Kvantum-hibajavítás I.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kvantum-hibajavítás I."

Átírás

1 LOGO Kvantum-hibajavítás I. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar

2 Ismétléses kódolás

3 Klasszikus hibajavítás Klasszikus modell: BSC (binary symmetric channel) Hibavalószínűség: p p 0.5 Kódszavak használata Blokk-kódolás K x : x az üzenet kódolásához felhasznált bitek száma Eredeti üzenet: k bit, felhasznált bitek száma: n R(K)=k/n Klasszikus védelem csatornazaj ellen Ismétléses-kód Példa Hiba: 2 bit sérülése esetén R(K 3 )=1/3 1 hiba tolerálható Gyenge hatékonyság, idő+erőforrásigény K : ,

4 Kvantumcsatorna A kvantumállapotok tökéletes meghatározása a gyakorlatban nehezen kivitelezhető Zajos kvantumcsatorna Kvantumkapuk zaja Detektorok, mérőberendezések Megoldás: kvantum-hibajavító algoritmusok Jelentős elméleti eredmények születtek, de továbbra is sok a megoldatlan probléma Kvantumállapotok és a külvilág kapcsolata Dekoherencia Mérések okozta irreverziblis zavarok Számos olyan probléma, amelyekkel klasszikus hibajavító algoritmusok esetén nem találkozhattunk

5 Kvantum-hibajavítás Eltérések a klasszikus hibajavító algoritmusokhoz képest 1. Kvantumállapotok klónozhatatlansága Egy adott kvantumállapot pontos lemásolása nem lehetséges. 2. Több hibalehetőség Bithiba Fázishiba Bit és fázishiba Dekoherencia 3. A kvantumállapoton végrehajtott mérés hatására a kvantumállapot megsemmisül 4. Diszkrét helyett folytonos hibák

6 Hibalehetőségek Dekoherencia ( ) α 0 + β 1 környezet α 0 környezet + β 1 környezet. A B Kvantumállapotok torzulása U helyett V unitér transzformáció U helyett ρ nem-unitér transzformáció: ρ AkρA k k. Mérési zaj, téves kimeneti eredmények Kvantumrendszerek instabilitása

7 Kapcsolat a környezettel Problémák A külső környezettel kapcsolatba lépve a zárt kvantumrendszer koherens tulajdonságai megsemmisülnek A rendszer további időfejlődése nem adható meg unitér műveletekkel rendszer környezet A kvantumrendszer és a külső környezet teljes Hilbert-tere: H = Hrendszer Hkörnyezet. i r+ kt U = e H, + = H I + I H + H. A rendszer időfejlődését leíró U unitér operátor: ahol Hr k r k r k dekoh A zárt kvantumrendszeren belüli tiszta kvantumállapot kapcsolatba kerül a külvilággal, a kvantumrendszer kevert állapotba kerül. ψ = ψ ψ c n n ρ = ψ ψ. 0 rendszer környezet n 0 0 rendszer rendszer 0 n

8 Hibajelenségek A kvantumállapot lehetséges sérülései Relatív fázisszög hibája: a 0 + b 1 a 0 b 1. Valószínűségi amplitúdók negálódása: a 0 + b 1 b 0 + a 1. Valószínűségi amplitúdók és relatív fázis hibája: a 0 + b 1 b 0 a 1. A hibák, az ismeretlen kvantumállapot kódolk dolása után,, a hibajavítás s szakasz előtt lépnek fel!

9 Hibajelenségek A hibákat leírhatjuk unitér kvantum transzformációkkal Bithiba (bit-flip): X-transzformáció σ a b 0 1 a b x = =. b a 1 0 b a Fázishiba (phase-flip): Z-transzformáció σ a a 1 0 a a = = Z. b b 0 1 b b Bit és fázishiba: Y-transzformáció (Y=XZ) σ Y a b b 0 i a b = i = = i. b a a i 0 b a

10 A 4 lehetséges leképezés β 0 + α 1 α 0 β 1 Bit hiba Fázis hiba α 0 + β 1 Identitás β 0 α 1 Bit ÉS fázis hiba A kvantum-hibajavító kódolás során összesen 3 eltérő tulajdonságú hibajelenséggel kell számolnunk Klasszikus rendszerek esetében csak a bithibák javítása volt a feladatunk

11 Kvantum ismétléses-kódolás A klasszikus ismétléses-kódolás egyszerűen megfeleltethető klasszikus, nem szuperponált kvantumállapotokkal: 0 000, Szuperpozícióban lévő kvantumállapotok esetén azonban a kvantumállapotok többszörözése nem lehetséges (no-cloning). Ψ Ψ Ψ Ψ. Az ismeretlen kvantumállapotok által realizált leképezés a következő: ( α 0 + β 1 ) ( α 0 + β 1 ) ( α 0 + β 1 ) Az ismeretlen kvantumállapotot így egy összefonódott kvantumállapotba transzformáljuk: ( ) Ψ = α 0 + β 1 α β 111 = Ψ' = α β 111.

12 Hibajavító kódok tulajdonságai Ha egy kvantum-hibajavító kód képes javítani az A és B hibákat, akkor ezen kóddal az αa + βb jellegű hibák is javíthatóak. Bármilyen 2x2-es mátrix leírható az αi + βx + γy + δz alakban. A kvantumbit meghibásodása általánosan a ρ ΣAk ρ Ak formában adható meg A hiba a ψ kvantumállapotot a kevert ψ Ak ψ állapotba transzformálja, ahol Ak egy a 2x2-es mátrix. A kvantumbiten fellépő X, Y, és Z típusú hibákat javító kvantumkóddal az összes lehetséges egy-kvantumbites hiba javítható. A t darab kvantumbiten fellépő X,Y,Z hibákat javító kvantumkóddal az összes lehetséges t kvantumbites hiba korrigálható. Az I, X, Y, Z Pauli-operátorok tetszőleges M,N párosítása kommutatív, ha MN=NM, illetve anti-kommutatív, ha MN=-NM.

13 Az elemi CNOT kapu CNOT kapu működése leírható a klasszikus XOR művelet segítségével: CNOT A, B = A, B A A CNOT kapu működési elve: A vezérlő kvantumbit A B cél kvantumbit B A

14 Az elemi CNOT kapu A két bementi kvantumbit: vezérlő és cél kvantumbit A A B B A Ha a vezérlő kvantumbit 0, akkor a célbit változatlan marad : vagy Egyébként a célbit értéke negálódik : vagy A kimenet : AB, AB, A

15 Készíthető kvantumbit-másoló kapu? Klasszikus rendszerek esetén egy tetszőleges bit másolása az XOR művelettel megvalósítható: másolandó bit eredeti bit x x x x 0 y x y x 0 bemenet másolt bit

16 Készíthető kvantumbit-másoló kapu? másolandó kvantumbit ψ = a 0 + b 1 a 0 + b 1 Kimenet a 00 + b 10 0 a 00 + b 11 0 bemenet

17 Készíthető kvantumbit-másoló kapu? ψ ψ = a 00 + b 11 =??? Egy kvantumállapot nem másolható, hiszen ab 0. ( )( ) 2 2 ψ ψ = a 0 + b 1 a 0 + b 1 = a 00 + ab 01 + ab 10 + b a + ab + ab + b a + b Vagyis, egy ismeretlen kvantumállapot lemásolása NEM LEHETSÉGES! - NO CLONING TÉTEL -

18 Redundáns kódolás Az ismétléses kódolás sem sértheti a klónozhatatlansági-tételt α 0 + β 1 α β 111 (α 0 + β 1 ) 3 A redundáns kódolás során az ismeretlen kvantumállapot egyes bázisállapotait sokszorosítjuk. A szuperpozíciós állapot kiterjesztésével, redundanciával kódoljuk az állapotot No-cloning tételt nem sértjük

19 Kvantum ismétléses-kódolás ( ) Hogyan valósítható meg a Ψ = α 0 + β 1 α β 111 = Ψ' leképezés? A kvantumáramkör bemenetére az ismeretlen Ψ = α 0 + β 1 állapotot adjuk ( ) A kvantumhálózat egyes állapotai így a következők lesznek: ψ = α β ψ = α β ψ = α β

20 Egyszeres bithiba és fázishiba javítás

21 Kvantum-hibajavítás Valószínűségi amplitúdó felcserélődése (logikai érték negálódása) Megfeleltethető az Ψ ismeretlen kvantumállapoton végrehajtott X- transzformációnak Tegyük fel, hogy a Ψ = α β 111 állapot harmadik kvantumbitjének valószínűségi amplitúdói negálódnak. A hibás állapot: I I X = α β 110. Hogyan detektálható a hiba? A hibás α β 110 állapot egyes kvantumbitjeihez kiegészítő kvantumbiteket rendelünk A kiegészítő kvantumbitek segítségével meghatározzuk a bemeneti állapothoz tartozó szindrómavektorok értékét Az eredeti kvantumállapoton nem hajtunk végre mérést

22 Kvantum-hibajavítás Valószínűségi amplitúdó felcserélődése (bit-hiba javítása) Az áramkör állapotai: ψ = α β 110, ψ = α β 11000, 1 2 ψ = α β 11001, ψ = α β

23 Kvantum-hibajavítás Valószínűségi amplitúdó felcserélődése (bit-hiba javítása) Szindróma számítás, hibajavítás: A szindrómát az M1 és M2 mérések segítségével határozzuk meg. A hibajavítást az R hibajavító áramkör végzi. A hibajavításhoz szükséges az M1 és M2 mérések eredményeként előállt szindróma.

24 Szindróma meghatározása Kódolt állapot Kiegészítő kvantumbitek 0 0 Szindróma A szindróma első bitje: Az első két kvantumbit azonos vagy eltérő-e? A szindróma második bitje: a második és harmadik kvantumbit azonos vagy eltérő-e?

25 Szindróma meghatározása A szindróma segítségével: detektálható a hiba jelenléte pontosan meghatározható a hiba helye. Pl.: Az α β 101 állapot szindrómája 11, így a második bit a hibás. Javítás: X-transzformációval, amelyet a 2. kvantumbitre alkalmazunk A kapott szindróma értéke nem függ az α és β valószínűségi amplitúdóktól A hibát így az eredeti kvantumállapot megsemmisítése nélkül sikerült meghatároznunk és javítanunk!

26 Bithiba javítása A kapott szindróma és a hibajavítási művelet kapcsolata:

27 Bithiba javítása A szindróma alapján az áramkör negálja a harmadik kvantumbit értékét: α β 110 α β 111. Az áramkör egyetlen kvantumbit helyreállítására képes. A javítás után a Ψ kvantumállapot egyértelműen visszaállítható.

28 α 0 + β 1 0 Bithiba javítása kódolás hiba dekódolás javítás? 0 U 1. Kódolás: hiba dekódolás javítás 2. Ortogonális hibák 3. szindróma (no-cloning kikerülve!)

29 Összefoglalás: Bit-flip javítása Példa: BSC R(K 3 )=1/3: Pr helyes = 1 p p p = 1 3p 2 p. A bit-flip hiba megfelel az X unitér kvantum-transzformációnak 0 1 σ X =. X 0 = 1, X 1 = A kvantumcsatorna átviteli modellje: ( ) ( p) Φ ρ = 1 ρ + pσ ρσ. A teljes bit-flip hibajavító kódolási és javítási folyamat [ ] ( ) 3 ( ) 2 ( 2 3 ) X X

30 Relatív fázishiba javítása A kvantumbit fázishibája: a a 1 a, ahol a 0,1. ( ) { } A hibajelenség a Z unitér kvantum-transzformációval írható le A bit-flip hiba elleni kódolás nem segít σ Z 1 0 =. 0 1 α + β α β Az előzőekben alkalmazott kódolással tovább növeltük a hiba bekövetkezésének valószínűségét. Megoldás???

31 Relatív fázishiba javítása A kvantumállapotban bekövetkező sérülés legyen: α β 111 α 000 β 111. Amely állapot dekódolás után: α 0 + β 1 α 0 β 1 +. A hiba javításához változtatunk a kódolást végző kvantumhálózaton: A Hadamard-kapuk implementálásával áttértünk a +/- bázis elemeire: ψ 1 = α β, ahol = ( ), = ( 0 1 ). 2 2

32 Relatív fázishiba javítása Tegyük fel, hogy a fázishiba a harmadik kvantumállapoton lép fel: α β α ++ + β +. A Hadamard-kapuk utáni szindróma számítás eredménye: A kapott állapot azonos a valószínűségi amplitúdó sérülése esetén előállt eredménnyel. ( ) ψ2 = α β A bázisok cseréjével a bitnegálódást javító áramkört fázisjavításra, illetve a fázisjavító áramkört bit-negálódás javításra használhatjuk!

33 Fázishibából bithiba Bázist váltunk: A fázishibát bithibává konvertáltuk az új bázisban H H H H H H fázishiba bithiba

34 Fázishibából bithiba A Hadamard transzformációval válthatunk bithiba és fázishiba között H Az új bázisban: ( ) α 0 + β 1 = α + + β. a fázisfordítást az X-transzformációval, X + = +, X =. a bit negálást a Z-transzformációval modellezzük: Z + =, Z = +.

35 α 0 + β Relatív fázishiba javítása kódolás hiba dekódolás H H H H H H javítás? U hiba dekódolás javítás 1. Kódolás: (no-cloning kikerülve!) 2. Ortogonális hibák 3. szindróma

36 Szindróma meghatározása Helyesen kódolt 000 vagy 111 állapotokra: a csoport első két bitjének paritása páros a második és harmadik bitből képzett paritás szintén páros. Ha az első 2 bit közül 1 hibás: Az első két bitre meghatározott paritás páratlan

37 Szindróma meghatározása Páros paritás Bithiba javításnál: A Z Z I sajátértéke +1, az első két bit helyes Fázishiba javításnál: Az X X I sajátértéke +1, az első két bit helyes Páratlan paritás: Bithiba javításnál: A Z Z I sajátértéke -1, a bithiba az első vagy a második kvantumbiten keletkezett Fázishiba javításnál: Az X X I sajátértéke -1, a fázishiba az első vagy a második kvantumbiten keletkezett

38 Szindróma meghatározása A Z Z mérésével a bithibák (X) detektálhatóak Az X X mérésével a fázishibák (Z) detektálhatóak. Példa: 1 kvantumbites fázishiba detektálása

39 Szindróma meghatározása A kiegészítő kvantumbit bemérése után: A kapott eredmény valószínűséggel illetve valószínűséggel A kiegészítő kvantumállapot bemérésével, az eredeti kvantumállapot megsemmisítése nélkül detektálható a hiba A kiegészítő kvantumbit mérési eredménye helyes bitre: +1, hibás bitre: -1.

40 Szindróma meghatározása Példa: Három kvantumbites ismétléses kód A 3 kvantumbit között van-e hibás, ha igen melyik az? Bithibavizsgálat (X-hiba) paritásellenőrzéssel első 2 kvantumbitre: Z Z I 2. és 3. kvantumbitre: I Z Z A kapott eredmény alapján meghatározható a hiba helye A kiegészítő kvantumbiten (szindrómavektor bitjén) hajtjuk végre a mérést A Z Z mérésével a bithibák (X) detektálhatóak Az X X mérésével a fázishibák (Z) detektálhatóak.

41 Szindróma meghatározása Az első 3 kvantumbitre végrehajtott Z Z I paritásvizsgálat jellemzői: A kiegészítő kvantumbit kezdeti állapota A kiegészítő kvantumbit egy irányított-z transzformáció cél kvantumbitje A vezérlő kvantumbit az első Z transzformáció esetén az 1. kvantumbit A második Z transzformáció esetén a 2. kvantumbit A kapu 1 logikai értékű vezérlő-kvantumbitre aktiválódik

42 Szindróma meghatározása A kapott Z Z I leképezés utáni rendszerállapoton elvégezzük a szindróma bemérését. A beméréshez a kiegészítő kvantumállapot bázisának megfelelő bázist használjuk. A mérés eredménye a Z Z I transzformáció sajátértéke: +1 vagy - 1, a tag aktuális értékétől függően. Ha a és b bitek értéke különböző, a kimenet értéke -1.

43 Eredmények felhasználása A hibák által generált alterek ortogonálisak, dimenziójuk azonos. Az alterek egymástól egyértelműen megkülönböztethetőek A hibák azonosíthatóak a kvantumállapotok bemérése nélkül is

44 Eredmények felhasználása A Z Z mérésével a bithibák (X) detektálhatóak: A szindrómavektor bitjeit irányított-z kapuk felhasználásával állítjuk elő javítás hiba

45 Összefoglalás: fázishiba javítása Az új konstrukció megvéd az egyszeres fázisfordulási hibától Azonban a bit-flip hiba ellen nem nyújt védelmet A fázisfordítás unitér transzformációja: A teljes fázishiba-javítás kódolási és javítási folyamata: σ Z 1 0 =. 0 1 Z 0 = 0, Z 1 = - 1

46 Kvantum-hibajavítás Bithiba és relatív fázishiba Valószínűségi amplitúdó hiba (bithiba): X-transzformáció Relatív fázishiba: HZH transzformáció Probléma: Mi történik akkor, ha a két típusú hiba EGYIDEJŰLEG lép fel? Az előzőekben ismertetett hibajavító áramkörök csak egyetlen típusú hiba egyidejű javítására alkalmazhatóak Új konstrukcióra lesz szükségünk Shor-féle hibajavító kódolás

47 LOGO Köszönöm a figyelmet! Gyöngyösi László BME Villamosmérnöki és Informatikai Kar

Kvantum-hibajavítás II.

Kvantum-hibajavítás II. LOGO Kvantum-hibajavítás II. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar A Shor-kódolás QECC Quantum Error Correction Coding A Shor-féle kódolás segítségével egyidejűleg mindkét típusú hiba

Részletesebben

Kvantum-hibajavítás III.

Kvantum-hibajavítás III. LOGO Kvantum-hibaavítás III. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar A kvantum hibaavítási folyamat formális leírása Eredmények formalizálása Legyen A egy x-es komplex mátrix: ahol a,

Részletesebben

Kvantumkriptográfia II.

Kvantumkriptográfia II. LOGO Kvantumkriptográfia II. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Titkos kommunikáció modellje k 1 k 2 k n k 1 k 2 k n A titkos kommunikáció során Alice és Bob szeretne egymással üzeneteket

Részletesebben

Kvantum-kommunikáció komplexitása I.

Kvantum-kommunikáció komplexitása I. LOGO Kvantum-kommunikáció komplexitása I. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Klasszikus információ n kvantumbitben Hány klasszikus bitnyi információ nyerhető ki n kvantumbitből? Egy

Részletesebben

prímfaktoriz mfaktorizáció szló BME Villamosmérn és s Informatikai Kar

prímfaktoriz mfaktorizáció szló BME Villamosmérn és s Informatikai Kar Kvantumszámítógép hálózat zat alapú prímfaktoriz mfaktorizáció Gyöngy ngyösi LászlL szló BME Villamosmérn rnöki és s Informatikai Kar Elemi kvantum-összead sszeadók, hálózati topológia vizsgálata Az elemi

Részletesebben

Kvantum-tömörítés II.

Kvantum-tömörítés II. LOGO Kvantum-tömörítés II. Gyöngyös László BME Vllamosmérnök és Informatka Kar A kvantumcsatorna kapactása Kommunkácó kvantumbtekkel Klasszkus btek előnye Könnyű kezelhetőség Stabl kommunkácó Dszkrét értékek

Részletesebben

Hibadetektáló és javító kódolások

Hibadetektáló és javító kódolások Hibadetektáló és javító kódolások Számítógépes adatbiztonság Hibadetektálás és javítás Zajos csatornák ARQ adatblokk meghibásodási valószínségének csökkentése blokk bvítése redundáns információval Hálózati

Részletesebben

Shor kvantum-algoritmusa diszkrét logaritmusra

Shor kvantum-algoritmusa diszkrét logaritmusra Ivanyos Gábor MTA SZTAKI Debrecen, 20 január 2. Tartalom és kvantum-áramkörök 2 A diszkrét log probléma Kvantum bit Állapot: a B = C 2 komplex euklideszi tér egy egységvektora: az a 0 + b szuperpozíció

Részletesebben

A kvantum-kommunikáció leírása sűrűségmátrix segítségével

A kvantum-kommunikáció leírása sűrűségmátrix segítségével LOGO A kvantum-kommunikáció leírása sűrűségmátrix segítségével Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Hogyan tekinthetünk a sűrűségmátrixokra? Zaos kvantumrendszerek kvantumállapotra

Részletesebben

Valóban feltörhetetlen? A kvantumkriptográfia biztonsági analízise

Valóban feltörhetetlen? A kvantumkriptográfia biztonsági analízise Valóban feltörhetetlen? A kvantumkriptográfia biztonsági analízise Gyöngyösi László gyongyosi@hit.bme.hu Hacktivity 2008 Budai Fonó Zeneház, 2008. szeptember 21. Tartalom Motiváció A kvantuminformatikáról

Részletesebben

Kvantumcsatorna tulajdonságai

Kvantumcsatorna tulajdonságai LOGO Kvantumcsatorna tulajdonságai Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Informáci cióelméleti leti alapok összefoglalásasa Valószínűségszámítási alapok Egy A és egy B esemény szorzatán

Részletesebben

Kvantumkriptográfia III.

Kvantumkriptográfia III. LOGO Kvantumkriptográfia III. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Tantárgyi weboldal: http://www.hit.bme.hu/~gyongyosi/quantum/ Elérhetőség: gyongyosi@hit.bme.hu A kvantumkriptográfia

Részletesebben

Kvantum-számítógépek, univerzalitás és véges csoportok

Kvantum-számítógépek, univerzalitás és véges csoportok Kvantum-számítógépek, univerzalitás és véges csoportok Ivanyos Gábor MTA SZTAKI BME Matematikai Modellalkotás szeminárium, 2013 szeptember 24. Kvantum bit Kvantum bitek Kvantum kapuk Kvantum-áramkörök

Részletesebben

Kvantumszámítógép a munkára fogott kvantummechanika

Kvantumszámítógép a munkára fogott kvantummechanika Kvantumszámítógép a munkára fogott kvantummechanika Széchenyi Gábor ELTE, Anyagfizikai Tanszék Atomoktól a csillagokig, 2019. április 25. Kvantumszámítógép a hírekben Egy új technológia 1940-es 1980-as

Részletesebben

Kvantum párhuzamosság Deutsch algoritmus Deutsch-Jozsa algoritmus

Kvantum párhuzamosság Deutsch algoritmus Deutsch-Jozsa algoritmus LOGO Kvatum párhuzamosság Deutsch algoritmus Deutsch-Jozsa algoritmus Gyögyösi László BME Villamosméröki és Iormatikai Kar Bevezető Kvatum párhuzamosság Bármilye biáris üggvéyre, ahol { } { } : 0, 0,,

Részletesebben

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem 1. A Huffman-kód prefix és forráskiterjesztéssel optimálissá tehető, ezért nem szükséges hozzá a forrás valószínűség-eloszlásának ismerete. 2. Lehet-e tökéletes kriptorendszert készíteni? Miért? a. Lehet,

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2016. ősz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2016.

Részletesebben

Kvantuminformatikai alapismeretek összefoglalása

Kvantuminformatikai alapismeretek összefoglalása Kvantuminformatikai alapismeretek összefoglalása sa Gyöngy ngyösi LászlL szló BME Villamosmérn rnöki és s Informatikai Kar Támadás s kvantumszámítógéppel Egy klasszikus algoritmusnak egy U unitér transzformáci

Részletesebben

Searching in an Unsorted Database

Searching in an Unsorted Database Searching in an Unsorted Database "Man - a being in search of meaning." Plato History of data base searching v1 2018.04.20. 2 History of data base searching v2 2018.04.20. 3 History of data base searching

Részletesebben

KÓDOLÁSTECHNIKA PZH. 2006. december 18.

KÓDOLÁSTECHNIKA PZH. 2006. december 18. KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Hibajavítás, -jelzés. Informatikai rendszerek alapjai. Horváth Árpád november 24.

Hibajavítás, -jelzés. Informatikai rendszerek alapjai. Horváth Árpád november 24. Hibajavítás és hibajelzés Informatikai rendszerek alapjai Óbudai Egyetem Alba Regia M szaki Kar (AMK) Székesfehérvár 2016. november 24. Vázlat 1 Hibákról 2 Információátvitel diagrammja forrás csatorna

Részletesebben

Kvantum-informatika és kommunikáció féléves feladatok (2010/2011, tavasz)

Kvantum-informatika és kommunikáció féléves feladatok (2010/2011, tavasz) Kvantum-informatika és kommunikáció féléves feladatok (2010/2011, tavasz) 1. Ön egy informatikus öregtalálkozón vesz részt, amelyen felkérik, hogy beszéljen az egyik kedvenc területéről. Mutassa be a szakmai

Részletesebben

Informatikai Rendszerek Alapjai

Informatikai Rendszerek Alapjai Informatikai Rendszerek Alapjai Dr. Kutor László A redundancia fogalma és mérése Minimális redundanciájú kódok 1. http://uni-obuda.hu/users/kutor/ IRA 2014 könyvtár Óbudai Egyetem, NIK Dr. Kutor László

Részletesebben

szló BME Villamosmérn és s Informatikai Kar

szló BME Villamosmérn és s Informatikai Kar Kvantumhálózatok tanítása Gyöngy ngyösi LászlL szló BME Villamosmérn rnöki és s Informatikai Kar Tartalom Mobil ágensek vezérl rlése az Intelligens térben t kvantum- tanulással Megerősítéses ses tanulás

Részletesebben

A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk

A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk 1. Kódelmélet Legyen X = {x 1,..., x n } egy véges, nemüres halmaz. X-et ábécének, elemeit betűknek hívjuk. Az X elemeiből képzett v = y 1... y m sorozatokat X feletti szavaknak nevezzük; egy szó hosszán

Részletesebben

Kvantumkriptográfia I.

Kvantumkriptográfia I. LOGO Kvantumkriptográfia I. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Tantárgyi weboldal: http://www.hit.bme.hu/~gyongyosi/quantum/ Elérhetőség: gyongyosi@hit.bme.hu Tartalom Motiváció A

Részletesebben

Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt.

Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt. Digitális mérőműszerek Digitális jelek mérése Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt. MIRŐL LESZ SZÓ? Mit mérjünk? Hogyan jelentkezik a minőségromlás digitális jel esetében?

Részletesebben

Analóg-digitál átalakítók (A/D konverterek)

Analóg-digitál átalakítók (A/D konverterek) 9. Laboratóriumi gyakorlat Analóg-digitál átalakítók (A/D konverterek) 1. A gyakorlat célja: Bemutatjuk egy sorozatos közelítés elvén működő A/D átalakító tömbvázlatát és elvi kapcsolási rajzát. Tanulmányozzuk

Részletesebben

Számítógépes Hálózatok 2012

Számítógépes Hálózatok 2012 Számítógépes Hálózatok 22 4. Adatkapcsolati réteg CRC, utólagos hibajavítás Hálózatok, 22 Hibafelismerés: CRC Hatékony hibafelismerés: Cyclic Redundancy Check (CRC) A gyakorlatban gyakran használt kód

Részletesebben

Kvantum alapú hálózatok - bevezetés

Kvantum alapú hálózatok - bevezetés Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Hálózati Rendszerek és Szolgáltatások Tanszék Mobil Kommunikáció és Kvantumtechnológiák Laboratórium Kvantum alapú hálózatok

Részletesebben

A Gray-kód Bináris-kóddá alakításának leírása

A Gray-kód Bináris-kóddá alakításának leírása A Gray-kód Bináris-kóddá alakításának leírása /Mechatronikai Projekt II. házi feladat/ Bodogán János 2005. április 1. Néhány szó a kódoló átalakítókról Ezek az eszközök kiegészítő számlálók nélkül közvetlenül

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2019. május 3. 1. Diszkrét matematika 2. 10. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Mérai László diái alapján Komputeralgebra Tanszék 2019. május

Részletesebben

Hibajavító kódok május 31. Hibajavító kódok 1. 1

Hibajavító kódok május 31. Hibajavító kódok 1. 1 Hibajavító kódok 2007. május 31. Hibajavító kódok 1. 1 Témavázlat Hibajavító kódolás Blokk-kódok o Hamming-távolság, Hamming-súly o csoportkód o S n -beli u középpontú t sugarú gömb o hibajelzı képesség

Részletesebben

Digitális mérőműszerek

Digitális mérőműszerek KTE Szakmai nap, Tihany Digitális mérőműszerek Digitális jelek mérése Kaltenecker Zsolt KT-Electronic MIRŐL LESZ SZÓ? Mit mérjünk? Hogyan jelentkezik a minőségromlás digitális TV jel esetében? Milyen paraméterekkel

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós

Részletesebben

Kvantum mechanikával tunningolt klasszikus kommunikáció. Imre Sándor BME-HIT

Kvantum mechanikával tunningolt klasszikus kommunikáció. Imre Sándor BME-HIT Kvantum mechanikával tunningolt klasszikus kommunikáció Imre Sándor BME-HIT A kvantummechanika posztulátumai mérnöki megközelítésben 1. Posztulátum: kvantum bit Hilbert-tér 2. Posztulátum: logikai kapuk

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Az adatkapcsolati réteg

Az adatkapcsolati réteg Az adatkapcsolati réteg Programtervező informatikus BSc Számítógép hálózatok és architektúrák előadás Az adatkapcsolati réteg A fizikai átviteli hibáinak elfedése a hálózati réteg elől Keretezés Adatfolyam

Részletesebben

Véges állapotú gépek (FSM) tervezése

Véges állapotú gépek (FSM) tervezése Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit

Részletesebben

Számítógépes Hálózatok. 5. gyakorlat

Számítógépes Hálózatok. 5. gyakorlat Számítógépes Hálózatok 5. gyakorlat Óra eleji kiszh Elérés: https://oktnb6.inf.elte.hu Számítógépes Hálózatok Gyakorlat 2 Gyakorlat tematika Szinkron CDMA Órai / házi feladat Számítógépes Hálózatok Gyakorlat

Részletesebben

Adatkapcsolati réteg (Data Link Layer) Számítógépes Hálózatok Az adatkapcsolati réteg lehetséges szolgáltatásai

Adatkapcsolati réteg (Data Link Layer) Számítógépes Hálózatok Az adatkapcsolati réteg lehetséges szolgáltatásai (Data Link Layer) Számítógépes Hálózatok 2013 3. Hibafelismerés és javítás, Hamming távolság, blokk kódok Az adatkapcsolati réteg feladatai: Szolgáltatásokat rendelkezésre bocsátani a hálózati rétegnek

Részletesebben

AST_v3\ 3.1.3. 3.2.1.

AST_v3\ 3.1.3. 3.2.1. AST_v3\ 3.1.3. 3.2.1. Hibakezelés Az adatfolyam eddig megismert keretekre bontása hasznos és szükséges, de nem elégséges feltétele az adatok hibamentes és megfelelő sorrendű átvitelének. Az adatfolyam

Részletesebben

The problem. Each unitary transform having eigenvector has eigenvalues in the form of. Phase ratio:

The problem. Each unitary transform having eigenvector has eigenvalues in the form of. Phase ratio: Ismétlés The problem Each unitary transform having eigenvector has eigenvalues in the form of. Phase ratio: How to initialize? Quantum Phase Estimator Prob. amplitudes 2017.04.27. 5 Brutális! A H kapuk

Részletesebben

5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI

5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a

Részletesebben

IBM Brings Quantum Computing to the Cloud

IBM Brings Quantum Computing to the Cloud IBM Brings Quantum Computing to the Cloud https://www.youtube.com/watch?v=dz2dcilzabm&feature=y outu.be 2016.05.05. 1 Ismétlés The problem Each unitary transform having eigenvector has eigenvalues in the

Részletesebben

Jel, adat, információ

Jel, adat, információ Kommunikáció Jel, adat, információ Jel: érzékszerveinkkel, műszerekkel felfogható fizikai állapotváltozás (hang, fény, feszültség, stb.) Adat: jelekből (számítástechnikában: számokból) képzett sorozat.

Részletesebben

1. Kombinációs hálózatok mérési gyakorlatai

1. Kombinációs hálózatok mérési gyakorlatai 1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr. 26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15. ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem

Részletesebben

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 5. Előadás témái Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Folytonos

Részletesebben

Számítógépes Hálózatok 2013

Számítógépes Hálózatok 2013 Számítógépes Hálózatok 2013 3. Adatkapcsolati réteg Hibafelismerés és javítás, Hamming távolság, blokk kódok 1 Adatkapcsolati réteg (Data Link Layer) Az adatkapcsolati réteg feladatai: Szolgáltatásokat

Részletesebben

Ahol a kvantum mechanika és az Internet találkozik

Ahol a kvantum mechanika és az Internet találkozik Ahol a kvantum mechanika és az Internet találkozik Imre Sándor BME Híradástechnikai Tanszék Imre Sándor "The fastest algorithm can frequently be replaced by one that is almost as fast and much easier to

Részletesebben

Kódoláselmélet. (Humann kód, hibajavító kódok, véges testek konstrukciója. Reed-Solomon kód és dekódolása.)

Kódoláselmélet. (Humann kód, hibajavító kódok, véges testek konstrukciója. Reed-Solomon kód és dekódolása.) Kódoláselmélet. (Humann kód, hibajavító kódok, véges testek konstrukciója. Reed-Solomon kód és dekódolása.) 1 Kommunikáció során az adótól egy vev ig viszünk át valamilyen adatot egy csatornán keresztül.

Részletesebben

Véges állapotú gépek (FSM) tervezése

Véges állapotú gépek (FSM) tervezése Véges állapotú gépek (FSM) tervezése F1. Tervezzünk egy soros mintafelismerőt, ami a bemenetére ciklikusan, sorosan érkező 4 bites számok közül felismeri azokat, amelyek 3-mal vagy 5-tel oszthatók. A fenti

Részletesebben

Példa:

Példa: Digitális információ ábrázolása A digitális technika feladata: információ ábrázolása és feldolgozása a digitális technika eszközeivel Szakterület Jelkészlet Digitális technika "0" és "1" Fizika Logika

Részletesebben

Kevert állapoti anholonómiák vizsgálata

Kevert állapoti anholonómiák vizsgálata Kevert állapoti anholonómiák vizsgálata Bucz Gábor Témavezet : Dr. Fehér László Dr. Lévay Péter Szeged, 2015.04.23. Bucz Gábor Kevert állapoti anholonómiák vizsgálata Szeged, 2015.04.23. 1 / 27 Tartalom

Részletesebben

Számítógépes Hálózatok ősz Adatkapcsolati réteg Hibafelismerés és javítás, Hamming távolság, blokk kódok

Számítógépes Hálózatok ősz Adatkapcsolati réteg Hibafelismerés és javítás, Hamming távolság, blokk kódok Számítógépes Hálózatok ősz 2006 5. Adatkapcsolati réteg Hibafelismerés és javítás, Hamming távolság, blokk kódok 1 Adatkapcsolati réteg (Data Link Layer) Az adatkapcsolati réteg feladatai: Szolgáltatásokat

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 207. tavasz. Diszkrét matematika 2.C szakirány 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 207.

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF

Részletesebben

A kvantumkriptográfia infokommunikációs alkalmazásai

A kvantumkriptográfia infokommunikációs alkalmazásai A kvantumkriptográfia infokommunikációs alkalmazásai GYÖNGYÖSI LÁSZLÓ, IMRE SÁNDOR Budapesti Mûszaki és Gazdaságtudományi Egyetem, Híradástechnikai Tanszék {gyongyosi, imre}@hit.bme.hu Kulcsszavak: kvantumkriptográfia,

Részletesebben

Analóg és digitális mennyiségek

Analóg és digitális mennyiségek nalóg és digitális mennyiségek nalóg mennyiség Digitális mennyiség z analóg mennyiségek változása folyamatos (bármilyen értéket felvehet) digitális mennyiségek változása nem folyamatos, hanem ugrásszerű

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

1. Kombinációs hálózatok mérési gyakorlatai

1. Kombinációs hálózatok mérési gyakorlatai 1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:

Részletesebben

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

2. Elméleti összefoglaló

2. Elméleti összefoglaló 2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges

Részletesebben

Híradástechikai jelfeldolgozás

Híradástechikai jelfeldolgozás Híradástechikai jelfeldolgozás 13. Előadás 015. 04. 4. Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu

Részletesebben

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI 1 A digitális áramkörökre is érvényesek a villamosságtanból ismert Ohm törvény és a Kirchhoff törvények, de az elemzés és a tervezés rendszerint nem ezekre épül.

Részletesebben

Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20.

Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20. Pontműveletek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. február 20. Sergyán (OE NIK) Pontműveletek 2012. február 20. 1 / 40 Felhasznált irodalom

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek

Részletesebben

Bevezetés az algebrába 2 Lineáris algebra alkalmazásai

Bevezetés az algebrába 2 Lineáris algebra alkalmazásai Bevezetés az algebrába 2 Lineáris algebra alkalmazásai Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M

Részletesebben

Oszcillátor tervezés kétkapu leírófüggvényekkel

Oszcillátor tervezés kétkapu leírófüggvényekkel Oszcillátor tervezés kétkapu leírófüggvényekkel (Oscillator design using two-port describing functions) Infokom 2016 Mészáros Gergely, Ladvánszky János, Berceli Tibor October 13, 2016 Szélessávú Hírközlés

Részletesebben

2019/02/11 10:01 1/10 Logika

2019/02/11 10:01 1/10 Logika 2019/02/11 10:01 1/10 Logika < Számítástechnika Logika Szerző: Sallai András Copyright Sallai András, 2011, 2012, 2015 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu Boole-algebra A Boole-algebrát

Részletesebben

Hibatűrés. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

Hibatűrés. Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Hibatűrés Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.mit.bme.hu/ 1 Hibatűrés különféle hibák esetén Hardver tervezési hibák

Részletesebben

Informatikai alapismeretek

Informatikai alapismeretek Informatikai alapismeretek Informatika tágabb értelemben -> tágabb értelemben az információ keletkezésével, továbbításával, tárolásával és feldolgozásával foglalkozik Informatika szűkebb értelemben-> számítógépes

Részletesebben

Wavelet transzformáció

Wavelet transzformáció 1 Wavelet transzformáció Más felbontás: Walsh, Haar, wavelet alapok! Eddig: amplitúdó vagy frekvencia leírás: Pl. egy rövid, Dirac-delta jellegű impulzus Fourier-transzformált: nagyon sok, kb. ugyanolyan

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés

Részletesebben

X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ

X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel és módszerekkel történik. A feldolgozás előtt az analóg jeleket digitalizálni kell.

Részletesebben

Az INTEL D-2920 analóg mikroprocesszor alkalmazása

Az INTEL D-2920 analóg mikroprocesszor alkalmazása Az INTEL D-2920 analóg mikroprocesszor alkalmazása FAZEKAS DÉNES Távközlési Kutató Intézet ÖSSZEFOGLALÁS Az INTEL D 2920-at kifejezetten analóg feladatok megoldására fejlesztették ki. Segítségével olyan

Részletesebben

Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk

Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Digitális technika II. (vimia111) 5. gyakorlat: Tervezés adatstruktúra-vezérlés szétválasztással, vezérlőegység generációk Elméleti anyag: Processzoros vezérlés általános tulajdonságai o z induló készletben

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 1

Digitális technika (VIMIAA02) Laboratórium 1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 1

Digitális technika (VIMIAA02) Laboratórium 1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 1 Fehér Béla Raikovich Tamás,

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti

Részletesebben

Véletlen lineáris kódok hibajavító rátáiról

Véletlen lineáris kódok hibajavító rátáiról Szegedi Tudományegyetem Természettudományi és Informatikai Kar Bolyai Intézet Geometria Tanszék Diplomamunka Véletlen lineáris kódok hibajavító rátáiról Mezőfi Dávid Csaba alkalmazott matematikus hallgató

Részletesebben

PAL és GAL áramkörök. Programozható logikai áramkörök. Előadó: Nagy István

PAL és GAL áramkörök. Programozható logikai áramkörök. Előadó: Nagy István Programozható logikai áramkörök PAL és GAL áramkörök Előadó: Nagy István Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,

Részletesebben

Híradástechikai jelfeldolgozás

Híradástechikai jelfeldolgozás Híradástechikai jelfeldolgozás 1. előadás 2015. február 13. 2015. február 13. Budapest Dr. Gaál József BME Hálózati Redszerek és SzolgáltatásokTaszék gaal@hit.bme.hu Bemutatkozás Dr Gaál József doces BME

Részletesebben

Yottacontrol I/O modulok beállítási segédlet

Yottacontrol I/O modulok beállítási segédlet Yottacontrol I/O modulok beállítási segédlet : +36 1 236 0427 +36 1 236 0428 Fax: +36 1 236 0430 www.dialcomp.hu dial@dialcomp.hu 1131 Budapest, Kámfor u.31. 1558 Budapest, Pf. 7 Tartalomjegyzék Bevezető...

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS Dr. Soumelidis Alexandros 2018.10.04. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérés-feldolgozás

Részletesebben

Digitális technika VIMIAA02

Digitális technika VIMIAA02 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Digitális Technika Elméleti

Részletesebben

Programozó- készülék Kezelőkozol RT óra (pl. PC) Digitális bemenetek ROM memória Digitális kimenetek RAM memória Analóg bemenet Analóg kimenet

Programozó- készülék Kezelőkozol RT óra (pl. PC) Digitális bemenetek ROM memória Digitális kimenetek RAM memória Analóg bemenet Analóg kimenet 2. ZH A csoport 1. Hogyan adható meg egy digitális műszer pontossága? (3p) Digitális műszereknél a pontosságot két adattal lehet megadni: Az osztályjel ±%-os értékével, és a ± digit értékkel (jellemző

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti

Részletesebben

Neumann János és a kvantum bitek. Petz Dénes

Neumann János és a kvantum bitek. Petz Dénes Neumann János és a kvantum bitek Petz Dénes A téma Neumann János (érdekes történetek) Valószinűség, információ, mátrixok, kvantumelmélet, kvantum-információ,... (sok új és nehéz matematikai fogalom) Neumann

Részletesebben

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási

Részletesebben

A fealdatot két részre osztjuk: adatstruktúrára és vezérlőre

A fealdatot két részre osztjuk: adatstruktúrára és vezérlőre VEZÉRLŐK Benesóczky Zoltán 24 A jegyzetet a szerzői jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerző belegyezése szükséges. A fealdatot

Részletesebben

Hobbi Elektronika. A digitális elektronika alapjai: További logikai műveletek

Hobbi Elektronika. A digitális elektronika alapjai: További logikai műveletek Hobbi Elektronika A digitális elektronika alapjai: További logikai műveletek 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL, 5th.

Részletesebben