Hibadetektáló és javító kódolások

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Hibadetektáló és javító kódolások"

Átírás

1 Hibadetektáló és javító kódolások Számítógépes adatbiztonság Hibadetektálás és javítás Zajos csatornák ARQ adatblokk meghibásodási valószínségének csökkentése blokk bvítése redundáns információval Hálózati megoldások kis csatorna kapacitás, nem konstans átviteli ráta FEC broadcast, rossz csatorna, adattárolás 2

2 Hibák Véletlen bithibák Burst hibák Bit error rate BER Block error rate BLER Burst error length BERL 3 Becslés kis valószínségekkel p, q egymástól független kis meghibásodási valószínségek Meghibásodás valószínsége: becslés: p+q pontos érték: 1-1-p1-q=p+q-pq Példa: BER: 1:107, Mennyi a valószínsége a meghibásodásnak min 1 bit egy bites csomagban? becslés: 104 *10-7 =10-3 pontos: =

3 Csatornakapacitás Zajos csatornák adatátviteli kapacitása Shannon-Hartley tétel B sávszélesség S/N átlagos jel/zaj arány C = Blog 2 1+ S / N 5 Csatornakódolás kapacitástétele C csatornakapacitású csatornán a forrás szöveg K hosszúságú blokkjának bvítése N hosszúságúra tetszlegesen kicsivé teszi K meghibásodásának valószínségét, ha K/N<C, és K# 6

4 Kódolás Jelölések u := u1,u2,uk c := c1,c 2,c N c := f u Hamming távolság kód tér elemei között q d c, v : = #{ci vi } i =1 7 Kódolás folyt Dekódolás c = Dv u = f #1 c Kódtávolság dmin := min dc, c Kezelhet hibák t jel = dmin 1 t jav = Int dmin 1 2 8

5 Kódolás folyt Singleton korlát elhelyezhet kódszavak N hosszúságú vektorok, q elem ABC M q N#d min +1 MDS maximum distance separable kód egyenlség esetén Hamming korlát m K t jav N% $ 'q -1 i q N # i i=0 Perfekt kód egyenlség esetén 9 Paritás bit páros becslés páratlan paritás Paritás bitek Hibadetektálási képesség pl K=8, N=9 bin kódolás 1 paritás bit,ber 1:104 8 bites hibás üzenet paritás nélkül = paritással nem detektált hibás üzenet fels detektálható 1 bites hibák 9* * =

6 Két dimenziós paritás Paritás bitek Adatok Paritás bájt CRC üzenet polinom M és generátor polinom G osztásakor keletkez maradék R mint redundancia => C=M+R maradék nélkül osztható G-vel vett üzenet V, hiba E V=C+E válasszunk olyan G-t, hogy E-vel ne 0 maradékot adjon 12

7 CRC folyt MSG=1000 Mx = x 7 + x 4 + x 3 + x 1 Gx = x 3 + x M*x k = x 10 + x 7 + x 6 + x Generátor Üzenet Maradék XOR 101 = CRC folyt CRC generátor polinomok CRC CRC-8 CRC-10 CRC-12 CRC-16 CRC-CCITT CRC-32 Cx x 8 +x 2 +x 1 +1 x 10 +x 9 +x 5 +x 4 +x 1 +1 x 12 +x 11 +x 3 +x 2 +x 1 +1 x 16 +x 15 +x 2 +1 x 16 +x 12 +x 5 +1 x 32 +x 26 +x 23 +x 22 +x 16 +x 12 +x 11 +x 10 +x 8 +x 7 +x 5 +x 4 +x 2 +x+1 14

8 Internet checksum Gyorsan számolható 1-es komplemense 16 bites üzenetdarabok 1- es komplemens összegének Gyenge hibadetektálási tulajdonságok unsigned short tcpcksumstruct ep *pep, unsigned len { struct ip *pip = struct ip *pep->ep_data; struct tcp *ptcp = struct tcp *pip->ip_data; unsigned short*sptr; unsigned long tcksum; unsigned i; tcksum = 0; sptr = unsigned short * pip->ip_src; /* 2*IP_ALEN octets = IP_ALEN shorts */ /* they are in net order */ for i=0; i<ip_alen; ++i tcksum += *sptr++; sptr = unsigned short *ptcp; tcksum += hs2netipt_tcp + len; if len % 2 { char *ptcp[len] = 0; /* pad */ len += 1; /* for the following division */ } len >>= 1; /* convert to length in shorts */ for i=0; i<len; ++i tcksum += *sptr++; tcksum = tcksum >> 16 + tcksum 0xffff; tcksum += tcksum >> 16; return short~tcksum 0xffff; } 15 Hibajavító kódolás Forward Error Correction nagyobb redundancia nincs szükség visszacsatolásra állandó átviteli sebesség adattároló rendszerek, zajos csatornák pl rádió hálózatok Blokk kódok Konvolúciós kódok 16

9 Bináris lineáris kódok lineáris tér bázisai a kódszavak generátor, paritás ellenrz mátrix, szindróma c = u G G H T = 0 s T = H v T 17 Hamming kódolás 7,4 Hamming kód kódszó: D 7D6D5P4D3P2P1 Hamming távolság: 3 G := I k A T H := A I nk # % G = % % % $ ' # % H = % $ ' szisztematikus kód 18

10 Hamming kódolás folyt Példa Hamming15, x100x0xx Transmit it with an error: Compute parities: Bit in binary is in error Flip it: Extract the data: Véges testek Véges elemszámú halmazok Zártak egy + és * mveletre aritmetika moduló p-vel Van additív {0} és multiplikatív {1} elem GFq, q prím vagy prím hatvány p prím esetén {0,1,p-1} valós primitív elem: p-1-edik hatványnál éri el elször az egységelemet 20

11 Reed-Solomon kódolás Nem bináris lineáris kód Véges test feletti polinomok u = u1,u2,,uk ux = u0 + u1 x + u2 x 2 + # # # + uk $1 x K $1 c1 = u 0, c 2 = u 1, c 3 = u 2,, c N = u N #1 GFq primitív eleme $ G = K #1 2K #1 3K #1 %1 ' 2N #1 3N #1 K #1N #1 1 N #1 $ H = 4 1 N #K % N #K 3N #K ' N #K N #1 N #1 2N #1 3N #1 4N #1 21 Reed-Solomon kódolás folyt Törlések és hibák javítása szindrómákra vonatkozó egyenletrendszerek megoldása Alkalmazások 8-bites byte ABC használata RS 255,223 CD lemezek, rtávközlés, xdsl, RAID 6 22

KÓDOLÁSTECHNIKA PZH. 2006. december 18.

KÓDOLÁSTECHNIKA PZH. 2006. december 18. KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)

Részletesebben

Számítógépes Hálózatok 2012

Számítógépes Hálózatok 2012 Számítógépes Hálózatok 22 4. Adatkapcsolati réteg CRC, utólagos hibajavítás Hálózatok, 22 Hibafelismerés: CRC Hatékony hibafelismerés: Cyclic Redundancy Check (CRC) A gyakorlatban gyakran használt kód

Részletesebben

Hibajavító kódok május 31. Hibajavító kódok 1. 1

Hibajavító kódok május 31. Hibajavító kódok 1. 1 Hibajavító kódok 2007. május 31. Hibajavító kódok 1. 1 Témavázlat Hibajavító kódolás Blokk-kódok o Hamming-távolság, Hamming-súly o csoportkód o S n -beli u középpontú t sugarú gömb o hibajelzı képesség

Részletesebben

Az adatkapcsolati réteg

Az adatkapcsolati réteg Az adatkapcsolati réteg Programtervező informatikus BSc Számítógép hálózatok és architektúrák előadás Az adatkapcsolati réteg A fizikai átviteli hibáinak elfedése a hálózati réteg elől Keretezés Adatfolyam

Részletesebben

Hibajavítás, -jelzés. Informatikai rendszerek alapjai. Horváth Árpád november 24.

Hibajavítás, -jelzés. Informatikai rendszerek alapjai. Horváth Árpád november 24. Hibajavítás és hibajelzés Informatikai rendszerek alapjai Óbudai Egyetem Alba Regia M szaki Kar (AMK) Székesfehérvár 2016. november 24. Vázlat 1 Hibákról 2 Információátvitel diagrammja forrás csatorna

Részletesebben

Kódelméleti és kriptográai alkalmazások

Kódelméleti és kriptográai alkalmazások Kódelméleti és kriptográai alkalmazások Wettl Ferenc 2015. május 14. Wettl Ferenc Kódelméleti és kriptográai alkalmazások 2015. május 14. 1 / 11 1 Hibajavító kódok 2 Általánosított ReedSolomon-kód Wettl

Részletesebben

Visontay Péter (sentinel@sch.bme.hu) 2002. január. 1. Alapfogalmak

Visontay Péter (sentinel@sch.bme.hu) 2002. január. 1. Alapfogalmak Kódelmélet összefoglaló Visontay Péter (sentinel@schbmehu) 2002 január 1 Alapfogalmak Kódolás: a k hosszú u üzenetet egy n hosszú c kódszóba képézzük le Hibák: a csatorna két végén megjelenő c bemeneti

Részletesebben

Elosztott rendszerek

Elosztott rendszerek Elosztott rendszerek NGM_IN005_1 Szoftver hibat!rés Folyamat csoportok Folyamatok meghibásodása többszörözés -> folyamat csoportok Dinamikus folyamat csoportok transzparencia Egyszint! és hierarchikus

Részletesebben

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem 1. A Huffman-kód prefix és forráskiterjesztéssel optimálissá tehető, ezért nem szükséges hozzá a forrás valószínűség-eloszlásának ismerete. 2. Lehet-e tökéletes kriptorendszert készíteni? Miért? a. Lehet,

Részletesebben

Számítógépes Hálózatok 2013

Számítógépes Hálózatok 2013 Számítógépes Hálózatok 2013 3. Adatkapcsolati réteg Hibafelismerés és javítás, Hamming távolság, blokk kódok 1 Adatkapcsolati réteg (Data Link Layer) Az adatkapcsolati réteg feladatai: Szolgáltatásokat

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

Diszkrét matematika alapfogalmak

Diszkrét matematika alapfogalmak 2014 tavaszi félév Diszkrét matematika alapfogalmak 1 GRÁFOK 1.1 GRÁFÁBRÁZOLÁSOK 1.1.1 Adjacenciamátrix (szomszédsági mátrix) Szomszédok felsorolása, csak egyszerű gráfok esetén használható 1.1.2 Incidenciamátrix

Részletesebben

Diszkrét matematika II. feladatok

Diszkrét matematika II. feladatok Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden

Részletesebben

Miller-Rabin prímteszt

Miller-Rabin prímteszt Az RSA titkosítás Nyílt kulcsú titkosításnak nevezünk egy E : A B és D : B A leképezés-párt, ha bármely a A-ra D(E(a)) = a (ekkor E szükségképpen injektív leképezés), E ismeretében E(a) könnyen számítható,

Részletesebben

AST_v3\ 3.1.3. 3.2.1.

AST_v3\ 3.1.3. 3.2.1. AST_v3\ 3.1.3. 3.2.1. Hibakezelés Az adatfolyam eddig megismert keretekre bontása hasznos és szükséges, de nem elégséges feltétele az adatok hibamentes és megfelelő sorrendű átvitelének. Az adatfolyam

Részletesebben

Számítógépes Hálózatok. 4. gyakorlat

Számítógépes Hálózatok. 4. gyakorlat Számítógépes Hálózatok 4. gyakorlat Feladat 0 Számolja ki a CRC kontrollösszeget az 11011011001101000111 üzenetre, ha a generátor polinom x 4 +x 3 +x+1! Mi lesz a 4 bites kontrollösszeg? A fenti üzenet

Részletesebben

Ennek két lépéssel balra történõ ciklikus eltolása az alábbi.

Ennek két lépéssel balra történõ ciklikus eltolása az alábbi. CIKLIKUS KÓDOK (Az alábbiak feltételezik a "Hiradástechnika" c. könyv "7. Hibakorlátozó kódolás" fejezetének és a modulo-2 algebra alapjainak ismeretét.) 1. Alapfogalmak Definíció: egy lineáris kód ciklikus,

Részletesebben

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} 3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi

Részletesebben

Kvantum-hibajavítás I.

Kvantum-hibajavítás I. LOGO Kvantum-hibajavítás I. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Ismétléses kódolás Klasszikus hibajavítás Klasszikus modell: BSC (binary symmetric channel) Hibavalószínűség: p p 0.5

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? blokk-titkosító

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 2

Dr. Oniga István DIGITÁLIS TECHNIKA 2 Dr. Oniga István DIGITÁLIS TECHNIKA 2 Számrendszerek A leggyakrabban használt számrendszerek: alapszám számjegyek Tízes (decimális) B = 10 0, 1, 8, 9 Kettes (bináris) B = 2 0, 1 Nyolcas (oktális) B = 8

Részletesebben

Jel, adat, információ

Jel, adat, információ Kommunikáció Jel, adat, információ Jel: érzékszerveinkkel, műszerekkel felfogható fizikai állapotváltozás (hang, fény, feszültség, stb.) Adat: jelekből (számítástechnikában: számokból) képzett sorozat.

Részletesebben

Labancz Norbert. Hibajavító kódolás

Labancz Norbert. Hibajavító kódolás Eötvös Loránd Tudományegyetem Természettudományi kar Labancz Norbert Matematika BSc Alkalmazott matematikus szakirány Hibajavító kódolás Szakdolgozat Témavezet : Dr. Hermann Péter egyetemi docens Algebra

Részletesebben

Programozható vezérlő rendszerek KOMMUNIKÁCIÓS HÁLÓZATOK 2.

Programozható vezérlő rendszerek KOMMUNIKÁCIÓS HÁLÓZATOK 2. KOMMUNIKÁCIÓS HÁLÓZATOK 2. CAN busz - Autóipari alkalmazásokhoz fejlesztették a 80-as években - Elsőként a BOSCH vállalat fejlesztette - 1993-ban szabvány (ISO 11898: 1993) - Később fokozatosan az iparban

Részletesebben

Információs Technológia

Információs Technológia Információs Technológia (Struktúra, mutatók, függvényhívás) Fodor Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010 október 14/21. Struktúra

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Kódolás, hibajavítás. Tervezte és készítette Géczy LászlL. szló 2002

Kódolás, hibajavítás. Tervezte és készítette Géczy LászlL. szló 2002 Kódolás, hibajavítás Tervezte és készítette Géczy LászlL szló 2002 Jelkapcsolat A jelkapcsolatban van a jelforrás, amely az üzenő, és a jelérzékelő (vevő, fogadó), amely az értesített. Jelforrás üzenet

Részletesebben

DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 12. LECTURE: FUNCTIONAL BUILDING BLOCKS III

DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 12. LECTURE: FUNCTIONAL BUILDING BLOCKS III 22.2.7. DIGITL TECHNICS I Dr. álint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: FUNCTIONL UILDING LOCKS III st year Sc course st (utumn) term 22/23 (Temporary, not-edited

Részletesebben

Kombinációs hálózatok Számok és kódok

Kombinációs hálózatok Számok és kódok Számok és kódok A történelem folyamán kétféle számábrázolási mód alakult ki: helyiértékes számrendszerek nem helyiértékes számrendszerek n N = b i B i=0 i n b i B i B = (természetes) szám = számjegy az

Részletesebben

Feladat: Hogyan tudunk létrehozni egy olyan vector nevű tömb típust, amely egy háromdimenziós térbeli vektort reprezentál?

Feladat: Hogyan tudunk létrehozni egy olyan vector nevű tömb típust, amely egy háromdimenziós térbeli vektort reprezentál? Típus definiálás Ennek általános alakja: typedef típus név Feladat: Hogyan tudunk létrehozni egy olyan vector nevű tömb típust, amely egy háromdimenziós térbeli vektort reprezentál? typedef double vector[3];

Részletesebben

Számítógépes Hálózatok

Számítógépes Hálózatok Számítógépes Hálózatok 3. Előadás: Fizikai réteg II.rész Adatkapcsolati réteg Based on slides from Zoltán Ács ELTE and D. Choffnes Northeastern U., Philippa Gill from StonyBrook University, Revised Spring

Részletesebben

Információs Technológia

Információs Technológia Információs Technológia A C programozási nyelv (Típusok és operátorok) Fodor Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010 szeptember

Részletesebben

12. fejezet Hibajelző kódok és Adatkapcsolati protokollok

12. fejezet Hibajelző kódok és Adatkapcsolati protokollok 12. fejezet Hibajelző kódok és Adatkapcsolati protokollok Hibajelző kódok Az előzőekben tárgyalt hibajavító kódokat jellemzően olyan átviteli közegekben célszerű használni, ahol a kapcsolat kevésbé megbízható,

Részletesebben

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:...

10. Feladat. Döntse el, hogy igaz vagy hamis. Név:... 1. Feladat. Döntse el, hogy igaz vagy hamis. Név:........................................... (1) (1 3) = (3 1). (hamis) () (1 ) = ( 1). (igaz). Feladat. Döntse el, hogy igaz vagy hamis. Név:...........................................

Részletesebben

INFOKOMMUNIKÁCIÓS RENDSZEREK MENEDZSMENTJE

INFOKOMMUNIKÁCIÓS RENDSZEREK MENEDZSMENTJE BME Gazdaság- és Társadalomtudományi Kar Műszaki menedzser alapszak (BSc) INFOKOMMUNIKÁCIÓS RENDSZEREK MENEDZSMENTJE Digitális televíziózás egyetemi docens BME Távközlési és Médiainformatikai Tanszék Budapest,

Részletesebben

Infokommunikáció vizsga arnold-aaron5 - csodav - gyezo12 - mdavid94

Infokommunikáció vizsga arnold-aaron5 - csodav - gyezo12 - mdavid94 Infokommunikáció vizsga 2016.01.12. arnold-aaron5 - csodav - gyezo12 - mdavid94 1. Adott egy lineáris, szisztematikus kód generátor mátrixa. G= [ 1000110 0100101 0010011 0001111 ] a, Adja meg a paritásellenőrző

Részletesebben

Nógrádi Ábel. Lineáris hibajavító kódok

Nógrádi Ábel. Lineáris hibajavító kódok Eötvös Loránd Tudományegyetem Természettudományi Kar Nógrádi Ábel Lineáris hibajavító kódok BSc Szakdolgozat Alkalmazott Matematika Témavezet : Hermann Péter Algebra és Számelmélet Tanszék Budapest, 2015

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF

Részletesebben

Mobil kommunikáció /A mobil hálózat/ /elektronikus oktatási segédlet/ v3.0

Mobil kommunikáció /A mobil hálózat/ /elektronikus oktatási segédlet/ v3.0 Mobil kommunikáció /A mobil hálózat/ /elektronikus oktatási segédlet/ v3.0 Dr. Berke József berke@georgikon.hu 2006-2008 A MOBIL HÁLÓZAT - Tartalom RENDSZERTECHNIKAI FELÉPÍTÉS CELLULÁRIS FELÉPÍTÉS KAPCSOLATFELVÉTEL

Részletesebben

7. Adatkapcsolati réteg

7. Adatkapcsolati réteg 7. Adatkapcsolati réteg A fejezet tárgya a megbízható, hatékony kommunikáció megvalósítása két szomszédos gép között. Az alapvető követelmény az, hogy a továbbított bitek helyesen, s a küldés sorrendjében

Részletesebben

GPON rendszerek bevezetése, alkalmazása a Magyar Telekom hálózatában

GPON rendszerek bevezetése, alkalmazása a Magyar Telekom hálózatában GPON rendszerek bevezetése, alkalmazása a Magyar Telekom hálózatában 16. Távközlési és Informatikai Hálózatok Szeminárium és Kiállítás, 2008. 2008.10.16. 1. oldal Információéhség csökkentése: kép, mozgókép

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

Véletlen lineáris kódok hibajavító rátáiról

Véletlen lineáris kódok hibajavító rátáiról Szegedi Tudományegyetem Természettudományi és Informatikai Kar Bolyai Intézet Geometria Tanszék Diplomamunka Véletlen lineáris kódok hibajavító rátáiról Mezőfi Dávid Csaba alkalmazott matematikus hallgató

Részletesebben

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:

Részletesebben

Számítógépes Hálózatok. 5. gyakorlat

Számítógépes Hálózatok. 5. gyakorlat Számítógépes Hálózatok 5. gyakorlat Feladat 0 Számolja ki a CRC kontrollösszeget az 11011011001101000111 üzenetre, ha a generátor polinom x 4 +x 3 +x+1! Mi lesz a 4 bites kontrollösszeg? A fenti üzenet

Részletesebben

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 . Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,

Részletesebben

1. A maradékos osztás

1. A maradékos osztás 1. A maradékos osztás Egész számok osztása. 223 = 7 31 + 6. Visszaszorzunk 223 : 7 = 31 21 13 7 6 Állítás (számelméletből) Minden a, b Z esetén, ahol b 0, létezik olyan q, r Z, hogy a = bq + r és r < b.

Részletesebben

* Rendelje a PPP protokollt az TCP/IP rétegmodell megfelelő rétegéhez. Kapcsolati réteg

* Rendelje a PPP protokollt az TCP/IP rétegmodell megfelelő rétegéhez. Kapcsolati réteg ét * Rendelje a PPP protokollt az TCP/IP rétegmodell megfelelő Kapcsolati réteg A Pont-pont protokoll (általánosan használt rövidítéssel: PPP az angol Point-to-Point Protocol kifejezésből) egy magas szintű

Részletesebben

Kódolástechnika - 2006 - crysys web változat - 6. Kódolástechnika. Buttyán Levente Györfi László Győri Sándor Vajda István. 2006. december 18.

Kódolástechnika - 2006 - crysys web változat - 6. Kódolástechnika. Buttyán Levente Györfi László Győri Sándor Vajda István. 2006. december 18. Kódolástechnika Buttyán Levente Györfi László Győri Sándor Vajda István 2006. december 18. Tartalomjegyzék Előszó 5 1. Bevezetés 7 2. Hibajavító kódolás 9 2.1. Kódolási alapfogalmak.......................

Részletesebben

Aritmetikai utasítások I.

Aritmetikai utasítások I. Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást

Részletesebben

12. ADSL szolgáltatás

12. ADSL szolgáltatás 12. ADSL szolgáltatás Az ADSL (Asymmetric Digital Subscriber Line) vagyis Aszimmetrikus Digitális Előfizetői Vonal, egy a hagyományos telefonvonalak kihasználására létrehozott gyors adatátviteli technológia.

Részletesebben

Gigabit Ethernet, 10 Gigabit Ethernet. Jákó András goya@eik.bme.hu BME EISzK

Gigabit Ethernet, 10 Gigabit Ethernet. Jákó András goya@eik.bme.hu BME EISzK Gigabit Ethernet, 10 Gigabit Ethernet Jákó András goya@eik.bme.hu BME EISzK Agenda Előzmények Gigabit Ethernet 1000Base-X 1000Base-T 10 Gigabit Ethernet Networkshop 2002. Gigabit Ethernet, 10 Gigabit Ethernet

Részletesebben

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2. TARTALOMJEGYZÉK Polinomok konvolúviója A DFT és a maradékos osztás Gyűrűk támogatás nélkül Második nekifutás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. október 2. TARTALOMJEGYZÉK Polinomok

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek

Részletesebben

Informatikai Rendszerek Alapjai

Informatikai Rendszerek Alapjai Informatikai Rendszerek Alapjai Dr. Kutor László A redundancia fogalma és mérése Minimális redundanciájú kódok 1. http://uni-obuda.hu/users/kutor/ IRA 2014 könyvtár Óbudai Egyetem, NIK Dr. Kutor László

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

26.B 26.B. Analóg és digitális mennyiségek jellemzıi

26.B 26.B. Analóg és digitális mennyiségek jellemzıi 6.B Digitális alapáramkörök Logikai alapfogalmak Definiálja a digitális és az analóg jelek fogalmát és jellemzıit! Ismertesse a kettes és a tizenhatos számrendszer jellemzıit és az átszámítási algoritmusokat!

Részletesebben

Kódoláselméleti alapfogalmak

Kódoláselméleti alapfogalmak Kódoláselméleti alapfogalmak Benesóczky Zoltán 2005 Ez összefoglaló digitális technika tantárgy kódolással foglalkozó anyagrészéhez készült, az informatika szakos hallgatók részére. Több-kevesebb részletességgel

Részletesebben

OFDM technológia és néhány megvalósítás Alvarion berendezésekben

OFDM technológia és néhány megvalósítás Alvarion berendezésekben SCI-Network Távközlési és Hálózatintegrációs Rt. T.: 467-70-30 F.: 467-70-49 info@scinetwork.hu www.scinetwork.hu Nem tudtuk, hogy lehetetlen, ezért megcsináltuk. OFDM technológia és néhány megvalósítás

Részletesebben

Híradástechikai jelfeldolgozás

Híradástechikai jelfeldolgozás Híradástechikai jelfeldolgozás 13. Előadás 015. 04. 4. Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu

Részletesebben

Kvantum-hibajavítás II.

Kvantum-hibajavítás II. LOGO Kvantum-hibajavítás II. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar A Shor-kódolás QECC Quantum Error Correction Coding A Shor-féle kódolás segítségével egyidejűleg mindkét típusú hiba

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

Kriptográfia I. Kriptorendszerek

Kriptográfia I. Kriptorendszerek Kriptográfia I Szimmetrikus kulcsú titkosítás Kriptorendszerek Nyíltszöveg üzenettér: M Titkosított üzenettér: C Kulcs tér: K, K Kulcsgeneráló algoritmus: Titkosító algoritmus: Visszafejt algoritmus: Titkosítás

Részletesebben

Algoritmuselmélet 18. előadás

Algoritmuselmélet 18. előadás Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Kódolás. Informatika alapjai-3 Kódolás 1/9

Kódolás. Informatika alapjai-3 Kódolás 1/9 Informatika alapjai-3 Kódolás 1/9 Kódolás A hétköznapi életben a mennyiségek kétféleképpen jelennek meg: Analóg érték: folyamatosan változó, például pillanatnyi idı, egy test tömege. A valóságot leíró

Részletesebben

Számítógép-hálózatok. Egyetemi jegyzet. Ver 0.1 Vajda Tamás

Számítógép-hálózatok. Egyetemi jegyzet. Ver 0.1 Vajda Tamás Számítógép-hálózatok Egyetemi jegyzet Ver 0.1 Vajda Tamás Tartalom 1. Bevezetés:... 6 1.1. Meghatározás:... 6 1.2. Hálózatok alkalmazásai:... 6 1.3. Hálózat felépítése:... 7 1.3.1. Hálózati hardware osztályozása:...

Részletesebben

Számítógép-hálózatok Az adatkapcsolati réteg

Számítógép-hálózatok Az adatkapcsolati réteg Számítógép-hálózatok Az adatkapcsolati réteg 2016/2017. tanév, I. félév Dr. Kovács Szilveszter E-mail: szkovacs@iit.uni-miskolc.hu Informatikai Intézet 106/a. Tel: (46) 565-111 / 21-07 Dr. Kovács Szilveszter

Részletesebben

Lázár Zoltán. Dr. Eged Bertalan. BME Mikrohullámú Híradástechnika Tanszék. Vezetéknélküli Inofrmáció Technológia Laboratórium.

Lázár Zoltán. Dr. Eged Bertalan. BME Mikrohullámú Híradástechnika Tanszék. Vezetéknélküli Inofrmáció Technológia Laboratórium. Lázár Zoltán Dr. Eged Bertalan BME Mikrohullámú Híradástechnika Tanszék http://www.mht.bme.hu Vezetéknélküli Inofrmáció Technológia Laboratórium http://wit.mht.bme.hu hu 1 1. BEVEZETÉS...5 2. BLUETOOTH

Részletesebben

Kódolás. 1. Kódoláselméleti alapfogalmak. Informatika alapjai-3 Kódolás 1/8

Kódolás. 1. Kódoláselméleti alapfogalmak. Informatika alapjai-3 Kódolás 1/8 Informatika alapjai-3 Kódolás 1/8 Kódolás Analóg érték: folyamatosan változó, például pillanatnyi idő, egy test tömege. A valóságot leíró jellemzők nagyobbrészt ilyenek (a fizika szerint csak közelítéssel,

Részletesebben

ADATKAPCSOLATI PROTOKOLLOK

ADATKAPCSOLATI PROTOKOLLOK ADATKAPCSOLATI PROTOKOLLOK Hálózati alapismeretek OSI 1 Adatkapcsolati réteg működése Az adatkapcsolati protokollok feladata egy összeállított keret átvitele két csomópont között. Az adatokat a hálózati

Részletesebben

Programozás 5. Dr. Iványi Péter

Programozás 5. Dr. Iványi Péter Programozás 5. Dr. Iványi Péter 1 Struktúra Véges számú különböző típusú, logikailag összetartozó változó együttese, amelyeket az egyszerű kezelhetőség érdekében gyűjtünk össze. Rekord-nak felel meg struct

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 ) Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor

Részletesebben

Lineáris különböz ségek

Lineáris különböz ségek Ivanyos Gábor MTA SZTAKI 2010 december 13 A feladat Titok: u = (µ 1,..., µ n ) n dimenziós vektor Z n 3 -b l Z 3 = az egész számok modulo 3 Gombnyomásra kapunk: véletlen v i = (a i1,..., a in ) vektorokat,

Részletesebben

Számítógép architektúrák

Számítógép architektúrák Számítógép architektúrák Számítógépek felépítése Digitális adatábrázolás Digitális logikai szint Mikroarchitektúra szint Gépi utasítás szint Operációs rendszer szint Assembly nyelvi szint Probléma orientált

Részletesebben

Shor kvantum-algoritmusa diszkrét logaritmusra

Shor kvantum-algoritmusa diszkrét logaritmusra Ivanyos Gábor MTA SZTAKI Debrecen, 20 január 2. Tartalom és kvantum-áramkörök 2 A diszkrét log probléma Kvantum bit Állapot: a B = C 2 komplex euklideszi tér egy egységvektora: az a 0 + b szuperpozíció

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

Véletlenszám generátorok

Véletlenszám generátorok Véletlenszám generátorok Bevezetés Nincs elfogadott megközelítése a témának Alapvetően 2 fajta generátor: Szoftveres Hardveres Egyik legjobb szoftveres generátor: Mersenne Twister 2^19937 1 periódusú,

Részletesebben

WDS 4510 adatátviteli adó-vevő

WDS 4510 adatátviteli adó-vevő WDS 4510 adatátviteli adó-vevő A WDS-4510 készülék pont-pont és pont-több pont adatátviteli alkalmazásokra kifejlesztett digitális rádió adó-vevő. DSP technológiai bázison kifejlesztett, igen gyors adás-vétel

Részletesebben

Matematikai alapok. Dr. Iványi Péter

Matematikai alapok. Dr. Iványi Péter Matematikai alapok Dr. Iványi Péter Számok A leggyakrabban használt adat típus Egész számok Valós számok Bináris számábrázolás Kettes számrendszer Bitek: 0 és 1 Byte: 8 bit 128 64 32 16 8 4 2 1 1 1 1 1

Részletesebben

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,... RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk

Részletesebben

The Flooding Time Synchronization Protocol

The Flooding Time Synchronization Protocol The Flooding Time Synchronization Protocol Célok: FTSP Alacsony sávszélesség overhead Node és kapcsolati hibák kiküszöbölése Periodikus flooding (sync message) Implicit dinamikus topológia frissítés MAC-layer

Részletesebben

Bevezetés a számítástechnikába

Bevezetés a számítástechnikába Bevezetés a számítástechnikába Beadandó feladat, kódrendszerek Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010 október 12.

Részletesebben

Emlékeztet! matematikából

Emlékeztet! matematikából Kriptográfia 2 Aszimmetrikus megoldások Emlékeztet matematikából Euklidész algoritmus - legnagyobb közös osztó meghatározása INPUT Int a>b0; OUTPUT gcd(a,b). 1. if b=0 return(a); 2. return(gcd(b,a mod

Részletesebben

Választható önálló LabView feladatok 2015. A zárójelben szereplő számok azt jelentik, hogy hány főnek lett kiírva a feladat

Választható önálló LabView feladatok 2015. A zárójelben szereplő számok azt jelentik, hogy hány főnek lett kiírva a feladat Választható önálló LabView feladatok 2015 A zárójelben szereplő számok azt jelentik, hogy hány főnek lett kiírva a feladat 1) Hálózat teszt. Folyamatosan működő számítógép hálózat sebességet mérő programot

Részletesebben

Informatikai rendszerek alapjai

Informatikai rendszerek alapjai Iformatikai redszerek alapjai Dr. Kutor László Hiba típusok, meghibásodási görbe A csatorakódolás elve és gyakorlata a hibatűrés feltétele: a redudacia http://ui-obuda.hu/users/kutor/ 2015. ősz Óbudai

Részletesebben

Modbus kommunikáció légkondícionálókhoz

Modbus kommunikáció légkondícionálókhoz Modbus kommunikáció légkondícionálókhoz FJ-RC-MBS-1 Mobus szervezet: -> http://www.modbus.org (néha Modbus-IDA) -> Modbus eszköz kereső motor http://www.modbus.org/devices.php Modbus (RTU) - soros kommunikációs

Részletesebben

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis. 1 Diagonalizálás Diagonalizálható mátrixok Ismétlés Legyen M,N T n n Az M és N hasonló, ha van olyan A lineáris transzformáció, hogy M is és N is az A mátrixa egy-egy alkalmas bázisban Az M és N pontosan

Részletesebben

Programozás 3. Dr. Iványi Péter

Programozás 3. Dr. Iványi Péter Programozás 3. Dr. Iványi Péter 1 Egy operandus művelet operandus operandus művelet Operátorok Két operandus operandus1 művelet operandus2 2 Aritmetikai műveletek + : összeadás -: kivonás * : szorzás /

Részletesebben

Data Security: Access Control

Data Security: Access Control Data Security 1. Alapelvek 2. Titkos kulcsú rejtjelezés 3. Nyilvános kulcsú rejtjelezés 4. Kriptográfiai alapprotokollok I. 5. Kriptográfiai alapprotokollok II. Data Security: Access Control A Rossz talált

Részletesebben

Interrupt. ile ile 1 / 81

Interrupt. ile ile 1 / 81 Interrupt ile ile 1 / 81 ile ile 2 / 81 ile ile 3 / 81 ile ile 4 / 81 ile ile 5 / 81 ile ile 6 / 81 ile ile 7 / 81 ile ile 8 / 81 ile ile 9 / 81 Diszk ile ile 10 / 81 ile ile 11 / 81 ile ile 12 / 81 ile

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Informatikai Rendszerek Alapjai

Informatikai Rendszerek Alapjai Informatikai Rendszerek Alapjai Egész és törtszámok bináris ábrázolása http://uni-obuda.hu/users/kutor/ IRA 5/1 A mintavételezett (egész) számok bináris ábrázolása 2 n-1 2 0 1 1 0 1 0 n Most Significant

Részletesebben