Kódolás. Informatika alapjai-3 Kódolás 1/9

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kódolás. Informatika alapjai-3 Kódolás 1/9"

Átírás

1 Informatika alapjai-3 Kódolás 1/9 Kódolás A hétköznapi életben a mennyiségek kétféleképpen jelennek meg: Analóg érték: folyamatosan változó, például pillanatnyi idı, egy test tömege. A valóságot leíró jellemzık nagyobbrészt ilyenek. Például a terem hımérséklete, egy ember magassága, súlya (a fizika szerint csak közelítéssel, pl. egy testben lévı atomok száma ~ atom, de csak egész szám lehet, tehát a tömeg is kvantumosan változik). Diszkrét érték: véges sok értéket megengedı. Például a teremben ülı hallgatók száma. A mennyiségek megjelenítése is analóg vagy digitális lehet. Például autó km órája, fordulatszám mérıje legtöbbször analóg, a megtett km mutató digitális. A digitális technika a folyamatos mennyiségeket is diszkrét értékké számmá alakítja, és a továbbiakban ezzel operál. Megjegyezzük, hogy a digitális jelfeldolgozás eredménye, amelyik szükségszerően diszkrét, látszhat diszkrétnek vagy folyamatosnak. Például feltőnıen diszkrét állapotai vannak egy közlekedési jelzılámpának, és folyamatosnak látszik egy digitális TV csatornán vett kép. A kódolás általánosságban azzal foglalkozik, hogy a jelenségeket hogyan lehet digitálisan leírni, és egy kódot miért és hogyan kell egy másik kóddá átalakítani. Mindkét eljárást kódolásnak (az utóbbit néha átkódolásnak) nevezik. Szőkebb értelemben a kódolás azzal foglalkozik, hogy adott a diszkrét kódolandó halmaz, a forrás, amely akár egy kódhalmaz is lehet, ennek elemeihez kell kódot rendelni. Kódolási eljárások a mindennapi életben: Mennyiségek leírása számmal Ha analóg értékrıl van szó, azt digitalizáljuk, ami egyszerre analóg-digitális átalakítás és kódolás. Például mérıszalaggal megmérünk egy hosszt, és mm pontossággal leolvassuk. A mérıszám a kód. A beszéd szövegét leírjuk Ez sokkal bonyolultabb kódolási eljárás, mint amilyennek elsıre látszik. A kód elemei a betők és írásjelek, de mik a forrás elemei? Magyar nyelvben alapvetıen a hangok és a szóköz, kivéve a részleges hasonulást (angolul inkább a szavak), de a mondatszerkezetet, amit szintén kódolunk az írásban, egyrészt a szavak hangsúlyozása, másrészt a szavak egymáshoz való viszonya szabja meg. Például: Péter eszik, mert éhes. Mitıl van benne vesszı és pont? A második idézıjeles mondatban miért nincs vesszı, és miért van kérdıjel? Megjegyzem, hogy élıbeszédben gyakran nincs szóköz, azt is ki kell találni! Piktogramok alkalmazása Stb., stb.

2 Informatika alapjai-3 Kódolás 2/9 1. Kódoláselméleti alapfogalmak Példa A forrás elemek a számok, a kódbetők: +, -, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 és a tizedesvesszı, egy kódszó pedig egy szám decimálisan megadva. Másik példa A forráselemek az ABC betői és az írásjelek, a kódbetők 0 és 1 (a kód bináris), a kód a 8 bites u.n. ASCII kód 852 kódlapja (ebben vannak benne a magyar ékezetes betők): Forrás Kód Decimális Hexa A h B h... a h b h... Á C1h á E1h Ha az Ábel szót akarjuk beírni a számítógép memóriájába, akkor a következı byte sorozatot kell beírni: 0C1h,62h,65h,6Ch,0 (a végén lévı 0 jelzi a szöveg végét). Természetesen a hexadecimális számjegyek helyett az azoknak megfelelı bináris sorozatot, pl. C1 helyett et. Látszik, hogy bető sorozatot kód sorozattá konvertáltunk, azaz forrás üzenetet kódolt üzenetté alakítottunk. (Forrás üzenet: a forrás elemek sorozata. Kódolt üzenet: a forrás üzenet elemenként kódolva). A továbbiakban csak bináris kódokkal foglalkozunk. A kódolás célja Elsısorban az, hogy az információt az informatikai gép számára befogadhatóvá tegyük. Például a számokat binárisra alakítjuk, vagy a szöveget kódoljuk (ld. elıbb), vagy egy képet mintavételezünk, és pontonként kódoljuk. Az információt minél rövidebben akarjuk ábrázolni. Ez általában az 1. lépést követi, és ilyenkor tömörítésnek nevezik.

3 Informatika alapjai-3 Kódolás 3/9 Az információt zajos csatornán torzulás nélkül akarjuk átvinni. Ekkor hibajelzı vagy hibajavító kódolást alkalmazunk Titkosítás. Elemi kódolási módszerek A forráshalmaz elemeit sorba rakjuk, megszámozzuk, és a sorszámot kódoljuk. Ilyen az ACII kód. A forráshalmaz elemei mennyiségek vagy mennyiség tömbök, és a mennyiségeket kódoljuk. Ilyen a kép leírásra használt BMP formátum, melyben minden képpontot egy vagy több számmal adunk meg. Kódolt üzenet hosszának minimalizálása A forráshalmaz elemei különbözı valószínőséggel fordulhatnak elı. Célszerő, ha a gyakran elıforduló elemekhez rendelt kód hossza kisebb, mint a ritkán elıfordulóké. A pontos kritérium a következı: a kód optimális, ha a forrás elemek kódjának hossza ni = logc pi (feltéve, hogy a forrás elemek teljes halmazt alkotnak) p i az i. elem elıfordulásának valószínüsége, c a kód ABC-ben lévı elemek száma. Az optimum csak közelíthetı, mert a kódhossz csak egész szám lehet. Bináris esetben a kód ABC = (0, 1) Például: ni = log2 p i Elem Elıfordulási valószínőség(p i ) kódhossz = log2 A 0,5 1 B 0,25 2 C 0,25 2 A képlet alkalmazása változó hosszúságú kódolást eredményez, melynél felmerül az üzenet megfejthetıségének kérdése: a vett üzenetben szét kell tudni választani a kódszavakat. (Ha a kódszavak hossza egyforma, akkor a kódolt üzenet biztosan megfejthetı.) Az u.n. prefix kódolás melynél egyik kód sem a másik folytatása megfejthetı (más eljárások is léteznek). Az u.n. prefix kódolás melynél egyik kód sem a másik folytatása megfejthetı (más eljárások is léteznek). pl: az {a:01, b:001, c:100, d:1100} kód prefix, mert egyik kód sem folytatása a másiknak. Az abcc üzenet kódja: Balról olvasva 01 az a kódja, más kód nem kezdıdik így, ezután 001 b kódja, 100 c kódja, végül 100 c kódja. A következı kód nem prefix, és nem megfejthetı {a: 00, b:01, c:11, d:0001}, nem prefix, mert d kódja folytatása a kódjának. Az abd kódolásával adódó üzenet abd, dab, abab és dd üzenetként is értelmezhetı. p i

4 Informatika alapjai-3 Kódolás 4/9 Huffman kódolás Minimális átlagos hosszúságú prefix kódot eredményezı eljárás A kódolás algoritmust a következı példán mutatjuk be: Adott az alábbi kód és elıfordulási valószínőségek: Elem Valószínüség a1 0.2 a a a a a a7 0.2 p i = 1 teljesül. a. Vegyük a két legkisebb valószínőségő elemet, és különböztessük meg ıket egy bittel, s utána vonjuk ıket össze egyetlen olyan elemm;, melyek valószínősége a két elem valószínőségének összege. b. Ezután az összevont elemmel helyettesítve azokat, amelyek összevonásából keletkezett, folytassuk az elızı pont szerint, amíg lehetséges. A gyakorlati megvalósításhoz rendezzük az elemeket elıfordulási valószínőségük szerint, és vonjuk össze a két utolsót. Ezt ismételjük addig, amíg lehet: Rendezés a1:0,2 a7:0,2 a3:0,19 a4:0,12 a5:0,11 a2:0,09 a6:0,09 Összevonás a1:0,2 a7:0,2 a3:0,19 a4:0,12 a5:0,11 a26:0,18 Rendezés a1:0,2 a7:0,2 a3:0,19 a26:0,18 a4:0,12 a5:0,11 Összevonás a45:0,23 a1:0,2 a7:0,2 a3:0,19 a26:0,18 Rendezés a45:0,23 a1:0,2 a7:0,2 a3:0,19 a26:0,18 Összevonás a45:0,23 a1:0,2 a7:0,2 a236:0,37 Rendezés a236:0,37 a45:0,23 a1:0,2 a7:0,2 Összevonás a236:0,37 a45:0,23 a17:0,4 Rendezés a17:0,4 a236:0,37 a45:0,23 Összevonás a17:0,4 a23456:0,6 Rendezés a23456:0,6 a17:0,4 Összevonás a :1 - az utolsó két sort csak a rend kedvéért írtuk oda, az magától értetıdı. Rajzoljunk egy gráfot, amelyik az összevonásokat ábrázolja, és az összevonásoknál a két élet jelöljük 0-val és 1-gyel:

5 Informatika alapjai-3 Kódolás 5/9 Az egyes események kódolása a kiadódó fa gyökerétıl kiindulva egy-egy levélig (kódolandó karakterek) található 0-kat ill. 1-eket egymásután írva adódik: a a a a a a a Az elıfordulási valószínőséggel súlyozott átlagos kódhossz 2,38 (állandó kódhossznál 3 lenne). Megjegyezzük, hogy a gráf a táblázat létrehozása nélkül is megrajzolható. A változó hosszúságú kódolás felhasználására példa lehet a file tömörítés. A file-ban levı karakterekrıl statisztikát készítve megállapítható a karakterek elıfordulási valószínősége. Ez alapján pedig elvégezhetı a tömörítés. A tömörítéssel külön elıadásban foglalkozunk. Információ átvitel zajos csatornán Analóg jelátvitelnél a csatorna zaja szükségszerően hozzáadódik a jelhez, és rontja a minıséget. Digitális jelátvitelnél zajos csatorna esetén is elérhetı, hogy a vételi oldalon tetszıleges elıírt valószínőséggel visszakapjuk a hibamentes adott információt! A bináris szimmetrikus emlékezet nélküli zajos csatorna modellje: p p 1 1 p - a helyes átvitel valószínősége p (p>0.5, ha ez nem teljesül akkor a csatorna invertál...) - a hibás átvitel valószínősége 1-p Ebben a hibamodellben un. átállítódásos hibák szerepelnek, vagyis hiba esetén az információs bit negáltját érzékeli a vevı logika. Azt is feltételezzük, hogy a csatorna emlékezet nélküli és idı invariáns, azaz az üzenet bármelyik bitjén ugyanakkora a tévesztés valószínősége, és a nem függ a korábbi tévesztésektıl. (Megjegyezzük, hogy a fenti modell nem minden alkalmazásban érvényes, távközlésben nagy jelentısége van az aszimmetrikus és/vagy emlékezettel rendelkezı csatornának is.)

6 Informatika alapjai-3 Kódolás 6/9 A továbbiakban csak fix hosszúságú bináris kódolással foglalkozunk. Egy N bites üzenetben n bites hiba elıfordulásának valószínősége: n ( N n) N pn = (1 p). p. n A képlet azon alapszik, hogy független események együttes elıfordulásának valószínősége a valószínőségek szorzata, egymást kizáró események elıfordulásának valószínősége a valószínőségek összege. Az az esemény, hogy N bites üzeneben n hiba van, azt jelenti, hogy n N bit hibás, N-n bit hibátlan. Ez -féleképpen fordulhat elı. n 9 9*8*7 Például = = elembıl 3 elemet 84 féleképpen lehet kiválasztani 3 1*2*3 ha 1 p << 1, akkor p n 1 n N pn ( 1 p). n Hibajelzés/javítás A hibajelzés/javítás alapja az, hogy az átvitelre alkalmazott kódszavak közötti minimális Hamming távolság (a kód Hamming távolsága) elıírt érték. Hamming távolság: két kódszóban lévı eltérı bitek száma. Például A Hamming távolság H = 4. A vétel oldalon tévesztést az okoz, ha egyik adott kód helyett egy másik, a kódkészletben lévı kódot veszünk. Ahhoz, hogy a fenti példában A helyett B-t vegyünk, négy bithibának kell elıfordulnia. A helyzetet a következı ábra szemlélteti: (E1 azon kódszavak halmaza, melyek Hamming távolsága A-tól 1, B-tıl 3; E2 azoké, melyek Hamming távolsága A-tól és B-tıl is 2; E3 azoké, melyek Hamming távolsága B-tıl 1, A-tól 3.) Egy bithiba esetén arra a kódra javíthatunk, melyhez jobban hasonlít a vett kód, pontosabban, amelyiktıl kisebb a Hamming távolsága. Két hiba esetén nem tudunk dönteni, de észleljük a hibát. A leírt módszer egy hibát javít, két hibát jelez. Másképpen is eljárhatunk: E1, E2 vagy E3 elıfordulásakor is azt mondjuk, hogy a vett kódszó hibás, és például újra kell küldeni az üzenetet. Ez a módszer legfeljebb 3 hibát jelez. Általánosságban ahhoz, hogy C hibát javító és D hibát jelzı kódot konstruáljunk (D >= C, a szükséges minimális Hamming távolság) H = 2 * C + (D C) + 1 = C + D + 1 (A helyes értelmezéshez fontos: C hibát javító kód legalább C hibát jelez is! Például 3 hibát javító kód minimális Hamming távolsága H = 2*3 + (3 3) + 1 = 7)

7 Informatika alapjai-3 Kódolás 7/9 Példák hibajelzı és javító kódokra Paritás A megengedett kódszavakban páratlan számú 1-nek kell lennie (a kódok súlya páratlan [súly=a kódban lévı egyesek száma]). Az egy hibás kódszavakban biztosan páros számú 1 van, tehát felismerhetık. A konstruáláshoz egy plusz bitet kell adni a kódhoz ez a paritásbit. Ennek értékét úgy kell beállítani, hogy a kód súlya páratlan legyen. Például: Kódszó Súly Paritás Paritásos kód Tételezzük fel, hogy a kódszavak 8 bitesek, és egy bit helyes átvitelének valószínősége p = 99% = 0,99. A paritás nélküli kódszó hibátlan átvitelének valószínősége 0,99 8 = 0,92 = 92%, a hibás vétel valószínősége 8%. Ha paritásbitet alkalmazunk, a 8 bit helyett 9 bitet kell átvinni, és 1, 3, 5, 7 vagy 9 hibát tudunk jelezni. Tételezzük fel, hogy az 3, 5, 7, 9 hiba elıfordulásának valószínősége sokkal kisebb, mint az 1 hibáé és 2 hibáé (ezt tulajdonképpen meg kellene vizsgálni). Ekkor a jelzett hibák kereken az egyszeres, a nem jelzett hibák a kétszeres hibák, mert a 3, 4, 5, 6, 7, 8, 9 hiba valószínősége ezeknél sokkal kisebb: 9 p 1 (1 p). = 0,01*9 = 0, p 2 (1 p). = 0,01 *(9*8/ 2) = 0, Azaz 8% helyett csak 0,36% valószínőséggel fordul elı, hogy jelzetlen hiba van a vételi oldalon. A javulás még látványosabb, ha a csatorna jobb minıségő, azaz 1-p sokkal kisebb (egyszerően be kell helyettesíteni a képletbe, és kipróbálni). Kérdés, hogy mi történjék, ha paritáshibás a vett kód? Nem tudjuk megmondani, hogy melyik bit változott meg, ezért két lehetıség van: - újra kell küldeni az üzenetet. Ehhez kétirányú kapcsolatot kell kialakítani! - eldobni a hibás üzenetet. Ha az üzenet nélkül nem biztonságos a további mőködés, azt le kell állítani. Például, ha a PC memóriája paritáshibát jelez, a gépet újra kell indítani, és adatok például egy megszerkesztett szöveg veszhetnek el. Végül megjegyezzük, hogy a páros paritású kód melyben minden kódszó súlya páros, ugyanúgy viselkedik, mint a páratlan paritású. Egy hibát jelzı 7 bites (4 bit hasznos információt tartalmazó), úgynevezett Hamming kód A következı 7 bites kódban az elsı 4 bit hordozza az információt, a maradék 3 azt eredményezi, hogy bármelyik 2 kódszó között a Hamming távolság legalább 3, azaz a kód 1 hiba javítására alkalmazható:

8 Informatika alapjai-3 Kódolás 8/9 Például két, a táblázatból vett kód Hamming távolsága: Kód Kód Különbség (Megjegyezzük, hogy a fenti kódban a kiegészítı biteket szisztematikusan hoztuk létre). Kiegészített Hamming kód Az elızı kódhoz tegyünk hozzá egy páratlan paritásbitet. Ekkor a kódszavak minimális távolsága 4 lesz (ez nem magától értetıdı, de ellenırizhetı!): Így a kód egy hiba javítására, két hiba jelzésére használható. Kiegészített Hamming kódot (csak nem 8, hanem 21 bitest) használnak a PC-k ECC memóriáiban. ECC: Error Correcting Code). Egy érdekes kód Gray kód Pozició (helyzet) kódolására használják. Az egymásután következı pozíciók kódja egy Hamming távolságú. Igy a pozíció érzékelık (pl. foto érzékelık) a pozíció határ átmenetnél nem adnak hibásan "távoli" pozíciót jelentı kódot, ahogy az több Haming távolságú kód estén elıfordulhatna. Egy 3 bites Gray kód (egy n bites Gray kód nem túl bonyolult algoritmussal generálható az n bites bináris kódból): 000 Az ábra a 3 bites Gray kód alkalmazását mutatja 001 egy úgynevezett kódtárcsán. A kódtárcsán lévı 011 csíkokat 3 érzékelı figyeli, így az elfordulást 1/8 010 kör felbontással lehet jelezni. Látszik, hogy az 110 átmeneteknél mindíg csak az egyik csík 111 változik A kódolás elmélet a matematika nagy fontosságú (és nagyon bonyolult) ága. Bonyolult kódolási eljárásokat alkalmaznak tömörítésre, hibavédelemre és titkosításra. Titkosítás A titkosítás célja az, hogy csak az tudja elolvasni az üzenetet, akinek szól. Titkos az, amit nem tudunk elolvasni, például - hieroglifák - bármilyen idegen nyelv, amit nem ismerünk - számítógép belsı ábrázolásban adott kódsorozat, például: 496E666F726D B C61706A6169 (Informatika alapjai) A jó titkosírást a kulcs ismerete nélkül nagyon nehéz, vagy gyakorlatilag lehetetlen megfejteni. Kulcs: szótár és/vagy algoritmus, amivel az üzenet titkosítható és megfejthetı. A klasszikus titkosírásokban kétféle módszert alkalmaztak: - helyettesítés, ennek egyszerő esete a karakterkódok hexadecimális megadása.

9 Informatika alapjai-3 Kódolás 9/9 - áthelyezés, amikor a szöveg karaktereit átrendezik. Az áthelyezéses titkosítás klasszikus esete a perforált négyzetrács alkalmazása. Készítsünk négyzetrácsot, melyen a négyzeteket úgy perforálják, hogy a négyzetet 90 fokonként forgatva mindig más helyen legyenek a lyukak (szorgalmi feladat: hogyan lehet ilyen négyzetrácsot készíteni?): A rácson lévı üres helyekre beírjuk az INFORMATIKA ALAP szöveg elsı 4 betőjét, majd 90 fokkal elforgatjuk a rácsot, és folytatjuk. Ezt négyszer lehet ismételni. A rács levétele után a jobb oldalon lévı négyzet látszik. A titkos üzenet: IAIRMKLNAAFAPOT. A megfejtéshez négyzetbe rendezve le kell írni a titkosított szöveget, majd a rácsot ráhelyezve és forgatva az eredeti szöveg elolvasható. A gyakorlatban sokkal nagyobb négyzetrácsot készítenek, amelyik nehezebben megfejthetı. Ehhez hasonló elven mőködött a 2. világháborúban a német tengeralattjárókon alkalmazott Enigma titkosító abban a szöveget háromszor egymás után titkosították, azaz az átrendezett szöveget egy másik kulccsal újra átrendezték. A szövetségesek a kódot sok-sok üzenetet elemezve megfejtették. Természetesen a helyettesítés és áthelyezés kombinálható. A számítógépes világban széleskörően alkalmazzák a titkosítást. Kétféle alkalmazást különböztetnek meg: - titkos kulcsú. Ennél a titkosításra használt kulcs alkalmazható a dekódolásra is. Ha valaki hozzájut a kulcshoz, az meg tudja fejteni az üzenetet. A titkos kulcs megvan az üzenetküldınél és a vevınél is. Ha a kulcsot ellopják, vagy feltörik, az üzenet megfejthetı. - nyilvános kulcsú: a titkosításra más kulcs szolgál, mint a dekódolásra. A titkosításra szolgáló kulcs nyilvános lehet, így bárki küldhet titkos üzenetet, amit viszont csak a jogosított vevı akinél a kulcs van tud dekódolni. A titkos kulcs csak a vevınél van meg, az üzenetküldı(k) csak a nyilvános kulcsot kapják meg. Ha a nyilvános kulcsot ellopják, csak üzenetet küldeni tudnak, dekódolni nem. Hivatkozások Titkosítás Titkos kulcsú titkosítás Nyilvános kulcsú titkosítás

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem 1. A Huffman-kód prefix és forráskiterjesztéssel optimálissá tehető, ezért nem szükséges hozzá a forrás valószínűség-eloszlásának ismerete. 2. Lehet-e tökéletes kriptorendszert készíteni? Miért? a. Lehet,

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF

Részletesebben

KÓDOLÁSTECHNIKA PZH. 2006. december 18.

KÓDOLÁSTECHNIKA PZH. 2006. december 18. KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)

Részletesebben

Kódoláselméleti alapfogalmak

Kódoláselméleti alapfogalmak Kódoláselméleti alapfogalmak Benesóczky Zoltán 2005 Ez összefoglaló digitális technika tantárgy kódolással foglalkozó anyagrészéhez készült, az informatika szakos hallgatók részére. Több-kevesebb részletességgel

Részletesebben

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

Hibadetektáló és javító kódolások

Hibadetektáló és javító kódolások Hibadetektáló és javító kódolások Számítógépes adatbiztonság Hibadetektálás és javítás Zajos csatornák ARQ adatblokk meghibásodási valószínségének csökkentése blokk bvítése redundáns információval Hálózati

Részletesebben

dolás, felbontható kód Prefix kód Blokk kódk Kódfa

dolás, felbontható kód Prefix kód Blokk kódk Kódfa Kódelméletlet dolás dolás o Kódolás o Betőnk nkénti nti kódolk dolás, felbontható kód Prefix kód Blokk kódk Kódfa o A kódok k hosszának alsó korlátja McMillan-egyenlıtlens tlenség Kraft-tételetele o Optimális

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

Jel, adat, információ

Jel, adat, információ Kommunikáció Jel, adat, információ Jel: érzékszerveinkkel, műszerekkel felfogható fizikai állapotváltozás (hang, fény, feszültség, stb.) Adat: jelekből (számítástechnikában: számokból) képzett sorozat.

Részletesebben

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu

Részletesebben

Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke

Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke Kódolások Adatok kódolása Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke Kilo K 1 000 Kibi Ki 1 024 Mega

Részletesebben

INFORMATIKA MATEMATIKAI ALAPJAI

INFORMATIKA MATEMATIKAI ALAPJAI INFORMATIKA MATEMATIKAI ALAPJAI Készítette: Kiss Szilvia ZKISZ informatikai szakcsoport Az információ 1. Az információ fogalma Az érzékszerveinken keresztül megszerzett új ismereteket információnak nevezzük.

Részletesebben

Számítógépes Grafika SZIE YMÉK

Számítógépes Grafika SZIE YMÉK Számítógépes Grafika SZIE YMÉK Analóg - digitális Analóg: a jel értelmezési tartománya (idő), és az értékkészletes is folytonos (pl. hang, fény) Diszkrét idejű: az értelmezési tartomány diszkrét (pl. a

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

LCD kezelési útmutató 4.1 verzióhoz

LCD kezelési útmutató 4.1 verzióhoz LCD kezelési útmutató 4.1 verzióhoz 1. Fıképernyı Az LCD modul egy 4 soros és soronként 20 karakteres képernyıvel rendelkezik. A számbillentyőzeten megtalálhatóak 0-9-ig a számok. A * és # gombok funkció

Részletesebben

2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.)

2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.) 2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.) 2. Digitálistechnikai alapfogalmak II. Ahhoz, hogy valamilyen szinten követni tudjuk a CAN hálózatban létrejövő információ-átviteli

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Balázs Ildikó* ELEKTRONIKUS KOMMUNIKÁCIÓ JÖVİNK KULCSAI

Balázs Ildikó* ELEKTRONIKUS KOMMUNIKÁCIÓ JÖVİNK KULCSAI Balázs Ildikó* ELEKTRONIKUS KOMMUNIKÁCIÓ JÖVİNK KULCSAI AZ INFORMATIKA TÉRNYERÉSE A HÉTKÖZNAPI ÉLETBEN, AZ ÜZLETI FOLYAMATOKBAN A számítástechnika, a digitális számítógépek története minden más korábbi

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Verzió: 1.7 Dátum: 2010-02-18. Elektronikus archiválási útmutató

Verzió: 1.7 Dátum: 2010-02-18. Elektronikus archiválási útmutató Verzió: 1.7 Dátum: 2010-02-18 Elektronikus archiválási útmutató Tartalom 1 Bevezetés... 2 2 Az archiválandó e-akta összeállítása... 2 2.1 Metaadatok kitöltése... 2 2.2 Az archiválandó e-akta összeállítása...

Részletesebben

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA 1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.

Részletesebben

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Budapesti Műszaki Főiskola, NIK, Matematikai és Számítástudományi

Részletesebben

A tartalomelemzés szőkebb értelemben olyan szisztematikus kvalitatív eljárás, amely segítségével bármely szöveget értelmezni tudunk, és

A tartalomelemzés szőkebb értelemben olyan szisztematikus kvalitatív eljárás, amely segítségével bármely szöveget értelmezni tudunk, és Tartalomelemzés A tartalomelemzés szőkebb értelemben olyan szisztematikus kvalitatív eljárás, amely segítségével bármely szöveget értelmezni tudunk, és végeredményben a szöveg írójáról vonhatunk le következtetéseket.

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Jelek típusai Átalakítás az analóg és digitális rendszerek között http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA 3/1

Részletesebben

Számítógépes Hálózatok. 5. gyakorlat

Számítógépes Hálózatok. 5. gyakorlat Számítógépes Hálózatok 5. gyakorlat Feladat 0 Számolja ki a CRC kontrollösszeget az 11011011001101000111 üzenetre, ha a generátor polinom x 4 +x 3 +x+1! Mi lesz a 4 bites kontrollösszeg? A fenti üzenet

Részletesebben

Számrendszerek és az informatika

Számrendszerek és az informatika Informatika tehetséggondozás 2012-2013 3. levél Az első levélben megismertétek a számrendszereket. A másodikban ízelítőt kaptatok az algoritmusos feladatokból. A harmadik levélben először megnézünk néhány

Részletesebben

Kvantum-hibajavítás I.

Kvantum-hibajavítás I. LOGO Kvantum-hibajavítás I. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Ismétléses kódolás Klasszikus hibajavítás Klasszikus modell: BSC (binary symmetric channel) Hibavalószínűség: p p 0.5

Részletesebben

Titkosítás NetWare környezetben

Titkosítás NetWare környezetben 1 Nyílt kulcsú titkosítás titkos nyilvános nyilvános titkos kulcs kulcs kulcs kulcs Nyilvános, bárki által hozzáférhető csatorna Nyílt szöveg C k (m) Titkosított szöveg Titkosított szöveg D k (M) Nyílt

Részletesebben

MIKROFYN GÉPVEZÉRLÉSEK. 2D megoldások:

MIKROFYN GÉPVEZÉRLÉSEK. 2D megoldások: MIKROFYN GÉPVEZÉRLÉSEK Néhány szó a gyártóról: Az 1987-es kezdés óta a Mikrofyn A/S a világ öt legnagyobb precíziós lézer és gépvezérlés gyártója közé lépett. A profitot visszaforgatta az új termékek fejlesztésébe

Részletesebben

Statisztikai módszerek

Statisztikai módszerek Statisztikai módszerek A hibaelemzı módszereknél azt néztük, vannak-e kiugró, kritikus hibák, amelyek a szabályozás kivételei. Ezekkel foglalkozni kell; minıségavító szabályozásra van szükség. A statisztikai

Részletesebben

Aszinkron sorrendi hálózatok

Aszinkron sorrendi hálózatok Aszinkron sorrendi hálózatok Benesóczky Zoltán 24 A jegyzetet a szerzıi jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerzı belegyezése szükséges.

Részletesebben

Kriptográfia I. Kriptorendszerek

Kriptográfia I. Kriptorendszerek Kriptográfia I Szimmetrikus kulcsú titkosítás Kriptorendszerek Nyíltszöveg üzenettér: M Titkosított üzenettér: C Kulcs tér: K, K Kulcsgeneráló algoritmus: Titkosító algoritmus: Visszafejt algoritmus: Titkosítás

Részletesebben

Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.

Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük. Kedves Diákok! Szeretettel köszöntünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással

Részletesebben

AST_v3\ 3.1.3. 3.2.1.

AST_v3\ 3.1.3. 3.2.1. AST_v3\ 3.1.3. 3.2.1. Hibakezelés Az adatfolyam eddig megismert keretekre bontása hasznos és szükséges, de nem elégséges feltétele az adatok hibamentes és megfelelő sorrendű átvitelének. Az adatfolyam

Részletesebben

Tudnivalók az otthon kidolgozandó feladatokról

Tudnivalók az otthon kidolgozandó feladatokról Tudnivalók az otthon kidolgozandó feladatokról Otthon kidolgozandó feladat megoldásának beküldése csak azok számára kötelező, akik fölvették az Assembly programozás konzultáció kurzust. Minden hallgató,

Részletesebben

XII. Bolyai Konferencia. Bodnár József Eötvös Collegium II. matematikus, ELTE TTK

XII. Bolyai Konferencia. Bodnár József Eötvös Collegium II. matematikus, ELTE TTK XII. Bolyai Konferencia Bodnár József Eötvös Collegium II. matematikus, ELTE TTK A legegyszerűbb titkosírás: a betűcsere A B C D E... C A B E D... AD --> CE Állandó helyettesítési séma Váltogatott kulcs:

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

Szakdolgozat. Pongor Gábor

Szakdolgozat. Pongor Gábor Szakdolgozat Pongor Gábor Debrecen 2009 Debreceni Egyetem Informatikai Kar Egy kétszemélyes játék számítógépes megvalósítása Témavezetı: Mecsei Zoltán Egyetemi tanársegéd Készítette: Pongor Gábor Programozó

Részletesebben

Információ kommunikáció

Információ kommunikáció Információ kommunikáció A 9. osztályos munkafüzet feladatainak megoldása Nemzeti Tankönyvkiadó, 2006 (Rsz.: 16172/M) A munkafüzethez további feladatok találhatók a Nemzeti Tankönyvkiadó webhelyén (www.ntk.hu).

Részletesebben

Mesterséges Intelligencia I.

Mesterséges Intelligencia I. Mesterséges Intelligencia I. 10. elıadás (2008. november 10.) Készítette: Romhányi Anita (ROANAAT.SZE) - 1 - Statisztikai tanulás (Megfigyelések alapján történı bizonytalan következetésnek tekintjük a

Részletesebben

Analóg és digitális jelek. Az adattárolás mértékegységei. Bit. Bájt. Nagy mennyiségû adatok mérése

Analóg és digitális jelek. Az adattárolás mértékegységei. Bit. Bájt. Nagy mennyiségû adatok mérése Analóg és digitális jelek Analóg mennyiség: Értéke tetszõleges lehet. Pl.:tömeg magasság,idõ Digitális mennyiség: Csak véges sok, elõre meghatározott értéket vehet fel. Pl.: gyerekek, feleségek száma Speciális

Részletesebben

Relációk. 1. Descartes-szorzat. 2. Relációk

Relációk. 1. Descartes-szorzat. 2. Relációk Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram. 1. Descartes-szorzat 1. Deníció. Tetsz leges két a, b objektum

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

Méretlánc (méretháló) átrendezés elmélete

Méretlánc (méretháló) átrendezés elmélete Méretlánc (méretháló) átrendezés elmélete Tőrés, bázis fogalma és velük kapcsolatos szabályok: Tőrés: A beszerelendı, vagy megmunkálandó alkatrésznek a névleges és a valós mérete közötti megengedhetı legnagyobb

Részletesebben

Az információ a hétköznapi használati eszköz

Az információ a hétköznapi használati eszköz Az információ a hétköznapi használati eszköz Budapest, 2006.10.08 Zubonyai Tibor (tibor.zubonyai@ibssa.org) (www.ibssa.hu) Ennek a cikknek a megírását egy korábbi az IBSSA magazinban megjelent (Business

Részletesebben

Tömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása

Tömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása Tömbök kezelése Példa: Vonalkód ellenőrzőjegyének kiszámítása A számokkal jellemzett adatok, pl. személyi szám, adószám, taj-szám, vonalkód, bankszámlaszám esetében az elírásból származó hibát ún. ellenőrző

Részletesebben

Kódolás, hibajavítás. Tervezte és készítette Géczy LászlL. szló 2002

Kódolás, hibajavítás. Tervezte és készítette Géczy LászlL. szló 2002 Kódolás, hibajavítás Tervezte és készítette Géczy LászlL szló 2002 Jelkapcsolat A jelkapcsolatban van a jelforrás, amely az üzenő, és a jelérzékelő (vevő, fogadó), amely az értesített. Jelforrás üzenet

Részletesebben

Microsoft Excel. Táblázatkezelés. Dr. Dienes Beatrix

Microsoft Excel. Táblázatkezelés. Dr. Dienes Beatrix Microsoft Excel Táblázatkezelés Dr. Dienes Beatrix A táblázatkezelı feladata: Táblázatosan elrendezett adatok hatékony és látványos kezelése. Nagy adathalmazok adatbázis-kezelı Legfontosabb szolgáltatások:

Részletesebben

A LOGSYS GUI. Fehér Béla Raikovich Tamás, Laczkó Péter BME MIT FPGA laboratórium

A LOGSYS GUI. Fehér Béla Raikovich Tamás, Laczkó Péter BME MIT FPGA laboratórium BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK A LOGSYS GUI Fehér Béla Raikovich Tamás, Laczkó Péter BME MIT atórium

Részletesebben

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal

Részletesebben

1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció

1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció 1. Az információ 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció A tárgyaknak mérhető és nem mérhető, számunkra fontos tulajdonságait adatnak nevezzük. Egy tárgynak sok tulajdonsága

Részletesebben

Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt.

Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt. Digitális mérőműszerek Digitális jelek mérése Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt. MIRŐL LESZ SZÓ? Mit mérjünk? Hogyan jelentkezik a minőségromlás digitális jel esetében?

Részletesebben

2009.03.16. Ezeket a kiemelkedı sebességő számítógépeket nevezzük szuperszámítógépeknek.

2009.03.16. Ezeket a kiemelkedı sebességő számítógépeket nevezzük szuperszámítógépeknek. A számítási kapacitás hiánya a világ egyik fontos problémája. Számos olyan tudományos és mőszaki probléma létezik, melyek megoldásához a szokásos számítógépek, PC-k, munkaállomások, de még a szerverek

Részletesebben

Kártyaforgatós trükk Hibaészlelés és - javítás

Kártyaforgatós trükk Hibaészlelés és - javítás 4. foglalkozás Kártyaforgatós trükk Hibaészlelés és - javítás Tartalom Amikor lemezen adatot tárolunk vagy egyik számítógépről a másikra továbbítjuk, általában azt feltételezzük, hogy az nem változik a

Részletesebben

Adatbáziskezelés alapjai. jegyzet

Adatbáziskezelés alapjai. jegyzet Juhász Adrienn Adatbáziskezelés alapja 1 Adatbáziskezelés alapjai jegyzet Készítette: Juhász Adrienn Juhász Adrienn Adatbáziskezelés alapja 2 Fogalmak: Adatbázis: logikailag összefüggı információ vagy

Részletesebben

IT BIZTONSÁGTECHNIKA. Tanúsítványok. Nagy-Löki Balázs MCP, MCSA, MCSE, MCTS, MCITP. Készítette:

IT BIZTONSÁGTECHNIKA. Tanúsítványok. Nagy-Löki Balázs MCP, MCSA, MCSE, MCTS, MCITP. Készítette: IT BIZTONSÁGTECHNIKA Tanúsítványok Készítette: Nagy-Löki Balázs MCP, MCSA, MCSE, MCTS, MCITP Tartalom Tanúsítvány fogalma:...3 Kategóriák:...3 X.509-es szabvány:...3 X.509 V3 tanúsítvány felépítése:...3

Részletesebben

Statisztikai függvények

Statisztikai függvények EXCEL FÜGGVÉNYEK 9/1 Statisztikai függvények ÁTLAG(tartomány) A tartomány terület numerikus értéket tartalmazó cellák értékének átlagát számítja ki. Ha a megadott tartományban nincs numerikus értéket tartalmazó

Részletesebben

1. tétel. A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei. Informatika érettségi (diák)

1. tétel. A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei. Informatika érettségi (diák) 1. tétel A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei Ismertesse a kommunikáció általános modelljét! Mutassa be egy példán a kommunikációs

Részletesebben

Tisztán kivehetı tendencia: kommunikációs hálózatok egyre bonyolultabbakká válnak Hálózat bonyolultsága

Tisztán kivehetı tendencia: kommunikációs hálózatok egyre bonyolultabbakká válnak Hálózat bonyolultsága @ Budapest University of Technology and Economics Nagy hálózatok evolúciója Gulyás András, Heszberger Zalán High Speed Networks Laboratory Internet trendek Tisztán kivehetı tendencia: kommunikációs hálózatok

Részletesebben

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás

Részletesebben

DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 12. LECTURE: FUNCTIONAL BUILDING BLOCKS III

DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 12. LECTURE: FUNCTIONAL BUILDING BLOCKS III 22.2.7. DIGITL TECHNICS I Dr. álint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: FUNCTIONL UILDING LOCKS III st year Sc course st (utumn) term 22/23 (Temporary, not-edited

Részletesebben

Informatika Rendszerek Alapjai

Informatika Rendszerek Alapjai Informatika Rendszerek Alapjai Dr. Kutor László Jelek típusai Átalakítás analóg és digitális rendszerek között http://uni-obuda.hu/users/kutor/ IRA 2014 2014. ősz IRA3/1 Analóg jelek digitális feldolgozhatóságának

Részletesebben

EuroOffice Professzionális Vonalkód és QR kód generátor

EuroOffice Professzionális Vonalkód és QR kód generátor 1. oldal EuroOffice Professzionális Vonalkód és QR kód generátor Az EuroOffice Professzionális Vonalkód és QR kód generátor segítségével könnyen elkészítheti az EuroOffice (vagy egyéb OpenOffice.org alkalmazás)

Részletesebben

Számrendszerek. Bináris, hexadecimális

Számrendszerek. Bináris, hexadecimális Számrendszerek Bináris, hexadecimális Mindennapokban használt számrendszerek Decimális 60-as számrendszer az időmérésre DNS-ek vizsgálata négyes számrendszerben Tetszőleges természetes számot megadhatunk

Részletesebben

Méréstechnikai alapfogalmak

Méréstechnikai alapfogalmak Méréstechnikai alapfogalmak 1 Áttekintés Tulajdonság, mennyiség Mérés célja, feladata Metrológia fogalma Mérıeszközök Mérési hibák Mérımőszerek metrológiai jellemzıi Nemzetközi mértékegységrendszer Munka

Részletesebben

Kvantumkriptográfia III.

Kvantumkriptográfia III. LOGO Kvantumkriptográfia III. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Tantárgyi weboldal: http://www.hit.bme.hu/~gyongyosi/quantum/ Elérhetőség: gyongyosi@hit.bme.hu A kvantumkriptográfia

Részletesebben

5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél

5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél 5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél Célok Átkapcsolás a Windows Számológép két működési módja között. A Windows Számológép használata a decimális (tízes), a bináris

Részletesebben

Biztonsági rendszerekek 2 Vezérlı berendezés

Biztonsági rendszerekek 2 Vezérlı berendezés Biztonsági rendszerekek 2 Vezérlı berendezés Villamosmérnök BSc szak Az irányítási feladatot megoldó berendezés Alapjeladó Összehasonlító Kezelı felület Érzékelı Szabályozó Központi vezérlı Vasúti folyamat

Részletesebben

Excel Hivatkozások, függvények használata

Excel Hivatkozások, függvények használata Excel Hivatkozások, függvények használata 1. Fejezet Adatok, képletek, függvények Adatok táblázat celláiba írjuk, egy cellába egy adat kerül lehet szám, vagy szöveg * szám esetén a tizedes jegyek elválasztásához

Részletesebben

MOBILBIZTONSÁG AUTENTIKÁCIÓ. Készítette: Czuper László & Bagosi Antal 2007.11.20.

MOBILBIZTONSÁG AUTENTIKÁCIÓ. Készítette: Czuper László & Bagosi Antal 2007.11.20. MOBILBIZTONSÁG AUTENTIKÁCIÓ Készítette: Czuper László & Bagosi Antal 2007.11.20. BEVEZETÉS A GSM megalkotói többszintő védelmi rendszert dolgoztak ki az elıfizetık személyiségének védelme érdekében. A

Részletesebben

A gyakorlatokhoz kidolgozott DW példák a gyakorlathoz tartozó Segédlet könyvtárban találhatók.

A gyakorlatokhoz kidolgozott DW példák a gyakorlathoz tartozó Segédlet könyvtárban találhatók. Megoldás Digitális technika II. (vimia111) 1. gyakorlat: Digit alkatrészek tulajdonságai, funkcionális elemek (MSI) szerepe, multiplexer, demultiplexer/dekóder Elméleti anyag: Digitális alkatrészcsaládok

Részletesebben

Képszerkesztés elméleti kérdések

Képszerkesztés elméleti kérdések Képszerkesztés elméleti kérdések 1. A... egyedi alkotó elemek, amelyek együttesen formálnak egy képet.(pixelek) a. Pixelek b. Paletták c. Grafikák d. Gammák 2. Az alábbiak közül melyik nem színmodell?

Részletesebben

BEVEZETÉS ATOM SL 3.0 / 5.0 / 6.0

BEVEZETÉS ATOM SL 3.0 / 5.0 / 6.0 KERÉKPÁRKOMPUTER BEVEZETÉS Köszönjük, hogy a Blackburn Atom sorozatból választott komputert. A Blackburn komputerek a legkiválóbb minıségő anyagok és gyártási szabványok alkalmazásával készülnek. Ez a

Részletesebben

Java II. I A Java programozási nyelv alapelemei

Java II. I A Java programozási nyelv alapelemei Java2 / 1 Java II. I A Java programozási nyelv alapelemei Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2009. 02. 09. Java II.: Alapelemek JAVA2 / 1 A Java formalizmusa A C, illetve

Részletesebben

MŐSZAKI INFORMATIKAI MÉRNÖKASSZISZTENS. OKJ száma: 55 810 01 0010 55 010

MŐSZAKI INFORMATIKAI MÉRNÖKASSZISZTENS. OKJ száma: 55 810 01 0010 55 010 MŐSZAKI INFORMATIKAI MÉRNÖKASSZISZTENS felsıfokú szakképzés OKJ száma: 55 810 01 0010 55 010 Érvényes: A 2009/10-es tanévtıl kezdve felmenı rendszerben. Dr. Skrop Adrienn szakvezetı Dr. Friedler Ferenc

Részletesebben

8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete

8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete 8. Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus gyakran olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Sok optimalizálási probléma esetén

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

Dr. Bakonyi Péter c.docens

Dr. Bakonyi Péter c.docens Elektronikus aláírás Dr. Bakonyi Péter c.docens Mi az aláírás? Formailag valamilyen szöveg alatt, azt jelenti, hogy valamit elfogadok valamit elismerek valamirıl kötelezettséget vállalok Azonosítja az

Részletesebben

PMU Kezdı lépések. 6-0 Csatlakozás LG GLOFA-GM és SAMSUNG PLC-hez. 6-1 Kommunikáció LG PMU és LG GLOFA-GM7 / GM6 / GM4 között

PMU Kezdı lépések. 6-0 Csatlakozás LG GLOFA-GM és SAMSUNG PLC-hez. 6-1 Kommunikáció LG PMU és LG GLOFA-GM7 / GM6 / GM4 között -0 Csatlakozás LG GLOFA-GM és SAMSUNG PLC-hez -1 Kommunikáció LG PMU és LG GLOFA-GM / GM között -1-1 PLC programozó csatlakozója ( CPU loader port ) -1- PLC beépített C-NET csatlakozója (CPU C-net) -1-

Részletesebben

Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens

Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens A nyílt kulcsú titkosítás és a digitális aláírás Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens Budapest Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar Műszertechnikai és Automatizálási

Részletesebben

Kvantum-hibajavítás II.

Kvantum-hibajavítás II. LOGO Kvantum-hibajavítás II. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar A Shor-kódolás QECC Quantum Error Correction Coding A Shor-féle kódolás segítségével egyidejűleg mindkét típusú hiba

Részletesebben

E-mail cím létrehozása

E-mail cím létrehozása E-mail cím létrehozása A Moodle-rendszerben Ön akkor tudja regisztrálni magát, ha rendelkezik e-mail címmel. A Moodle ugyanis az Ön e-mail címére küld egy elektronikus levelet, amelyben a regisztráció

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Varga Tamás Matematikaverseny 8. osztályos feladatok megoldásai iskolai forduló 2010.

Varga Tamás Matematikaverseny 8. osztályos feladatok megoldásai iskolai forduló 2010. Varga Tamás Matematikaverseny 8. osztályos feladatok megoldásai iskolai forduló 2010. 1. feladat tengeren léket kapott egy hajó, de ezt csak egy óra múlva vették észre. Ekkorra már 3 m 3 víz befolyt a

Részletesebben

1. Fejtsd meg a keresztrejtvényt! Írd le, mit tudsz a függőleges sorban olvasható

1. Fejtsd meg a keresztrejtvényt! Írd le, mit tudsz a függőleges sorban olvasható 20. Fővárosi Informatika lkalmazói Tanulmány Verseny 2010/11. Elméleti feladatlap Szövegszerkesztés kategória Név:. Kerület: 1. Fejtsd meg a keresztrejtvényt! Írd le, mit tudsz a függőleges sorban olvasható

Részletesebben

A KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA INFORMATIKA TÉMAKÖREI: 1. Információs társadalom

A KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA INFORMATIKA TÉMAKÖREI: 1. Információs társadalom A KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA INFORMATIKA TÉMAKÖREI: 1. Információs társadalom 1.1. A kommunikáció 1.1.1. A kommunikáció általános modellje 1.1.2. Információs és kommunikációs technológiák és rendszerek

Részletesebben

Miért olyan fontos a minıségi pont?

Miért olyan fontos a minıségi pont? A fiókban látható konkrét minıségi pont értékek egy olyan általános számítás eredményei, ami a kulcsszó tökéletes egyezése esetére érvényesek. Miért olyan fontos a minıségi pont? A minıségi pont három

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

A Z E L E K T R O N I K U S A L Á Í R Á S J O G I S Z A B Á L Y O Z Á S A.

A Z E L E K T R O N I K U S A L Á Í R Á S J O G I S Z A B Á L Y O Z Á S A. JOGI INFORMATIKA A Z E L E K T R O N I K U S A L Á Í R Á S J O G I S Z A B Á L Y O Z Á S A. A kutatás a TÁMOP 4.2.4.A/2-11-1-2012-0001 azonosító számú Nemzeti Kiválóság Program Hazai hallgatói, illetve

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

61. Lecke Az anyagszerkezet alapjai

61. Lecke Az anyagszerkezet alapjai 61. Lecke Az anyagszerkezet alapjai GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Törtszámok bináris ábrázolása, Az információ értelmezése és mérése http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF NIK

Részletesebben

A LEGGYAKORIBB HIBA : A GYŐJTİSZÁMLÁRA UTALÁS MÉG NEM JELENTI A KÖLTSÉGTÉRÍTÉS AUTOMATIKUS BEFIZETÉSÉT!!!

A LEGGYAKORIBB HIBA : A GYŐJTİSZÁMLÁRA UTALÁS MÉG NEM JELENTI A KÖLTSÉGTÉRÍTÉS AUTOMATIKUS BEFIZETÉSÉT!!! KÖLTSÉGTÉRÍTÉS BEFIZETÉSE A NEPTUNON 1. Amennyiben saját maga a befizetı : Elsısorban gondoskodnia kell róla, hogy a BME győjtıszámlára átutalja a megfelelı összeget. A BME győjtıszámlára bármely banknál

Részletesebben

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában 9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában Bevezet : A témakörben els - és másodfokú egyenl tlenségek megoldásának

Részletesebben

A cirill betős klaviatúra sajátosságai, oktatásmódszertanának jellegzetességei. Nyíregyházi Fıiskola, A Magyar Tudomány Ünnepe, 2009. november 10.

A cirill betős klaviatúra sajátosságai, oktatásmódszertanának jellegzetességei. Nyíregyházi Fıiskola, A Magyar Tudomány Ünnepe, 2009. november 10. A cirill betős klaviatúra sajátosságai, oktatásmódszertanának jellegzetességei. Nyíregyházi Fıiskola, A Magyar Tudomány Ünnepe, 2009. november 10. Elıadás A cirill betős klaviatúra sajátosságai, oktatásmódszertanának

Részletesebben

5.1 Környezet. 5.1.1 Hálózati topológia

5.1 Környezet. 5.1.1 Hálózati topológia 5. Biztonság A rendszer elsodleges célja a hallgatók vizsgáztatása, így nagy hangsúlyt kell fektetni a rendszert érinto biztonsági kérdésekre. Semmiképpen sem szabad arra számítani, hogy a muködo rendszert

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben