( ) ( 0) ( 0) 1 L 1 1 L { i 1 i 1 ξ } k 1 ξ k ( i ) ( ) ( ) y E < < k 1... L k ( i ) 1 ( ( i ) ( i ) y y ) k k + k + 1 k 1... L 1 7

6. JELDIGITALIZÁLÁS ÉS JELREKONSTRUKCIÓ: KVANTÁLÁS, KÓDOLÁS 2

6. JELDIGITALIZÁLÁS ÉS JELREKONSTRUKCIÓ: KVANTÁLÁS, KÓDOLÁS 2 Kvantálás, kóolás / 6. JELDIGITALIZÁLÁS ÉS JELREKONSTRUKCIÓ: KVANTÁLÁS, KÓDOLÁS 6. Memória mentes kvantálás 6.. A kvantálás efiníciója, fogalmai 6.. Kvantálók kvantálási- és a hiba-karakterisztikái 3 6..3

Részletesebben

Híradástechikai jelfeldolgozás

Híradástechikai jelfeldolgozás Híadástechikai jelfeldolgozás 14. lőadás 015. 04. 7. Jeldigitalizálás és ekostukció. 015. május 4. Budapest D. Gaál József doces BM Hálózati Redszeek és Szolgáltatásokaszék gaal@hit.bme.hu Nomalizált kvatáló

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés

Részletesebben

Mintavételezés és AD átalakítók

Mintavételezés és AD átalakítók HORVÁTH ESZTER BUDAPEST MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM JÁRMŰELEMEK ÉS JÁRMŰ-SZERKEZETANALÍZIS TANSZÉK ÉRZÉKELÉS FOLYAMATA Az érzékelés, jelfeldolgozás általános folyamata Mérés Adatfeldolgozás 2/31

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Analóg digitális átalakítók ELEKTRONIKA_2

Analóg digitális átalakítók ELEKTRONIKA_2 Analóg digitális átalakítók ELEKTRONIKA_2 TEMATIKA Analóg vs. Digital Analóg/Digital átalakítás Mintavételezés Kvantálás Kódolás A/D átalakítók csoportosítása A közvetlen átalakítás A szukcesszív approximációs

Részletesebben

Kommunikációs hálózatok 2 Analóg és digitális beszédátvitel

Kommunikációs hálózatok 2 Analóg és digitális beszédátvitel Kommunikációs hálózatok 2 Analóg és digitális beszédátvitel Németh Krisztián BME TMIT 2017. február 14. A tárgy felépítése 1. Bevezetés Bemutatkozás, játékszabályok, stb. Technikatörténeti áttekintés Mai

Részletesebben

Elektronika Előadás. Digitális-analóg és analóg-digitális átalakítók

Elektronika Előadás. Digitális-analóg és analóg-digitális átalakítók Elektronika 2 9. Előadás Digitális-analóg és analóg-digitális átalakítók Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök, Műszaki

Részletesebben

Kommunikációs hálózatok 2 Analóg és digitális beszédátvitel

Kommunikációs hálózatok 2 Analóg és digitális beszédátvitel Kommunikációs hálózatok 2 Analóg és digitális beszédátvitel Németh Krisztián BME TMIT 2016. február 23. A tárgy felépítése 1. Bevezetés Bemutatkozás, játékszabályok, stb. Technikatörténeti áttekintés Mai

Részletesebben

ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem. Jelfeldolgozás. ANTAL Margit. Adminisztratív. Bevezetés. Matematikai alapismeretek.

ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem. Jelfeldolgozás. ANTAL Margit. Adminisztratív. Bevezetés. Matematikai alapismeretek. Jelfeldolgozás 1. Sapientia - Erdélyi Magyar Tudományegyetem 2007 és jeleket generáló és jeleket generáló és jeleket generáló Gyakorlatok - MATLAB (OCTAVE) (50%) Írásbeli vizsga (50%) és jeleket generáló

Részletesebben

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 15%.

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 15%. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Távközlő hálózatok és szolgáltatások Távközlő rendszerek áttekintése

Távközlő hálózatok és szolgáltatások Távközlő rendszerek áttekintése Távközlő hálózatok és szolgáltatások Távközlő rendszerek áttekintése Németh Krisztián BME TMIT 2011. szet. 12. A tárgy feléítése 1. Bevezetés Bemutatkozás, játékszabályok, stb. Történelmi áttekintés Mai

Részletesebben

Analóg-digitál átalakítók (A/D konverterek)

Analóg-digitál átalakítók (A/D konverterek) 9. Laboratóriumi gyakorlat Analóg-digitál átalakítók (A/D konverterek) 1. A gyakorlat célja: Bemutatjuk egy sorozatos közelítés elvén működő A/D átalakító tömbvázlatát és elvi kapcsolási rajzát. Tanulmányozzuk

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Mintavételezés és jel-rekonstrukció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010.

Részletesebben

2. Elméleti összefoglaló

2. Elméleti összefoglaló 2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

Iványi László ARM programozás. Szabó Béla 6. Óra ADC és DAC elmélete és használata

Iványi László ARM programozás. Szabó Béla 6. Óra ADC és DAC elmélete és használata ARM programozás 6. Óra ADC és DAC elmélete és használata Iványi László ivanyi.laszlo@stud.uni-obuda.hu Szabó Béla szabo.bela@stud.uni-obuda.hu Mi az ADC? ADC -> Analog Digital Converter Analóg jelek mintavételezéssel

Részletesebben

Orvosi Fizika és Statisztika

Orvosi Fizika és Statisztika Orvosi Fizika és Statisztika Szegedi Tudományegyetem Általános Orvostudományi Kar Természettudományi és Informatikai Kar Orvosi Fizikai és Orvosi Informatikai Intézet www.szote.u-szeged.hu/dmi Orvosi fizika

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Jelek típusai Átalakítás az analóg és digitális rendszerek között http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA 3/1

Részletesebben

Mintavételezés: Kvantálás:

Mintavételezés: Kvantálás: Mintavételezés: Időbeli diszkretizálást jelent. Mintavételezési törvény: Ha a jel nem tartalmaz B-nél magasabb frekvenciájú komponenseket, akkor a jel egyértelműen visszaállítható a legalább 2B frekvenciával

Részletesebben

Hangtechnika. Médiatechnológus asszisztens

Hangtechnika. Médiatechnológus asszisztens Vázlat 3. Előadás - alapjai Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék Ismétlés Vázlat I.rész: Ismétlés II.rész: A digitális Jelfeldolgozás

Részletesebben

Jel, adat, információ

Jel, adat, információ Kommunikáció Jel, adat, információ Jel: érzékszerveinkkel, műszerekkel felfogható fizikai állapotváltozás (hang, fény, feszültség, stb.) Adat: jelekből (számítástechnikában: számokból) képzett sorozat.

Részletesebben

Távközlő hálózatok és szolgáltatások Távközlő rendszerek áttekintése

Távközlő hálózatok és szolgáltatások Távközlő rendszerek áttekintése Távközlő hálózatok és szolgáltatások Távközlő rendszerek áttekintése Németh Krisztián BME TMIT 2015. szept. 14, 21. A tárgy felépítése 1. Bevezetés Bemutatkozás, játékszabályok, stb. Történelmi áttekintés

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

KÓDOLÁSTECHNIKA PZH. 2006. december 18.

KÓDOLÁSTECHNIKA PZH. 2006. december 18. KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)

Részletesebben

Mechatronika és mikroszámítógépek. 2016/2017 I. félév. Analóg-digitális átalakítás ADC, DAC

Mechatronika és mikroszámítógépek. 2016/2017 I. félév. Analóg-digitális átalakítás ADC, DAC Mechatronika és mikroszámítógépek 2016/2017 I. félév Analóg-digitális átalakítás ADC, DAC AD átalakítás Cél: Analóg (időben és értékben folytonos) elektromos mennyiség kifejezése digitális (értékében nagyságában

Részletesebben

Jelek és rendszerek - 1.előadás

Jelek és rendszerek - 1.előadás Jelek és rendszerek - 1.előadás Bevezetés, alapfogalmak Mérnök informatika BSc Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék Mérnök

Részletesebben

3.18. DIGITÁLIS JELFELDOLGOZÁS

3.18. DIGITÁLIS JELFELDOLGOZÁS 3.18. DIGITÁLIS JELFELDOLGOZÁS Az analóg jelfeldolgozás során egy fizikai mennyiséget (pl. a hangfeldolgozás kapcsán a levegő nyomásváltozásait) azzal analóg (hasonló, arányos) elektromos feszültséggé

Részletesebben

Villamosságtan szigorlati tételek

Villamosságtan szigorlati tételek Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok

Részletesebben

Informatika Rendszerek Alapjai

Informatika Rendszerek Alapjai Informatika Rendszerek Alapjai Dr. Kutor László Jelek típusai Átalakítás analóg és digitális rendszerek között http://uni-obuda.hu/users/kutor/ IRA 2014 2014. ősz IRA3/1 Analóg jelek digitális feldolgozhatóságának

Részletesebben

Számítógépes Grafika SZIE YMÉK

Számítógépes Grafika SZIE YMÉK Számítógépes Grafika SZIE YMÉK Analóg - digitális Analóg: a jel értelmezési tartománya (idő), és az értékkészletes is folytonos (pl. hang, fény) Diszkrét idejű: az értelmezési tartomány diszkrét (pl. a

Részletesebben

1. ábra. Repülő eszköz matematikai modellje ( fekete doboz )

1. ábra. Repülő eszköz matematikai modellje ( fekete doboz ) Wührl Tibor DIGITÁLIS SZABÁLYZÓ KÖRÖK NEMLINEARITÁSI PROBLÉMÁI FIXPONTOS SZÁMÁBRÁZOLÁS ESETÉN RENDSZERMODELL A pilóta nélküli repülő eszközök szabályzó körének tervezése során első lépésben a repülő eszköz

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

Véges állapotú gépek (FSM) tervezése

Véges állapotú gépek (FSM) tervezése Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit

Részletesebben

INFOKOMMUNIKÁCIÓS RENDSZEREK MENEDZSMENTJE

INFOKOMMUNIKÁCIÓS RENDSZEREK MENEDZSMENTJE BME Gazdaság- és Társadalomtudományi Kar Műszaki menedzser alapszak (BSc) INFOKOMMUNIKÁCIÓS RENDSZEREK MENEDZSMENTJE Infokommunikációs alapfogalmak Vezetékes beszédkommunikáció Dr. Babarczi Péter - Dr.

Részletesebben

Sorozatok, sorozatok konvergenciája

Sorozatok, sorozatok konvergenciája Sorozatok, sorozatok konvergenciája Elméleti áttekintés Minden konvergens sorozat korlátos Minden monoton és korlátos sorozat konvergens Legyen a n ) n egy sorozat és ϕ : N N egy szigorúan növekvő függvény

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

Néhány fontosabb folytonosidejű jel

Néhány fontosabb folytonosidejű jel Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1

Részletesebben

Hatodik gyakorlat. Rendszer, adat, információ

Hatodik gyakorlat. Rendszer, adat, információ Hatodik gyakorlat Rendszer, adat, információ Alapfogalmak Rendszer: A rendszer egymással kapcsolatban álló elemek összessége, amelyek adott cél érdekében együttmőködnek egymással, és mőködésük során erıforrásokat

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Fürjes Andor Tamás Digitális jelfeldolgozás Rádiós napok 2001. nov. 7-8. Tartalom Digitalizálás és gyakorlati következményei Jelfeldolgozási alapok Digitális jelátvitel 2 Digitalizálás és következményei

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Elektronika 1. (BMEVIHIA205)

Elektronika 1. (BMEVIHIA205) Elektronika. (BMEVHA05) 5. Előadás (06..8.) Differenciál erősítő, műveleti erősítő Dr. Gaál József BME Hálózati endszerek és SzolgáltatásokTanszék gaal@hit.bme.h Differenciál erősítő, nagyjelű analízis

Részletesebben

Objektív beszédminősítés

Objektív beszédminősítés Objektív beszédminősítés Fegyó Tibor fegyo@tmit.bme.hu Beszédinformációs rendszerek -- Objektív beszédminõsítés 1 Beszédinformációs rendszerek -- Objektív beszédminõsítés 2 Bevezető kérdések Mi a [beszéd]

Részletesebben

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK

Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Z UNIVERSITAS-GYŐR Kht. Győr, 25 SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR TÁVKÖZLÉSI TANSZÉK Egyetemi jegyzet Írta:

Részletesebben

A/D ÉS D/A ÁTALAKÍTÓK

A/D ÉS D/A ÁTALAKÍTÓK A/D ÉS D/A ÁTALAKÍTÓK 1. DAC egységek A D/A átalakító egységekben elvileg elkülöníthető egy D/A dekódoló rész és egy tartó rész: A D/A dekódoló diszkrét időpontokban a digitális értékéknek megfelelő amplitúdók

Részletesebben

Fehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!)

Fehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!) DSP processzorok: 1 2 3 HP zajgenerátor: 4 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! Fehérzajhoz a konstans érték kell - megoldás a digitális

Részletesebben

Mintavételezés tanulmányozása. AD - konverzió. Soros kommunikáció

Mintavételezés tanulmányozása. AD - konverzió. Soros kommunikáció Mintavételezés tanulmányozása. AD - konverzió. Soros kommunikáció A gyakorlat célja A gyakorlat során a dspic30f6010 digitális jelprocesszor Analóg Digital konverterét tanulmányozzuk. A mintavételezett

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 4

Dr. Oniga István DIGITÁLIS TECHNIKA 4 Dr. Oniga István DIGITÁLIS TECHNIKA 4 Kombinációs logikai hálózatok Logikai hálózat = olyan hálózat, melynek bemenetei és kimenetei logikai állapotokkal jellemezhetők Kombinációs logikai hálózat: olyan

Részletesebben

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03

Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03 Jelek és rendszerek MEMO_03 Belépő jelek Jelek deriváltja MEMO_03 1 Jelek és rendszerek MEMO_03 8.ábra. MEMO_03 2 Jelek és rendszerek MEMO_03 9.ábra. MEMO_03 3 Ha a jelet méréssel kapjuk, akkor a jel következő

Részletesebben

Irányításelmélet és technika II.

Irányításelmélet és technika II. Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november

Részletesebben

Shift regiszter + XOR kapu: 2 n állapot

Shift regiszter + XOR kapu: 2 n állapot DSP processzorok: 1 2 HP zajgenerátor: 3 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! 4 Fehérzajhoz a konstans érték kell - megoldás a digitális

Részletesebben

Digitális tárolós oszcilloszkópok

Digitális tárolós oszcilloszkópok 1 Az analóg oszcilloszkópok elsősorban periodikus jelek megjelenítésére alkalmasak, tehát nem teszik lehetővé a nem periodikusan ismétlődő vagy csak egyszeri alkalommal bekövetkező jelváltozások megjelenítését.

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós

Részletesebben

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz

Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen

Részletesebben

Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító)

Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító) Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító) 1. A D/A átalakító erısítési hibája és beállása Mérje meg a D/A átalakító erısítési hibáját! A hibát százalékban adja

Részletesebben

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Populációbecslés és monitoring. Eloszlások és alapstatisztikák Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk

Részletesebben

3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Szűrés képtérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE http://www.inf.u-szeged.hu/~kato/teaching/ 2 Kép transzformációk típusai Kép értékkészletének radiometriai információ

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Informatikai eszközök fizikai alapjai Lovász Béla

Informatikai eszközök fizikai alapjai Lovász Béla Informatikai eszközök fizikai alapjai Lovász Béla Kódolás Moduláció Morzekód Mágneses tárolás merevlemezeken Modulációs eljárások típusai Kódolás A kód megállapodás szerinti jelek vagy szimbólumok rendszere,

Részletesebben

Távközlő hálózatok és szolgáltatások Távközlő rendszerek áttekintése

Távközlő hálózatok és szolgáltatások Távközlő rendszerek áttekintése Távközlő hálózatok és szolgáltatások Távközlő rendszerek áttekintése Németh Krisztián BME TMIT 2007. szet. 14. A tárgy feléítése 1. Bevezetés Bemutatkozás, játékszabályok, stb. Történelmi áttekintés Mai

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Kvantálási torzítás mérése PCM A karakterisztika

Kvantálási torzítás mérése PCM A karakterisztika Kvantálási torzítás mérése PCM A karakterisztika Elméleti összefoglaló PCM kódolás, dekódolás (Coding) Az analóg jel az A/D átalakítást követıen válik digitálissá. A konverzió több lépésben történik: Mintavételezés;

Részletesebben

Ipari vezérlés és automatizálás

Ipari vezérlés és automatizálás Twido programozható vezérlő Kompakt felépítésű vezérlők TWD 10DRF/16DRF Be- és kimenetek Nyelő- vagy forrás bemenetek Kompakt vezérlők, a táplálással 10 db I/O 6 c 24 V-os bemenet 4 db relékimenet 16 db

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)

Részletesebben

Információ / kommunikáció

Információ / kommunikáció Információ / kommunikáció Ismeret A valóságra vagy annak valamely részére, témájára vonatkozó tapasztalatokat, általánosításokat, fogalmakat. Információ fogalmai Az információ olyan jelsorozatok által

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1 Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 KONF-5_2/1 Ellenállás mérés és adatbeolvasás Rn

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk

Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két

Részletesebben

Heckman modell. Szelekciós modellek alkalmazásai.

Heckman modell. Szelekciós modellek alkalmazásai. Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült

Részletesebben

2012. október 9 és 11. Dr. Vincze Szilvia

2012. október 9 és 11. Dr. Vincze Szilvia 2012. október 9 és 11. Dr. Vincze Szilvia Egyváltozós valós függvények nevezetes osztályai I. Algebrai függvények Racionális egész függvények (polinomok) Racionális törtfüggvények Irracionális függvények

Részletesebben

Idő-frekvencia transzformációk waveletek

Idő-frekvencia transzformációk waveletek Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 2014. május 8. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

Elemi függvények, függvénytranszformációk

Elemi függvények, függvénytranszformációk Elemi üggvények, üggvénytranszormációk Összeállította: dr. Leitold Adrien egyetemi docens 2013. 09. 06. 1 Függvénytani alapogalmak Függvény: két halmaz elemei közötti egyértelmű hozzárendelés. Jel.: :

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Analízis házi feladatok

Analízis házi feladatok Analízis házi feladatok Készült a PTE TTK GI szakos hallgatóinak Király Balázs 200-. I. Félév 2 . fejezet Első hét.. Házi Feladatok.. Házi Feladat. Írjuk fel a következő sorozatok 0.,., 2., 5., 0. elemét,

Részletesebben

Elektronika 11. évfolyam

Elektronika 11. évfolyam Elektronika 11. évfolyam Áramköri elemek csoportosítása. (Aktív-passzív, lineáris- nem lineáris,) Áramkörök csoportosítása. (Aktív-passzív, lineáris- nem lineáris, kétpólusok-négypólusok) Két-pólusok csoportosítása.

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

2. Pont operációk. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

2. Pont operációk. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2. Pont operációk Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Kép transzformációk típusai Kép értékkészletének (radiometriai információ)

Részletesebben

A Gray-kód Bináris-kóddá alakításának leírása

A Gray-kód Bináris-kóddá alakításának leírása A Gray-kód Bináris-kóddá alakításának leírása /Mechatronikai Projekt II. házi feladat/ Bodogán János 2005. április 1. Néhány szó a kódoló átalakítókról Ezek az eszközök kiegészítő számlálók nélkül közvetlenül

Részletesebben

Digitális zenemultiplex berendezés rádiórelé rendszerekhez

Digitális zenemultiplex berendezés rádiórelé rendszerekhez Digitális multiplex berendezés rádiórelé rendszerekhez GERGELY LÁSZLÓ Orion Összefoglalás A cikk multiplex berendezéssel foglalkozik, amely 6 mono illetve 3 sztereo csatorna öszszefogását végzi 2 Mbit/sos

Részletesebben

1.1 Számítógéppel irányított rendszerek

1.1 Számítógéppel irányított rendszerek Számítógépes irányításelmélet 4. Számítógéppel irányított rendszerek A fejezetnek az a célja, hogy bevezesse a számítógéppel irányított rendszerek alapfogalmait. Bemutatja a folytonos jel mintavételezését,

Részletesebben

Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás

Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás Villamos jelek mintavételezése, feldolgozása (ellenállás mérés LabVIEW támogatással) LabVIEW 7.1 2. előadás Dr. Iványi Miklósné, egyetemi tanár LabVIEW-7.1 EA-2/1 Ellenállás mérés és adatbeolvasás Rn ismert

Részletesebben

A digitális analóg és az analóg digitális átalakító áramkör

A digitális analóg és az analóg digitális átalakító áramkör A digitális analóg és az analóg digitális átalakító áramkör I. rész Bevezetésként tisztázzuk a címben szereplő két fogalmat. A számítástechnikai kislexikon a következőképpen fogalmaz: digitális jel: olyan

Részletesebben

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr. 26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben

Részletesebben

Mérési struktúrák

Mérési struktúrák Mérési struktúrák 2007.02.19. 1 Mérési struktúrák A mérés művelete: a mérendő jellemző és a szimbólum halmaz közötti leképezés megvalósítása jel- és rendszerelméleti aspektus mérési folyamat: a leképezést

Részletesebben

Idő-frekvencia transzformációk waveletek

Idő-frekvencia transzformációk waveletek Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 013. áprils 17. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos

Részletesebben

Folytonos idejű jelek mintavételezése, diszkrét adatsorok analízise

Folytonos idejű jelek mintavételezése, diszkrét adatsorok analízise Folytonos idejű jelek mintavételezése, diszkrét adatsorok analízise Mérésadatgyűjtés, jelfeldolgozás 8. előadás Dr. Iványi Miklósné, egyetemi tanár Schiffer Ádám, egyetemi adjunktus LabVIEW-7. EA-/ Jelalak

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben.

1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben. Szak: Műszaki menedzser I. Dátum: 006. június. MEGOLDÓKULCS Tárgy: Matematika szigorlat Idő: 0 perc Neptun kód: Előadó: Berta Gábor szig 06 06 0 Pontszám: /00p. Oldja meg a z (5 + j (8 + j + = (+5j (7

Részletesebben