Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem."

Átírás

1 Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei. Összetett esemény: legalább 2 tle különböz esemény összegeként állítható el. Ha A csak azokban az esetekben következhet be amikor a B esemény is bekövetkezik, akkor az A maga után vonja a B eseményt, azaz A B. A és B akkor azonos esemény, ha teljesül mind A B, mind B A, ekkor A = B. Egy kísérlettel kapcsolatos elemi események összessége a T eseményteret alkotja. Lehetetlen esemény: ( O ) amely soha nem következik be. Biztos esemény: ( I ) amely a kísérlet során mindig bekövetkezik. A ellentett eseménye az amely akkor, és csakis akkor következik be, amikor A nem következik be. = O, és = I. Mveletek eseményekkel: Összeadás: A és B események A + B összegén azt az eseményt értjük, mely pontosan akkor következik be ha A és B közül legalább az egyik bekövetkezik. Kommutatív és asszociatív : A + B = B + A és A + (B + C) = (A + B) + C Szorzás: A 1 A 2. A n pontosan akkor következik be, ha az összes tényez esemény bekövetkezik. Kommutatív és asszociatív: AB = BA és A(BC) = (AB)C Ha A és B szorzata lehetetlen esemény, azaz AB = O, akkor A és B kizárják egymást. Tetszleges A eseményre fennállnak az alábbiak: A + A = A AO = O AA = A A + I = I A + O = A AI = A A + = I A = O Tetszleges A, B, C eseményekre teljesül az alábbi két törvény: A(B + C) = AB + AC és A + (BC) = (A + B)(A + C) Az A és B események összegének ellentettjére és szorzatának ellentettjére fennállnak az alábbi de Morgan féle képletek:

2 A + B = A B és AB = A + B Kettnél több komponens esetén: A 1 + A A n = A 1 A 2 A n Illetve A 1 A 2 A n = A 1 + A A n Kivonás: B és A esemény különbsége az az esemény, mely akkor következik be, ha B teljesül de A nem, azaz: B A = B. A B 1, B 2,, B n események teljes eseményrendszert alkotnak, ha B 1 + B B n = I és B i B j = O, ha i j (i = 1, 2,, n; j = 1, 2,, n) Események valószínsége Valamely kísérlettel kapcsolatos esemény a kísérlet n-szeri ismétlése során észlelt bekövetkezéseinek k száma osztva a kísérletek n számával megadja az A eseménynek a kísérletsorozatra jellemz relatív gyakoriságát. A tapasztalat azt mutatja hogy ha egyre több kísérletsorozatból határozzuk meg az A relatív gyakoriságát, akkor a kapott relatív gyakoriságok egyre kisebb mértékben ingadoznak egy rögzített szám körül. Ezt a számot az A esemény valószínségének nevezzük és P(A)-val jelöljük. Események valószínségére fennállnak az alábbiak: I. 0 P(A) 1 II. P(O) = 0, P(I) = 1 III. Ha AB = O, akkor P(A + B) = P(A) + P(B), illetve általánosan IV. Ha az A 1, A 2,, A n, események páronként kizárják egymást, akkor P(A 1 + A A n + ) = P(A 1 ) + P(A 2 ) + + P(A n ) + ) A fentiekbl következnek az alábbiak: Ha az A B, akkor P(A) P(B). Ha A és B egy kísérlet 2 eseménye, akkor P(A + B) = P(A) + P(B) P(AB). Ha A 1, A 2,, A n teljes eseményrendszert alkotnak, akkor P(A 1 + P(A 2 ) + + P(A n ) = 1. Ha A egy kísérlet egy eseménye, és ellentettje, akkor P(A) + P() = 1. Klasszikus valószínségi mez Ha egy kísérletnek csak véges sok kimenetele lehet, és az egyes elemi eseményeknek azonos a valószínségük, akkor a kísérlettel kapcsolatos események és ezek valószínségei együtt un. klasszikus valószínségi mezt alkotnak. Ha az A esemény a kísérlet n elemi eseménye közül k különböz elemi esemény összegébl áll, akkor valószínsége: P(A) = k/n

3 A feltételes valószínség fogalma Legyen A és B egy kísérlettel kapcsolatos 2 esemény, és P(B) 0. Az A eseménynek B feltétel melletti P(A B) feltételes valószínsége az A esemény valószínségét jelenti, feltéve hogy a B esemény bekövetkezett, azaz P(A B) = P(AB) / P (B). Ebbl 2 esemény szorzatának valószínsége az alábbiak szerint adódik: P(AB) = P(A B) P(B). Legyenek A 1, A 2,, A n tetszleges események, ezek szorzatának valószínsége: P(A 1 A 2 A n ) = P(A n A 1,. A n 1 ) P(A n - 1 A 1 A n 2 ) P(A 2 A 1 ) P(A 1 ) A teljes valószínség tétele. Ha a B 1, B 2,, B n események teljes eseményrendszert alkotnak és P(B i 0) (i = 1, 2,, n), akkor tetszleges A esemény valószínségére érvényes az alábbi összefüggés: Bayes tétele P(A) = P(A B 1 )P(B 1 ) + P(A B 2 )P(B 2 ) + + P(A B n )P(B n ) = = i = 1 Σ n P(A B i )P(B i ) Ha a B 1, B 2,, B n események teljes eseményrendszert alkotnak és P(B i 0) (i = 1, 2,, n), továbbá tetszleges A eseményre melyre P(A) 0, akkor P(B i A) = P(A B i )P(B i ) / j = 1 Σ n P(A B j )P(B j ) Események függetlensége Az A eseményt a B eseménytl függetlennek nevezzük, ha teljesül hogy P(A B) = P(A). Ha az A esemény a B eseménytl, akkor B esemény is független A-tól. A és B egymástól való függetlenségét fejezi ki az alábbi összefüggés is: P(AB) = P(A)P(B) Az A 1, A 2,, A n események teljesen függetlenek, ha közülük bárhogyan kiválasztva k (k = 2, 3,, n) számú A i1, A i2,, A ik eseményeket, ezekre fennáll az alábbi összefüggés: P(A i1, A i2,, A ik ) = P(A i1 )P(A i2 ) P(A ik ) Kettnél több esemény függetlenségéhez nem elég ha páronként függetlenek, mert összességükben még fennállhat közöttük kapcsolat. Két vagy több kísérletet függetlennek nevezünk, ha mindegyik kísérlet egy egy tetszleges eseményét kiválasztva az így kapott események függetlenek. A és B események függetlensége azt jelenti hogy fennáll: P(AB) = P(A)P(B)

4 A valószínségi változó fogalma, diszkrét valószínségi változó és eloszlása. Egy T eseménytér elemi eseményeihez egy egy számértéket rendelve egy függvényt értelmezünk, melyet valószínségi változónak nevezünk és ξ-vel jelölünk. Ha a ξértékkészlete a véges, vagy végtelen x 1, x 2,, x k, sorozat, akkor ξ-t diszkrét eloszlású valószínségi változónak, vagy rövidebben diszkrét valószínségi változónak nevezzük. Legyen A k a T eseménytér azon elemi eseményeinek részhalmaza melyekhez ξ az x k értéket rendeli, akkor a p k = P(ξ = x k ) = P(A k ) valószínségeket a ξ változó eloszlásának nevezzük, és azt mondjuk hogy a ξ az x k értéket p k valószínséggel veszi fel. Az A k események teljes eseményrendszert alkotnak, ezért a megfelel valószínségek összege: p k = P(ξ = x k ) = Σ P(A k ) = 1 k = 1 k = 1 k = 1 Eloszlásfüggvény, folytonos valószínségi változó eloszlásfüggvénye. Egy ξ valószínségi változó F(x) eloszlásfüggvénye azt adja meg, hogy milyen valószínséggel veszi fel ξ az x-nél kisebb értékeket: F(x) = P(ξ < x). Az F(x) tulajdonságai: 1. monoton növekv, azaz F(x 2 ) F(x 1 ) ha x 2 > x 1 2. lim F(x) = 0 x - 3. lim F(x) = 1 x 4. lim F(x) = F(x 0 ) x x0 0 Jelentse az A esemény azt hogy ξ értékére fennáll a ξ < b, ekkor P(a) = P(a ξ < b) = F(b) F(a) Diszkrét valószínségi változó eloszlásfüggvénye lépcss függvény. Egy ξ valószínségi változó srségfüggvényének nevezzük az f(x) függvényt ha ezzel a ξ F(x) eloszlásfüggvénye az alábbiak szerint adható meg: x F(x) = f(t) dt. - Ha ξ-nek létezik srségfüggvénye, akkor F(x) folytonos, ilyenkor ξ-t folytonos (eloszlású) valószínségi változónak nevezzük. Ekkor fennáll: F (x) = f(x). A srségfüggvény tulajdonságai: f(x) 0 (nem negatív) f(x) dx = 1 -

5 Jelentse az A esemény hogy ξ felvett értékeire teljesül hogy a ξ < b. Legyen f(x) ξ srségfüggvénye, ekkor fennáll: b P(A) = P(a ξ < b) = f(x) dx. a A várható érték Ha egy valószínségi változóval kapcsolatban független kísérleteket hajtunk végre, akkor a ezek során valószínségi változó felvett értékei, - és számtani középértékük is, - általában egy meghatározott szám körül ingadoznak. Minél több kisérletet végzünk, az ingadozás annál kisebb mérték lesz. Azt az (elméleti) értéket, mely körül a tapasztalati értékek ingadoznak, várható értéknek nevezzük. Ha ξ diszkrét valószínségi változó, mely az x k (k = 1, 2,..) értéket p k (k = 1, 2, ) valószínséggel veszi fel, akkor ξ várható értéke M(ξ) = Σ p k x k. Ha ξ végtelen sok értéket vehet fel, akkor a várható értéket csak akkor értelmezzük ha a fenti sor abszolút konvergens, azaz Σ x k p k < k = 1 Ha ξ folytonos eloszlású val. Változó, melynek srségfüggvénye f(x), akkor várható értéke: M(ξ) = x f(x) dx, feltéve hogy x f(x) dx konvergens. - - A szórás A szórás a valószínségi változó várható értéke körüli szóródását méri. Négyzete az un. szórásnégyzet, ξ és M(ξ) eltérése négyzetének várható értéke, azaz D 2 (ξ) = M {[ξ - M(ξ)] 2 }. A szórást D(ξ)-vel jelöljük, ez a szórásnégyzet négyzetgyöke, mindkett csak akkor van értelmezve ha a fenti várható értékek léteznek. Az alábbi összefüggéssel a szórás egyszerbben számítható ki: D 2 (ξ) = M(ξ 2 ) [M(ξ)] 2 Ha ξ diszkrét valószínségi változó, szórásnégyzete, - amennyiben létezik, - az alábbiak szerint számítható ki: D 2 (ξ) = Σ x k 2 p k ( Σ x k p k ) 2 k = 1 k = 1 Ha ξ folytonos eloszlású valószínségi változó, melynek srségfüggvénye f(x), akkor szórásnégyzete amennyiben létezik, az alábbiak szerint adódik: D 2 (ξ) = x 2 f(x) dx [ x f(x) dx ] 2 - -

6 Diszkrét eloszlások Binomiális eloszlás Legyen egy kísérlet valamely A eseményének valószínsége P(A) = p, és az ellentett eseményé P() = 1 p = q. Ismételjük meg a kísérletet n-szer, egymástól függetlenül! Legyen a ξ valószínségi változó értéke az A esemény bekövetkezéseinek száma. Annak valószínsége hogy ξ az x k = k (k = 0, 1,, n) értéket veszi fel, n P k = P(ξ =k) = ( )p k q n k (k = 0, 1,, n) k A binomiális eloszlású valószínségi változó várható értéke és szórása: M(ξ) = np, D 2 (ξ) = npq Az eloszlás csak akkor szimmetrikus, ha p = 0,5 Poisson eloszlás Ha a ξ val. változó az x k = k (k = 0, 1, 2, ) értékeket veheti fel és eloszlásfüggvénye P(ξ = k) = p k = (λ k / k!) e -λ (k = 0, 1, 2, ), ahol λ > 0 tetszleges adott szám, ξ eloszlását λ paraméter Poisson eloszlásnak nevezzük. A Poisson eloszlású ξ valószínségi változó várható értéke és szórása: M(ξ) = λ, D(ξ) = (λ) 1/2 A Poisson eloszlás tagjai bizonyos esetekben megfelel paraméter választásával jól közelítik a binomiális eloszlás tagjait: ha nagy a binomiális eloszlásban n értéke k-hoz képest, és p értéke kicsi, akkor λ = np választva fennáll : n ( ) p k q n k [ (np) k /k! ] e np = (λ k /k!)e - λ k Legegyszerbben az alábbi rekurziós formulával számítható: P(0) = e - λ, és P(k + 1) = [λp(k)] / (k + 1) Folytonos eloszlások Egyenletes eloszlás Egy ξ folytonos eloszlású valószínségi változót az (a,b) intervallumon egyenletes eloszlásúnak mondunk, ha srségfüggvénye: 0, ha x a; f(x) = 1/ (b a), ha a < x b; 0, ha x > b. Ebbl következen eloszlásfüggvénye:

7 0, ha x a; F(x) = P(ξ < x) = (x a) / (b a), ha a < x b; 1, ha x > b. Annak valószínsége hogy ξ az (a, b ) részintervallumba (a a, b b) esik, egyenl a részintervallum hosszának és a teljes (a,b) intervallum hosszának hányadosával, vagyis: b P(a ξ < b ) = f(x) dx = (b a ) / (b a) a Várható értéke és szórásnégyzete: M(ξ) = (a + b) / 2 illetve D 2 (ξ) = (b a) 2 /12 Exponenciális eloszlás Egy ξ folytonos eloszlású változót exponenciális eloszlásúnak nevezünk, ha srségfüggvényének alakja: f(x) = 0, ha x 0, és f(x) = λe -λx paramétere. ξ eloszlásfüggvénye:, ha x > 0, λ tetszleges pozitív szám, az eloszlás 0, ha x 0; F(x) = P(ξ < x) = 1 e -λx, ha x > 0. A λ paraméter exponenciális eloszlású valószínségi változó várható értéke és szórása: M(ξ) = 1 / λ; illetve D(ξ) = 1 / λ. Ha a ξ valamilyen esemény bekövetkezéséig eltelt idtartamot jelöli és ξ olyan tulajdonságú hogy ha a kiinduló idponttól tetszleges T idpontig még nem következett be az esemény, akkor tekinthet ez a T idpont is kiinduló idpontnak, vagyis: P(ξ T + t ξ T) = P(ξ t), akkor ξ exponenciális eloszlású. Ez esetben kis t értékekre az esemény bekövetkezésének feltételes valószínsége, feltéve hogy a t szakasz kezdetéig az esemény nem következett be: P(ξ < T + t ξ T) = λ t. Vagyis az esemény bekövetkezésének esélye az id múlásával nem n, - az exponenciális eloszlású változó nem öregszik. Normális eloszlás Egy ξ valószínségi változót normális eloszlásúnak nevezünk, ha srségfüggvénye: f(x) = [1 / (2) 1/2 ]e u u = [(x m) 2 / 2 2 ]

8 ahol m tetszleges valós szám, tetszleges pozitív szám lehet; m és az eloszlás 2 paramétere. eloszlásfüggvénye: x F(x) = P( < x) = 1/ [ (2) 1/2 ] e -u dt ; u = [(t m) 2 /2 2 ] - várható értéke és szórása: M() = m; D() =. Ha m = 0 és = 1, akkor srségfüggvénye: (x) = 1/ (2) 1/2 e -v ; v = x 2 /2 x Az eloszlásfüggvénye pedig: (x) = 1 / (2) 1/2 e -v dt; v = t 2 /2 - Ezt standard normális eloszlásnak nevezzük. A (x) és (x) függvényekkel az m és paraméter normális eloszlású valószínségi változó srségfüggvénye és eloszlásfüggvénye az alábbiak szerint adható meg: f(x) = (1 /)[(x m)/ ], illetve F(x) = [(x m)/] A normális eloszlás srségfüggvénye szimmetrikus a várható értékre. Így fennállnak az alábbi összefüggések: (-x) = (x); (-x) = 1 (x) Ebbl következen a standard normális eloszlásra P( -x < x) = (x) (-x) = (x) [1 (x)] = 2(x) 1 χ 2 eloszlás Csak pozitív számokra értelmezzük. Legyenek x 1, x 2,, x n egymástól független standard normális eloszlású valószínségi változók. Ekkor a χ 2 = x x x n 2. χ 2 eloszlású valószínségi változó, n szabadsági fokkal. Paramétere n, várható értéke M(χ 2 ) = n, szórásnégyzete D 2 (χ 2 ) = 2n. Az eloszlás nem szimmetrikus. Student eloszlás

9 W. Gosset ír kémikustól származik. Legyenek Y, x 1, x 2,, x n független, standard normális eloszlású valószínségi változók. Képezzük az n szabadsági fokú χ 2 eloszlású valószínségi változót. Osszuk el ezt a szabadsági fokok számával, és vonjunk a hányadosból négyzetgyököt. Így (χ 2 /n) 1/2 hez jutunk. Ha az Y standard normális eloszlású valószínségi változót osztjuk a fenti kifejezéssel, az n szabadsági fokú Student eloszlású valószínségi változóhoz jutunk: t n = (n) 1/2 Y / (x x x n 2 ) 1/2 értelmezési tartománya - < x < +. Paramétere n, ahol n pozitív egész szám. n 20 esetén gyakorlatilag egybeesik a normális eloszlással. Fisher eloszlás (F eloszlás) Legyen 2 független χ 2 eloszlású n 1 és n 2 szabadsági fokú valószínségi változó, X 1 és X 2. A hányadosukból képzett F = (X 1 / n 1 ) / (X 2 / n 2 ) eloszlás. Két paramétere n 1 és n 2, várható értéke: valószínségi változó eloszlása a Fisher M(F) = n 2 / (n 2 2), feltéve hogy n 2 > 2. Szórásnégyzete: D 2 (F) = [2n 2 2 (n 1 + n 2 2)] / [n 1 (n 2 2) 2 (n 2 4)] Elssorban szórások összehasonlítására alkalmazzák. Megoldandó feladatok a gyakorlatra: 1. 2 játékos felváltva dob kosárra, ha egyikük dobása sikeres abbahagyják a játékot. 0,5 a valószínsége. hogy a kezd játékos talál, 0,6 a val. a másik sikeres dobásának. Írjuk fel annak a valószínségi változónak az eloszlását melynek értékei azon dobások száma, melyet a játékosok a sikeres dobással együtt végeznek 2. 2 pontot választunk találomra egy egységnyi hosszúságú szakaszon. Mennyi a 2 pont távolságának várható értéke?

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI, Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Feladatok 2. zh-ra. 1. Eseményalgebra április Feladat. Az A és B eseményekr l tudjuk, hogy P (A) = 0, 6, P (B) = 0, 7 és

Feladatok 2. zh-ra. 1. Eseményalgebra április Feladat. Az A és B eseményekr l tudjuk, hogy P (A) = 0, 6, P (B) = 0, 7 és Feladatok 2 zh-ra 205 április 3 Eseményalgebra Feladat Az A és B eseményekr l tudjuk, hogy P (A) = 0, 7, P (B) = 0, 4 és P (A B) = 0, 5 Határozza meg az A B esemény valószín ségét! P (A B) = 0, 2 2 Feladat

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok Matematikai alapok és valószínőségszámítás Valószínőségszámítási alapok Bevezetés A tudományos életben vizsgálódunk pontosabb megfigyelés, elırejelzés, megértés reményében. Ha egy kísérletet végzünk, annak

Részletesebben

Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József

Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Matematika III. 4. : A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 4. MA3-4 modul A valószínűségi változó és jellemzői SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

Területi sor Kárpát medence Magyarország Nyugat-Európa

Területi sor Kárpát medence Magyarország Nyugat-Európa Területi sor Terület megnevezése Magyarok száma 2011.01.01. Kárpát medence 13 820 000 Magyarország 10 600 00 Nyugat-Európa 1 340 000 HIV prevalence (%) in adults in Africa, 2005 2.5 Daganatos halálozás

Részletesebben

Legfontosabb bizonyítandó tételek

Legfontosabb bizonyítandó tételek Legfontosabb bizonyítandó tétele 1. A binomiális tétel Tetszőleges éttagú ifejezés (binom) bármely nem negatív itevőj ű hatványa polinommá alaítható a övetez ő módon: Az nem más, mint egy olyan n tényezős

Részletesebben

Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44.

Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44. Dr. Vincze Szilvia Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44. tétel) Környezetünkben sok olyan jelenséget

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS KIDOLGOZOTT FELADATOK

VALÓSZÍNŰSÉGSZÁMÍTÁS KIDOLGOZOTT FELADATOK VALÓSZÍNŰSÉGSZÁMÍTÁS KIDOLGOZOTT FELADATOK KOMBINATORIKA Példa: a) Hányféle módon rakható sorba egy csomag Magyar kártya 3 lapja? Nyilván 3! féle módon. Ez nagyon nagy szám, 3!,63 0 35. b) Hányféle módon

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

egyetemi jegyzet Meskó Balázs

egyetemi jegyzet Meskó Balázs egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.

Részletesebben

Valószínűségszámítás

Valószínűségszámítás European Virtual Laboratory of Mathematics Project No. 2006 - SK/06/B/F/PP - 177436 Európai Virtuális Matematikai Laboratórium Árvai- Homolya Szilvia Valószínűségszámítás EVML e-könyvek Miskolc 2008 Sorozat

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben.

1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben. Szak: Műszaki menedzser I. Dátum: 006. június. MEGOLDÓKULCS Tárgy: Matematika szigorlat Idő: 0 perc Neptun kód: Előadó: Berta Gábor szig 06 06 0 Pontszám: /00p. Oldja meg a z (5 + j (8 + j + = (+5j (7

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. : Eseményalgebra Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel

Részletesebben

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Backhausz Ágnes 1. Bevezetés A valószínűség elemi tulajdonságai... 5

Backhausz Ágnes 1. Bevezetés A valószínűség elemi tulajdonságai... 5 Valószínűségszámítás Földtudomány BSc szak, 2016/2017. őszi félév Backhausz Ágnes agnes@cs.elte.hu Tartalomjegyzék 1. Bevezetés 2 2. A Kolmogorov-féle valószínűségi mező 3 2.1. Klasszikus valószínűségi

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok VALÓSZÍNŰSÉGSZÁMÍTÁS MSc Órai Feladatok 1. Feladat (Diszkrét eloszlás) Ketten kosárlabdáznak. Az A játékos 0,4 a B játékos 0,3 valószínűséggel dob kosarat. A dobást A kezdi és felváltva dobnak egymás után.

Részletesebben

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 ) Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor

Részletesebben

Matematika javítóvizsga témakörök 10.B (kompetencia alapú )

Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) 1. A négyzetgyök fogalma, a négyzetgyökvonás művelete 2. A négyzetgyökvonás azonosságai 3. Műveletek négyzetgyökökkel 4. A nevező gyöktelenítése

Részletesebben

Matematika III. Nagy Károly 2011

Matematika III. Nagy Károly 2011 Matematika III előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 20 . Kombinatorika.. Definíció. Adott n darab egymástól különböző elem. Ezeknek egy meghatározott sorrendjét az n elem

Részletesebben

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Populációbecslés és monitoring. Eloszlások és alapstatisztikák Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

KVANTITATÍV MÓDSZEREK

KVANTITATÍV MÓDSZEREK BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Gazdaság- és Társadalomtudományi Kar Üzleti Tudományok Intézet Dr. Kövesi János Erdei János Dr. Tóth Zsuzsanna Eszter Dr. Jónás Tamás KVANTITATÍV MÓDSZEREK

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Valószínűségszámítás

Valószínűségszámítás Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Valószínűségszámítás programtervező informatikusok részére Eger, 010. szeptember 0. Tartalomjegyzék 1. Véletlen események...............................

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József

Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József Matematika III. 3. : A valószínűségszámítás elemei Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 3. MA3-3 modul. A valószínűségszámítás elemei

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 3. MA3-3 modul. A valószínűségszámítás elemei Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof Dr Závoti József Matematika III 3 MA3-3 modul A valószínűségszámítás elemei SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

Matematikai statisztika Tómács Tibor

Matematikai statisztika Tómács Tibor Matematikai statisztika Tómács Tibor Matematikai statisztika Tómács Tibor Publication date 2011 Szerzői jog 2011 Hallgatói Információs Központ Copyright 2011, Educatio Kht., Hallgatói Információs Központ

Részletesebben

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 8. Valószínűség-számítás II. Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

1. elõadás: A valószínûség fogalma, kombinatorikai alapismeretek. (emlékeztetõ)

1. elõadás: A valószínûség fogalma, kombinatorikai alapismeretek. (emlékeztetõ) Ea1. 2002. 02. 11. 1. elõadás: A valószínûség fogalma, kombinatorikai alapismeretek Véletlen jelenség: feltételek, körülmények; ismételhetõség Megfigyelés: mi érdekel minket lehetséges kimenetelek Esemény:

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

Környezet statisztika

Környezet statisztika Környezet statisztika Permutáció, variáció, kombináció k számú golyót n számú urnába helyezve hányféle helykitöltés lehetséges, ha a golyókat helykitöltés Minden urnába akárhány golyó kerülhet (ismétléses)

Részletesebben

6. Előadás. Vereb György, DE OEC BSI, október 12.

6. Előadás. Vereb György, DE OEC BSI, október 12. 6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás

Részletesebben

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36 Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

1. Előszó. 2. Valószínűségszámítás

1. Előszó. 2. Valószínűségszámítás 1. Előszó Ez a jegyzet a BME Építőmérnök hallgatóinak számára az A3 előadáshoz készült. Ennek a tárgynak előfeltétele az A1 tárgy, ami az egy változós kalkulus, és az A2 tárgy, ami a többváltozós kalkulusból

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Tartalomjegyzék Szitaformulák Példák a szitaformulára Mintavételezés Bayes-tétel... 17

Tartalomjegyzék Szitaformulák Példák a szitaformulára Mintavételezés Bayes-tétel... 17 Valószínűségszámítás Földtudomány szak, 2015/2016. tanév őszi félév Backhausz Ágnes (ELTE TTK Valószínűségelméleti és Statisztika Tanszék)1 Tartalomjegyzék 1. Valószínűségi mező 3 1.1. Példák valószínűségi

Részletesebben

Példa a report dokumentumosztály használatára

Példa a report dokumentumosztály használatára Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............

Részletesebben

Függvények határértéke, folytonossága

Függvények határértéke, folytonossága Függvények határértéke, folytonossága 25. február 22.. Alapfeladatok. Feladat: Határozzuk meg az f() = 23 4 5 3 + 9 a végtelenben és a mínusz végtelenben! függvény határértékét Megoldás: Vizsgáljuk el

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

Példák: tojások száma egy madárfészekben (egy adott madárfaj esetén), egy egyed testhőmérséklete (adott faj és ivar esetén), a következő buszon az uta

Példák: tojások száma egy madárfészekben (egy adott madárfaj esetén), egy egyed testhőmérséklete (adott faj és ivar esetén), a következő buszon az uta Valószínűségi változók (véletlen változók, random variables) Változó: Névvel ellátott érték. (Képzeljünk el egy fiókot. A fiók címkéje a változó neve, a fiók tartalma pedig a változó értéke.) Valószínűségi

Részletesebben

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli

a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli Gyakorló feladatok valószínűségszámításból végeredményekkel a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli. Igaz-e, hogy tetszőleges A, B és C eseményekre teljesül a A B \ C =

Részletesebben

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Tantárgy neve Alkalmazott matematika II. Tantárgy kódja MT003 Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Számonkérés módja gyakorlati jegy Előfeltétel (tantárgyi kód) MT002 Tantárgyfelelős

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

Geostatisztikai példatár. Geresdi István, Bugya Titusz PTE TTK Földrajzi Intézet

Geostatisztikai példatár. Geresdi István, Bugya Titusz PTE TTK Földrajzi Intézet Geostatisztikai példatár Geresdi István, Bugya Titusz PTE TTK Földrajzi Intézet Pécs 2005 1 A kétciklusú képzés bevezetése a magyar felsőoktatásban a természettudományi szakokon. Alkalmazkodás a munkaerőpiac

Részletesebben

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában 9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában Bevezet : A témakörben els - és másodfokú egyenl tlenségek megoldásának

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása

Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

Loss Distribution Approach

Loss Distribution Approach Modeling operational risk using the Loss Distribution Approach Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 2 Szabályozói

Részletesebben