Kvantumkriptográfia I.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kvantumkriptográfia I."

Átírás

1 LOGO Kvantumkriptográfia I. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar

2 Tantárgyi weboldal: Elérhetőség:

3 Tartalom Motiváció A kvantuminformatikáról röviden A kvantumkriptográfia működési elve Kvantumkriptográfia alkalmazása Gyakorlati implementációk Eszközök bemutatása Hálózati megvalósítás Kvantum smart-kártya Összefoglaló

4 Motiváció Megbízhatunk-e a jelenlegi titkosítási technikákban? A napjainkban alkalmazott titkosítási eljárások ereje a gyakorlati feltörhetetlenség biztosításában rejlik Elméletileg azonban feltörhetőek A feltörés sikere a birtokunkban lévő számítási kapacitástól függ Az elméletileg feltörhetetlen titkosítási módszer: az egyszer használatos véletlen kulcs (One Time Pad) A modern titkosítás alapköve: RSA (1977: Rivest-Shamir-Adleman) A feltöréshez vezető lehetséges utak: Elméleti jellegű áttörés a matematikában Kevésbé valószínű Gyakorlati jellegű, technikai áttörés Kvantumszámítógépek megjelenésével

5 Motiváció A szilíciumchipek sebessége másfél évente megkétszereződik A Moore-törvény alapján 2017-re egy bit információt egy atomban fogunk kódolni A hagyományos, napjainkban alkalmazott technológiák pár éven belül elérik a végső fizikai határokat Hogyan tovább?

6 A kvantuminformatika megjelenése

7 Kvantuminformatika Aki a kvantummechanikát tanulmányozza, és nem szédül bele, az nem is érti. Niels Bohr A kvantumvilágban tapasztalható jelenségek a klasszikus, hétköznapi felfogásunktól nagymértékben különböznek Egy kvantumrendszerben az elvégzendő feladatok szuperpozíciós állapotba hozhatók, azaz egyidejűleg végrehajthatók. A szuperpozíció felhasználásával N db kvantumbittel 2 N művelet hajtható végre egyidejűleg!

8 A kvantumbit Egy klasszikus bittel ellentétben, a kvantumbit nem csupán a 0 vagy 1 állapot valamelyikében lehet, hanem a két állapot közötti szuperpozícióban is. Kvantumbit megvalósítása Pl. hidrogén atommal Alapállapot: Gerjesztett állapot: Feles spinű részecskékkel, pl. elektron, proton

9 Kvantumállapotok leírása ψ = α 0 + β ψ = α 0 + β Normáltsági feltétel α 2 + β 2 = P(0) = P(1) = 1 2

10 Kvantumállapot mérése A mérést végrehajtó kvantum-áramkör ψ M (A kimenet egy klasszikus érékű bit lesz) Ha ψ = α 0 + β 1 akkor: M = 0: vagy M = 1: α β 2 2 valószínűséggel valószínűséggel

11 EPR állapotok felhasználása EPR jelenség (Einstein, Podolsky, Rosen) A pár egyik tagja valamilyen egyértelmű kvantumállapotba kerül, akkor a pár másik tagja, a másik részecske kénytelen ezzel ellentétes állapotot elfoglalni. A szubatomi részecskék között mesterségesen létrehozható A kapcsolat megmarad bármekkora távolság esetén is Összefonódott állapotok felhasználása Teleportáció: nem közvetlenül a részecskét teleportáljuk át, hanem egy létező elemi részecske állapotát, azaz tulajdonságait visszük át egy másik, már létező elemi részecskére. A kvantumállapot átviteléhez nem szükséges, hogy a két részecske egymás közelében legyen, így összefonódott állapotokat használunk.

12 Mennyire kell tartanunk a kvantumszámítógépek támadásától? Peter Shor prímfaktorizációs algoritmusa A faktorizációval szemben az LNKO megtalálására ismert gyors klasszikus algoritmus Egy olyan szám megtalálását, amelynek a fölbontandó számmal van közös osztója, átfogalmazhatjuk egy függvény periódusának Peter Shor meghatározására Klasszikus rendszerben nehéz feladat, viszont a perióduskeresésre gyors kvantum-algoritmust lehet találni. Az RSA feltörése egy 1600 klasszikus rendszerű számítógépből álló hálózatnak 8 hónapig tartott, ezzel szemben egyetlen kvantumszámítógépnek másodperces időt venne igénybe.

13 RSA RSA alkalmazása Informatikai, számítógépes kommunikációs rendszerek Elektronikus kereskedelem, elektronikus bankrendszerek Az N modulus nagyságrendje min Szerverek, kliensek közti biztonságos kommunikáció Elektronikus levelezés, elektronikus kártyarendszerek RSA biztonságának alapját az N faktorizációjának nehézsége jelenti A feltöréshez mindösszesen a prímfaktorizáció műveletét kell felgyorsítanunk A feltörés idejét a birtokunkban lévő számítási kapacitás határozza meg

14 Napjaink titkosítási módszerei Elvárásaink a jelenlegi módszerekkel szemben: Az elméleti feltörhetetlenség helyett a gyakorlati feltörhetetlenség biztosítása A feltörés erőforrás igénye legyen nagyobb, mint a megszerzett információból elérhető maximális haszon A kulcs mérete legyen akkora, hogy a módszer a gyakorlatban hatékonyan alkalmazható marad, ugyanakkor biztosítja a gyakorlati feltörhetetlenséget A szöveg megfejtéséhez szükséges idő exponenciálisan növekedjen a kulcs méretének lineáris növekedési üteme mellett Megfelelő erősségű titkosítási algoritmus esetén a feltörés egyetlen módja a kulcsok végigpróbálgatása legyen

15 Kvantuminformatika A kvantumalgoritmus szemben a klasszikus implementációban futtatott algoritmus exponenciális növekményű végrehajtási idejével négyzetes növekményű végrehajtási időt igényel! Shor faktorizációs algoritmusa egy periodikus függvény periódusának megtalálásához a kvantuminterferencia jelenségét használja

16 Klasszikus prímfaktorizáció A végrehajtás kritikus része a periódus meghatározása. A legnagyobb közös osztók megtalálása az Euklideszialgoritmus alapján pedig polinomiális lépésszámban könnyen elvégezhető. A perióduskeresés lépésszáma azonban N jegyeinek számával exponenciálisan növekszik, azaz ugyanolyan bonyolultságú, mint más - akár az egyszerű próbálgatásos - faktorizációs algoritmus. Kijelenthetjük, hogy klasszikus rendszerekben a feltörés gyakorlatilag lehetetlen.

17 Támadás kvantumszámítógéppel A kvantumalgoritmus a faktorizálandó szám hatványainak maradékosztályainak periodicitási tulajdonságát kihasználva kvantumregisztereken végzi el a prímtényezőkre bontást. A kvantum-fourier transzformáció végrehajtása után a periódust meghatározó tagok értéke egyértelműen kiolvasható a kvantumregiszterből

18 Kvantumkeresés alapú támadás Adatbázis szűrés, DES törés Lov Grover kvantumalgoritmusa rendezetlen adatbázisokban való keresésre L. K. Grover Az 56 bites DES feltörése kvantumszámítógéppel 185 lépésből végrehajtható (másodperc töredéke) Egy, másodpercenként 1 milliárd kulcsot végigpróbáló mai szuperszámítógéppel ez 1 évig tartana

19 Kvantumkeresés alapú támadás Példa: Adott egy adatbázis USA lakosságával: adat Egyetlen elem megtalálásához klasszikus rendszerben átlagosan /2 = 135 millió lépés szükséges A kvantumos változat esetében kb. 16 ezer lépésből megtalálható a keresett elem

20 A kvantumkriptográfia működési elve

21 Bevezető A kriptográfia célja Az üzenetek titkosságának, védettségének és hitelességének biztosítása algoritmikus módszerekkel A titkosítástudomány jelentősége napjainkban Elektronikus levelezés, telefonhívások védelme távközlési hálózatokon keresztül Elektronikus kereskedelem, üzleti, banki tranzakciók biztonsága Technikai berendezések kommunikációjának védelme Meddig vagyunk biztonságban? Létezik-e elméletileg feltörhetetlen titkosítási módszer?

22 Az OTP módszer A kriptográfia Szent Grálja: One Time Pad A kulcs legyen az üzenettel megegyező hosszúságú 1917: a nyílt szöveggel megegyező hosszúságú kulcs nem elegendő garancia a biztonságra A kulcs elemei legyenek véletlenszerűek Alkalmazása: I. világháború, amerikai hadsereg Joseph Mauborgne: több száz oldalas kódlaptömbök 24 betűs szöveg esetén 5 x lehetőség! A feltörhetetlenség matematikai igazolása (Shannon)

23 Kvantumkriptográfia Elméleti bevezető A fény tulajdonságai Polarizáció, polárszűrők működése, típusai Interferencia A mérés problémája: Heisenberg-féle határozatlansági reláció A mérés megváltoztatja a kvantumállapotot? Mérési valószínűségek szemléltetése

24 Kvantumkriptográfia A fény transzverzális elektromágneses hullám Az elektromos és mágneses térerővektorok a haladás irányára, ill. egymásra is merőleges, síkban harmonikus rezgést végeznek. A síkban poláros fényben az elektromos térerősség vektor egyetlen síkban halad. E vektorok mindenütt párhuzamos egyenesek mentén rezegnek.

25 Kvantumkriptográfia A polárszűrők működése A polárszűrő csak azon fotonokat engedi át, amelyeknek polarizációja azonos a polárszűrőjével. A polarizátor csak a függőleges rezgéseket engedi tovább, a második, szűrő pedig elforgatja a rezgés síkját.

26 Kvantumkriptográfia A polárszűrők típusai Rektilineáris vízszintes, függőleges Diagonális átlós A fotonok polarizációs állapotai A választott polárszűrő határozza meg a foton polarizációjának bázisát.

27 Kvantumkriptográfia A kvantumkriptográfiában a biteket a fotonok polarizációs szögével reprezentáljuk Az egyeseket és nullákat rektilineáris és diagonális bázisokkal kódoljuk A téves bázisú mérések irreverzibilis változást okozhatnak a kvantumrendszerben

28 Kvantumkriptográfia A rektilineáris és diagonális szűrőkkel előállítható fotonok, és azok bináris értékei

29 Kvantumkriptográfia Bob rektilineáris polárszűrővel tökéletesen azonosítja a függőlegesen és vízszintesen polarizált fotonokat, az átlósakat azonban nem, mivel azokat véletlenszerűen függőlegesnek vagy vízszintesnek méri

30 Kvantumkriptográfia Ha Bob diagonális szűrőt alkalmaz, akkor az átlósan polarizált fotonokat tökéletesen felismeri, de a vízszintesen és függőleges fotonokat helytelenül átlós polarizáltságúaknak azonosítja. A kapott bit értéke így véletlenszerű lesz.

31 Kvantumkriptográfia A fotonok polarizációs állapotainak tulajdonságai Ortonormált bázisvektorok Szuperpozíciós állapot leírása valószínűségi amplitúdókkal Az állapothoz tartozó valószínűségi amplitúdók, valamint a használt bázis orientációja meghatározzák a mérési eredmények kimenetelét

32 Kvantumkriptográfia A protokoll megalkotói Charles Bennett Gilles Brassard Alapgondolat: Az egyes fotonok polarizációjának megállapításához helyesen beállított polárszűrőt használata szükséges A Heisenberg-féle határozatlansági reláció állítása szerint logikai lehetetlenség egy adott tárgy minden tulajdonságát egyidőben megmérni. A hibás lehallgatás irreverzibilis változást idéz elő a kvantumrendszerben.

33 Kvantumkriptográfia A protokoll működése a véletlenszerűségre épül Alice véletlenül választja meg a polárszűrőit, amivel szintén véletlenszerű értékeket generál Bobnak nincs előzetes információja az elküldött foton bázisáról, véletlenszerűen méri be a fotonokat A kulcs egy random számsorozat, hossza megegyezik a kódolandó üzenet hosszával Azaz, a protokoll az egyszeri, véletlenszerű kulcsos módszert használja (OTP - elméletileg sem törhető)

34 Gyakorlati implementációk A kvantumkriptográfia gyakorlati megvalósítása Elsőként Bennett, Bassard, Smolin (1988) A laboratóriumi kísérletek után sikeres megvalósítás száloptikán keresztül, illetve szabadtérben 1995: Szabadtérben, Genf-Nyon között (23km) Los Alamos Szingapúr Mára már a világ egyre több országában

35 Kvantumkriptográfia alkalmazása Az első kvantumkriptográfiára épülő banki tranzakció 2005: Ausztria, Bécs A megvalósításhoz szükséges eszközök már elérhetőek a piacon Quantique, Magiq A technológia jelenleg még drága,a potenciális vásárlói kör is meglehetősen szűkre szabott Elsődleges célcsoport jelenleg: Kutatóintézetek, kormányzati hivatalok, bankok, üzleti élet, nemzetbiztonság, katonaság

36 Valódi véletlenszámgenerátor Kvantum-véletlenszámgenerátor Foton alapú véletlenszám előállítás 3 féle implementáció PCI, USB, OEM-chip Valódi véletlenszámok előállítása 4/16 Mbps-es sebességgel Alacsony költségek Széleskörű felhasználási lehetőség Kvantumkriptográfia PIN generálás Statisztikai kutatások Numerikus módszerek alkalmazása Szerencsejátékok, stb

37 Kvantumkriptográfia alkalmazása A kommunikáció résztvevői Alice Eve Bank Kvantumcsatorna Publikus csatorna

38 Kvantumkriptográfia alkalmazása A kvantumcsatorna egyirányú, Alice-től a Bank felé A kvantumcsatornát, így az ott folyó kommunikációt a kvantummechanika alaptörvényei védik A kvantumcsatornán történik a titkos kulcs kialakítása Szimmetrikus, OTP kulcs A publikus csatorna kétirányú A detektorok egyeztetésére használjuk

39 Kvantumkriptográfia alkalmazása A kommunikáció során Alice és a Bank a kvantumcsatornán keresztül hozza létre a titkos kulcsot A használt bázisokat és a kulcs elemeit a publikus csatornán keresztül egyeztetik

40 Kvantumkriptográfia alkalmazása A protokoll támadása

41 Kvantumkriptográfia alkalmazása Eve megjelenése a protokollban Mi teszi lehetetlenné a lehallgató dolgát? Eve egy fotont csak egyszer mérhet be Nincs információja a bemérendő foton bázisáról Az elfogott fotonok felét tudja csak helyesen bemérni A detektoregyeztetés során a felek téves detektorválasztásaihoz tartozó bitek kikerülnek a kulcsból Ez az információ a lehallgatón nem segít, mivel a Bank által helyesen bemért fotonok felét szintén tévesen határozta meg A téves bázisú lehallgatás irreverzibilis változásokat okoz a rendszerben!!

42 Kvantumállapotok másolhatatlansága

43 Az elemi CNOT kapu CNOT kapu működése leírható a klasszikus XOR művelet segítségével: CNOT A, B = A, B A A CNOT kapu működési elve: A vezérlő kvantumbit A B cél kvantumbit B A

44 Az elemi CNOT kapu A két bementi kvantumbit: vezérlő és cél kvantumbit A A B B A Ha a vezérlő kvantumbit 0, akkor a célbit változatlan marad : vagy Egyébként a célbit értéke negálódik : vagy A kimenet : AB, AB, A

45 Készíthető kvantumbit-másoló kapu? Klasszikus rendszerek esetén egy tetszőleges bit másolása az XOR művelettel megvalósítható: másolandó bit eredeti bit x x x x 0 y x y x 0 bemenet másolt bit

46 Készíthető kvantumbit-másoló kapu? másolandó kvantumbit ψ = a 0 + b 1 a 0 + b 1 Kimenet a 00 + b 10 0 a 00 + b 11 0 bemenet

47 Készíthető kvantumbit-másoló kapu? ψ ψ = a 00 + b 11 =??? Egy kvantumállapot nem másolható, hiszen ab 0. ( )( ) 2 2 ψ ψ = a 0 + b 1 a 0 + b 1 = a 00 + ab 01 + ab 10 + b a + ab + ab + b a + b Vagyis, egy ismeretlen kvantumállapot lemásolása NEM LEHETSÉGES! - NO CLONING TÉTEL -

48 Kvantumkriptográfia A lehallgatás egyértelműen megállapítható Azonos detektorválasztás esetén eltérő eredmény keletkezett az adó és vevő oldalán Hogyan fedhetjük fel Eve jelenlétét? A kulcs egy részét feláldozzuk erre, és a publikus csatornán keresztül egyeztetünk Az eltérő detektorral bemért bitek eltávolítása Az azonos detektorral bemért, eltérő bitek eltávolítása a kulcsból

49 Kvantuminformatika Egy nő még mindig kiszámíthatóbb, mint az elektron. Mérő László A kvantumvilágban más törvények uralkodnak, mint a klasszikus világunkban Egy kvantumrendszer egy adott időpillanatban az összes lehetséges állapot koherens szuperpozíciójában van. Egy kvantumrendszer megfigyelése, azaz bemérése lehetetlen a rendszer irreverzibilis megzavarása nélkül. A mérés hatására a rendszer sztochasztikusan és irreverzibilis módon valamelyik lehetséges állapotba zuhan.

50 Kvantumkriptográfia A protokoll működésének összefoglalása Alice a kvantumcsatornán keresztül elküldi a véletlenszerű fotonfüzérét Bobnak Bob visszaküldi Alice-nak a választott detektorsorrendet a publikus csatornán Alice válaszol Bobnak, megmondja, hogy melyik fotonoknál választott jól. Az eltérő bázisú méréseket eldobjuk a kulcsból. A detektoregyeztetésen túl szükséges a megmaradt kulcs egy részét is egyeztetni az esetleges lehallgatás felfedése miatt. A felhasznált kulcsrészletet eldobjuk. Ha az egyeztetett kulcsrészlet megegyezik, akkor sikeres volt a kulcsegyeztetés. Ha eltérést tapasztalunk, eldobjuk a kulcsot.

51 Kvantumkriptográfia alkalmazása Animáció: A protokoll működésének bemutatása

52 A protokoll verifikációja formális analízissel

53 A vizsgált valószínűségek A kvantumcsatornán átküldött fotonok számát változtatva hogyan változik a lehallgatásdetektálási valószínűség? Lehallgatás-detektálási valószínűségek alakulása A felhasznált kvantumbitek száma milyen mértékben befolyásolja a támadó által észrevétlenül megszerezhető információ mennyiségét? Sikeres támadás bekövetkezésének valószínűsége

54 A modell paraméterei Téves detektorválasztási valószínűség A protokollban alapértelmezetten 0.5 A téves detektorválasztáshoz tartozó helyes bit valószínűsége ( Szerencse faktor ) A lehallgató eltérő bázist választott a foton beméréséhez. Mekkora valószínűséggel kaphat mégis helyes értéket? A mérések során használt érték 0.5. A lehallgatott kvantumbit állapotának véletlenszerűsége A bemért foton a kvantumcsatornára véletlenszerű bázisban és polarizációs szögben kerül vissza. Mekkora legyen a véletlenszerűség mértéke? A kvantumcsatornán fellépő zaj mértéke A kvantumcsatornán fellépő zaj véletlenszerűen megváltoztatja a foton bázisát vagy polarizációs szögét. A mérések során használt érték: 0.25.

55 A protokoll támadásának modellezése Vizsgált támadási modellek Beméréses támadás Eve a beméréshez használt bázisban és a mérés során kapott polarizációs szögben helyezi vissza a fotont a kvantumcsatornára. Véletlenszerű továbbítás A kvantumcsatornára visszahelyezett foton bázisa és polarizációs szöge független a bemérés során kapott eredményektől.

56 A protokoll biztonsági rendszerének vizsgálata Mérési eredmények: A kvantumcsatorna lehallgatásának detektálási valószínűsége Beméréses támadás ( ) P N 05 f N = 1 a = 1 e 1 ( ) ( ) detektálás,. ( ) e bn N

57 A lehallgatások felfedezésének alakulása Mérési eredmények: A kvantumcsatorna lehallgatásának detektálási valószínűsége Véletlenszerű kvantumbit tovább bbítás ( ) P N 05 f N = 1 a = 1 e 2 ( ) ( ) detektálás,. ( ) e bn N

58 A protokoll biztonsági rendszerének vizsgálata Mérési eredmények: A kvantumcsatorna sikeres támadásának valószínűsége Beméréses támadás P f N a 1 ( bn ) ( N) (/ 12) N = ( ) = e = e

59 Eredmények összefoglalása A kvantumállapotok lehallgatásának detektálási valószínűsége A vizsgált támadási modellek esetén, a sikeres lehallgatásdetektálási valószínűség exponenciálisan nőtt a kvantumbitek számának lineáris ütemű növekedése mellett ( ) k ( N 05) 1 k lim Pdetektálás N, 05. = lim P σ = 1.,., Φ N N A kvantumállapotok sikeres lehallgatásának valószínűségét vizsgáló mérések eredménye A kvantumcsatorna sikeres támadásának valószínűsége exponenciálisan csökkent a fotonok számának lineáris ütemű növekedése mellett ( ) k ( N 05) 2 k lim P N, 05. = lim P σ = 0. Φ N 1/2 N,.,

60 Összefoglalás Jelenleg nem kínál előnyöket, mert az RSA révén rendelkezésünkre áll a gyakorlatilag feltörhetetlen kód A kvantumszámítógépek megjelenéséig még biztonságban vagyunk A kvantumkriptográfia nem csupán gyakorlatilag feltörhetetlen kód, hanem abszolút értelemben is az. A kvantumelmélet lehetetlenné teszi, hogy Eve helyesen értelmezze az Alice és Bob között kialakult kulcsot Kijelenthető, hogy ha egy kvantumkriptográfiával titkosított üzenetet valaha is megfejtenének, akkor hibás a kvantumelmélet, ami az egész fizikát alapjaiban döntené össze

61 A gyakorlati implementációk tulajdonságainak vizsgálata

62 Bevezető A kereskedelmi forgalomban is elérhető eszközök gyártói MagiQ id Quantique IBM NEC A jelenleg forgalmazott eszközökkel km-es távolságon valósítható meg a tökéletesen biztonságos kommunikáció Az optikai szál alapú implementációk esetén a detektorok pontatlansága, illetve a különböző zajforrások jelentik a szűk keresztmetszetet A kvantumállapotok nem erősíthetőek fel Jelenleg még nem áll rendelkezésünkre az optikai erősítőhöz hasonlító erősítő eszköz A fotonforrás lehet szimpla, vagy összefonódott kvantumállapot

63 MagiQ QPN 5505 QPN 5505 Kommunikáció távolsága: 75 km Rendelkezésre állás: 1 hétig, napi 24 óra Főbb paraméterek Csillapítás: 18 db Lézernyaláb ismétlési frekvencia: 600kHz Átlagos nyalábintenzitás: 0.05 foton/nyaláb Mért eredmények Bit-hiba arány: 1-2% Kulcselőállítás paraméterei 1.7 bit/sec Egy nap alatt 574 kulcs (256 bit) Azaz, egy kulcs előállítása átlagosan 3 perc Stabil, megbízható működés

64 Magiq QPN 7505 A kvantumcsatorna és a publikus csatorna adatait egyetlen csatornára multiplexeli Egyetlen optikai üvegszállal megvalósítható a teljes kulcsmegosztás Ez azonban jelenleg csak 25km-es távolságig lehetséges Ethernet kompatibilitás Áthidalható távolság 100 km IPSec Gateway-ként is használható 8 darab, egyenként 1 Gb/sec-es csatornát képes kezelni Tejes IPSec-alapú támogatottság Többféle hálózati megoldás támogatása Dedikált virtuális LAN Belső intranet VPN hálózatok Távközlési vivőhálózatok QPN kaszkádolási lehetőség: több, mint 200 km-es távolság Megbízható működés Ár: $-tól

65 id Quantique: Cerberis Cerberis Full-duplex titkosítás Ethernet: 10/100 Mbps, 1 Gbps Sonet/SDH: OC-3; 12; 48; 192 ATM: OC-3, OC-12 Titkosítás: 256 bites AES Automatikus kulcsmenedzsment Pont-pont kapcsolat támogatása L2 szinten A hálózati teljesítményt nem befolyásolja A késleltetési idő 15 mikrosec alatti Egyszerű és megbízható működés On-line monitorozás, SNMP-vel Webszerver funkció Skálazhatóság 4 párhuzamos kapcsolat kezelése

66 id Quantique: Vectis Vectis Adatkapcsolati réteg, transzparens működés Két Fast Ethernet (IEEE 802.3u) optikai hálózat technikailag vagy logikailag elkülönülõ részeit kapcsolja össze Adatforgalom optimalizálása Titkosítás Minimális overhead Milisec-es késleltetési idő LAN, MAN, SAN hálózatokhoz Kulcsfrissítés meghatározott időközönként Kulcselőállítás max. 100 kulcs/sec Fejlett tikosító és hitelesítő algoritmusok 128, 192, 256 bites AES HMAC-SHA1, HMAC-SHA-256 Beépített véletlenszámgenerátor Foton alapú Q-RNG Intelligens lehallgatás detektálás Energiatakarékos üzemmód támogatása

67 id Quantique: Clavis Clavis Elsősorban kutatásokhoz, oktatáshoz, egyéb demonstrációs alkalmazásokhoz Megbízható működés, akár 100 km-es távolságig is A teljes kulcsmegosztási protokoll implementálva Fejlett szoftveres támogatottság BeépítettC++ könyvtár Szinkronizált kommunikáció Opcionálisan kvantum-alapú RNG 4-16 Mbps Kulcsfrissítési sebesség > 1500 bit/sec Támogatott titkosító algoritmusok Triple-DES (168-bit) AES Adathitelesítés támogatása

68 Hálózati megvalósítások

69 QPN 7505: Választható titkosítási algoritmus

70 QPN 7505: LAN-ok között MSS: multi-service switch

71 QPN 7505: Külső Gateway Router, GbE multiplexerrel

72 Sd QPN 7505: Long Haul hálózat

73 Összefoglalás Az abszolút biztonság garantálása A kriptográfia Szent Grálja Megdönthetetlen kvantumfizikai törvények A kvantumcsatorna gyakorlati megvalósításához egy dedikált optikai üvegszál szükséges a küldő és a vevő között Egyelőre limitált távolság (<100km) Kaszkádosítással Long-haul is megvalósítható Az üvegszálon csak passzív optikai elemek lehetnek Detektor-zajokra érzékeny A protokoll hatásfoka nagymértékben függ a távolságtól Automatikus működés

74 Kvantum smart-kártyák

75 Klasszikus smart-kártyák Problémák A kártya tulajdonosának bíznia kell a terminálban PIN kód megadása Közbeékelődés, PIN-kód ellopása A smart-kártyák szilícium alapú technológiája támadható A kártyában lévő információk kinyerhetőek egyéb eszközökkel is A klasszikus kommunikációs csatorna könnyedén lehallgatható, támadható Az adatok észrevétlenül másolhatóak

76 Kvantum smart-kártyák A megoldás Optikai szálak, optoelektronikai eszközök, összefonódott kvantumállapotok alkalmazása a smart-kártyán Ψ AB = 1 2 ( ) A PIN-kóddal a kártyán lévő optoelektronikai eszközöket aktiváljuk. A terminál és a kártya között így nincs szükség a PIN-kód átküldésére, a PIN-kód a kártyából nem kerül ki. A kártya aktiválásával azonosítjuk a felhasználót A terminál és a smart-kártya közti azonosítást összefonódott kvantumállapotokkal realizáljuk A kártyán lévő optoelektronikai eszközök energiaforrása magán a kártyán kap helyet pl. fotocellák A B A B

77 Összefonódott állapotok létrehozása Az összefonódott állapotok létrehozásához mindösszesen egy Hadamard kapura, illetve egy CNOT kapura lesz szükségünk: x y Kimenet ( ) x H ( ) y ( ) ( )

78 Az áramkör működése 0 H 1 2 ( ) 0? CNOT = = = CNOT ( CNOT 00 + CNOT 10 ) ( )

79 EPR állapotok felhasználása A kvantumszámítógépek közti adatátvitelhez ne legyen szükség közvetlen fizikai kontaktusra az egyes kvantumbitek között A kvantumbitek fizikai realizációja legyen a lehető legegyszerűbb Foton alapú kommunikáció helyett lézernyaláb, vagy mikrohullám Az összefonódott állapotban lévő kvantumbitek egy kvantumbuszon keresztül kommunikálnak egymással A kvantum-busz fizikai megvalósítása lehet: lézer vagy mikrohullám

80 Titkosított kommunikáció A felek megosztott EPR kvantumállapotok segíts tségével kommunikálnak Alice,, a saját t fotonja bemérésével Bob állapotát t is determinálja. Összefonódott állapotú fotonok

81 A kvantum-kártya felépítése PIN-aktivátor: A felhasználó által megadott PIN kóddal aktiváljuk a kvantum-kártyát Chip: Titkos kulcs tárolása: {0,1} n PM: Polarizáció szabályozás A chipben tárolt titkos kulcsnak megfelelően állítjuk a foton polarizációt 0 a polarizációs szög nem változik 1 a foton ortogonális állapotba kerül Kvantumcsatorna: egymódusú optikai szál Elektronikus jelek: szinkronizáció, verifikáció, publikus elemek A kártya és a terminál közötti titkos információ kizárólag a kvantumcsatornán keresztül kerül továbbításra

82 A kvantum-terminál elemei A kártya és a terminál közti titkos kommunikáció alapját az EPRkvantumállapotok jelentik A terminál egységei: EPR-forrás: lézer, BBO kristály Az előállított összefonódott részecskepár egyik tagját az I.-es nyalábosztó segítségével azonosítjuk. A mérés eredménye teljesen véletlenszerű. A II. nyalábosztóval a kártyából visszatérő kvantumállapotot detektáljuk A titkos kulcs bitjének megfelelően módosult a polarizációs állapot Klasszikus elemek: Detektorok eredményeinek feldolgozása, értelmezése, titkos kulcs ellenőrzése összehasonlítás az eltárolt kulccsal A kvantumcsatornán bármilyen lehallgatási, másolási, támadási próbálkozás egyértelműen detektálható

83 LOGO Köszönöm a figyelmet! Gyöngyösi László BME Villamosmérnöki és Informatikai Kar

Valóban feltörhetetlen? A kvantumkriptográfia biztonsági analízise

Valóban feltörhetetlen? A kvantumkriptográfia biztonsági analízise Valóban feltörhetetlen? A kvantumkriptográfia biztonsági analízise Gyöngyösi László gyongyosi@hit.bme.hu Hacktivity 2008 Budai Fonó Zeneház, 2008. szeptember 21. Tartalom Motiváció A kvantuminformatikáról

Részletesebben

Kvantumkriptográfia III.

Kvantumkriptográfia III. LOGO Kvantumkriptográfia III. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Tantárgyi weboldal: http://www.hit.bme.hu/~gyongyosi/quantum/ Elérhetőség: gyongyosi@hit.bme.hu A kvantumkriptográfia

Részletesebben

Kvantum-hibajavítás I.

Kvantum-hibajavítás I. LOGO Kvantum-hibajavítás I. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Ismétléses kódolás Klasszikus hibajavítás Klasszikus modell: BSC (binary symmetric channel) Hibavalószínűség: p p 0.5

Részletesebben

A kvantumkriptográfia infokommunikációs alkalmazásai

A kvantumkriptográfia infokommunikációs alkalmazásai A kvantumkriptográfia infokommunikációs alkalmazásai GYÖNGYÖSI LÁSZLÓ, IMRE SÁNDOR Budapesti Mûszaki és Gazdaságtudományi Egyetem, Híradástechnikai Tanszék {gyongyosi, imre}@hit.bme.hu Kulcsszavak: kvantumkriptográfia,

Részletesebben

Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz)

Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz) Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz) A házi feladatokkal kapcsolatos követelményekről Kapcsolódó határidők: választás: 6. oktatási hét csütörtöki

Részletesebben

A kvantumelmélet és a tulajdonságok metafizikája

A kvantumelmélet és a tulajdonságok metafizikája A kvantumelmélet és a tulajdonságok metafizikája Szabó Gábor MTA Bölcsészettudományi Központ email: szabo.gabor@btk.mta.hu p. 1 Kvantumelmélet Kialakulása: 1900, Planck: energiakvantum 1905, Einstein:

Részletesebben

IP alapú távközlés. Virtuális magánhálózatok (VPN)

IP alapú távközlés. Virtuális magánhálózatok (VPN) IP alapú távközlés Virtuális magánhálózatok (VPN) Jellemzők Virtual Private Network VPN Publikus hálózatokon is használható Több telephelyes cégek hálózatai biztonságosan összeköthetők Olcsóbb megoldás,

Részletesebben

prímfaktoriz mfaktorizáció szló BME Villamosmérn és s Informatikai Kar

prímfaktoriz mfaktorizáció szló BME Villamosmérn és s Informatikai Kar Kvantumszámítógép hálózat zat alapú prímfaktoriz mfaktorizáció Gyöngy ngyösi LászlL szló BME Villamosmérn rnöki és s Informatikai Kar Elemi kvantum-összead sszeadók, hálózati topológia vizsgálata Az elemi

Részletesebben

Bankkártya elfogadás a kereskedelmi POS terminálokon

Bankkártya elfogadás a kereskedelmi POS terminálokon Bankkártya elfogadás a kereskedelmi POS terminálokon Költségcsökkentés egy integrált megoldással 2004. február 18. Analóg-Digitál Kft. 1 Banki POS terminál elemei Kliens gép processzor, memória, kijelző,

Részletesebben

Informatikai eszközök fizikai alapjai Lovász Béla

Informatikai eszközök fizikai alapjai Lovász Béla Informatikai eszközök fizikai alapjai Lovász Béla Kódolás Moduláció Morzekód Mágneses tárolás merevlemezeken Modulációs eljárások típusai Kódolás A kód megállapodás szerinti jelek vagy szimbólumok rendszere,

Részletesebben

Kvantuminformatikai alapismeretek összefoglalása

Kvantuminformatikai alapismeretek összefoglalása Kvantuminformatikai alapismeretek összefoglalása sa Gyöngy ngyösi LászlL szló BME Villamosmérn rnöki és s Informatikai Kar Támadás s kvantumszámítógéppel Egy klasszikus algoritmusnak egy U unitér transzformáci

Részletesebben

Kvantum-tömörítés II.

Kvantum-tömörítés II. LOGO Kvantum-tömörítés II. Gyöngyös László BME Vllamosmérnök és Informatka Kar A kvantumcsatorna kapactása Kommunkácó kvantumbtekkel Klasszkus btek előnye Könnyű kezelhetőség Stabl kommunkácó Dszkrét értékek

Részletesebben

Csoportos üzenetszórás optimalizálása klaszter rendszerekben

Csoportos üzenetszórás optimalizálása klaszter rendszerekben Csoportos üzenetszórás optimalizálása klaszter rendszerekben Készítette: Juhász Sándor Csikvári András Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Automatizálási

Részletesebben

Kvantum-informatika és kommunikáció féléves feladatok (2010/2011, tavasz)

Kvantum-informatika és kommunikáció féléves feladatok (2010/2011, tavasz) Kvantum-informatika és kommunikáció féléves feladatok (2010/2011, tavasz) 1. Ön egy informatikus öregtalálkozón vesz részt, amelyen felkérik, hogy beszéljen az egyik kedvenc területéről. Mutassa be a szakmai

Részletesebben

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33

Részletesebben

Data Security: Access Control

Data Security: Access Control Data Security 1. Alapelvek 2. Titkos kulcsú rejtjelezés 3. Nyilvános kulcsú rejtjelezés 4. Kriptográfiai alapprotokollok I. 5. Kriptográfiai alapprotokollok II. Data Security: Access Control A Rossz talált

Részletesebben

Kvantum infokommunikáció, a titkosítás új lehetőségei

Kvantum infokommunikáció, a titkosítás új lehetőségei Kvantum infokommunikáció, a titkosítás új lehetőségei A tudós leírja azt, ami van, a mérnök viszont megalkotja azt, ami soha nem volt. Gábor Dénes Imre Sándor, BME-HIT 2016.10.06. 2 Ki tudja, hogy mi ez?

Részletesebben

SSL elemei. Az SSL illeszkedése az internet protokoll-architektúrájába

SSL elemei. Az SSL illeszkedése az internet protokoll-architektúrájába SSL 1 SSL elemei Az SSL illeszkedése az internet protokoll-architektúrájába 2 SSL elemei 3 SSL elemei 4 SSL Record protokoll 5 SSL Record protokoll Az SSL Record protokoll üzenet formátuma 6 SSL Record

Részletesebben

Kvantum-kommunikáció komplexitása I.

Kvantum-kommunikáció komplexitása I. LOGO Kvantum-kommunikáció komplexitása I. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Klasszikus információ n kvantumbitben Hány klasszikus bitnyi információ nyerhető ki n kvantumbitből? Egy

Részletesebben

Webalkalmazás-biztonság. Kriptográfiai alapok

Webalkalmazás-biztonság. Kriptográfiai alapok Webalkalmazás-biztonság Kriptográfiai alapok Alapfogalmak, áttekintés üzenet (message): bizalmas információhalmaz nyílt szöveg (plain text): a titkosítatlan üzenet (bemenet) kriptoszöveg (ciphertext):

Részletesebben

Kommunikációs rendszerek programozása. Wireless LAN hálózatok (WLAN)

Kommunikációs rendszerek programozása. Wireless LAN hálózatok (WLAN) Kommunikációs rendszerek programozása Wireless LAN hálózatok (WLAN) Jellemzők '70-es évek elejétől fejlesztik Több szabvány is foglalkozik a WLAN-okkal Home RF, BlueTooth, HiperLAN/2, IEEE 802.11a/b/g

Részletesebben

Programozó- készülék Kezelőkozol RT óra (pl. PC) Digitális bemenetek ROM memória Digitális kimenetek RAM memória Analóg bemenet Analóg kimenet

Programozó- készülék Kezelőkozol RT óra (pl. PC) Digitális bemenetek ROM memória Digitális kimenetek RAM memória Analóg bemenet Analóg kimenet 2. ZH A csoport 1. Hogyan adható meg egy digitális műszer pontossága? (3p) Digitális műszereknél a pontosságot két adattal lehet megadni: Az osztályjel ±%-os értékével, és a ± digit értékkel (jellemző

Részletesebben

OFDM technológia és néhány megvalósítás Alvarion berendezésekben

OFDM technológia és néhány megvalósítás Alvarion berendezésekben SCI-Network Távközlési és Hálózatintegrációs Rt. T.: 467-70-30 F.: 467-70-49 info@scinetwork.hu www.scinetwork.hu Nem tudtuk, hogy lehetetlen, ezért megcsináltuk. OFDM technológia és néhány megvalósítás

Részletesebben

HÁLÓZATOK I. Segédlet a gyakorlati órákhoz. Készítette: Göcs László mérnöktanár KF-GAMF Informatika Tanszék. 2014-15. tanév 1.

HÁLÓZATOK I. Segédlet a gyakorlati órákhoz. Készítette: Göcs László mérnöktanár KF-GAMF Informatika Tanszék. 2014-15. tanév 1. HÁLÓZATOK I. Segédlet a gyakorlati órákhoz 1. Készítette: Göcs László mérnöktanár KF-GAMF Informatika Tanszék 2014-15. tanév 1. félév Elérhetőség Göcs László Informatika Tanszék 1.emelet 116-os iroda gocs.laszlo@gamf.kefo.hu

Részletesebben

2. előadás. Radio Frequency IDentification (RFID)

2. előadás. Radio Frequency IDentification (RFID) 2. előadás Radio Frequency IDentification (RFID) 1 Mi is az az RFID? Azonosításhoz és adatközléshez használt technológia RFID tag-ek csoportosítása: Működési frekvencia alapján: LF (Low Frequency): 125

Részletesebben

A fény mint elektromágneses hullám és mint fényrészecske

A fény mint elektromágneses hullám és mint fényrészecske A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá

Részletesebben

Számítógépes hálózatok

Számítógépes hálózatok Számítógépes hálózatok Hajdu György: A vezetékes hálózatok Hajdu Gy. (ELTE) 2005 v.1.0 1 Hálózati alapfogalmak Kettő/több tetszőleges gép kommunikál A hálózat elemeinek bonyolult együttműködése Eltérő

Részletesebben

Hálózati alapismeretek

Hálózati alapismeretek Hálózati alapismeretek Tartalom Hálózat fogalma Előnyei Csoportosítási lehetőségek, topológiák Hálózati eszközök: kártya; switch; router; AP; modem Az Internet története, legfontosabb jellemzői Internet

Részletesebben

Kriptográfia I. Kriptorendszerek

Kriptográfia I. Kriptorendszerek Kriptográfia I Szimmetrikus kulcsú titkosítás Kriptorendszerek Nyíltszöveg üzenettér: M Titkosított üzenettér: C Kulcs tér: K, K Kulcsgeneráló algoritmus: Titkosító algoritmus: Visszafejt algoritmus: Titkosítás

Részletesebben

A Jövő Internet elméleti alapjai. Vaszil György Debreceni Egyetem, Informatikai Kar

A Jövő Internet elméleti alapjai. Vaszil György Debreceni Egyetem, Informatikai Kar A Jövő Internet elméleti alapjai Vaszil György Debreceni Egyetem, Informatikai Kar Kutatási témák Bizalmas adatok védelme, kriptográfiai protokollok DE IK Számítógéptudományi Tsz., MTA Atomki Informatikai

Részletesebben

5.1 Környezet. 5.1.1 Hálózati topológia

5.1 Környezet. 5.1.1 Hálózati topológia 5. Biztonság A rendszer elsodleges célja a hallgatók vizsgáztatása, így nagy hangsúlyt kell fektetni a rendszert érinto biztonsági kérdésekre. Semmiképpen sem szabad arra számítani, hogy a muködo rendszert

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

Kvantum alapú hálózatok - bevezetés

Kvantum alapú hálózatok - bevezetés Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Hálózati Rendszerek és Szolgáltatások Tanszék Mobil Kommunikáció és Kvantumtechnológiák Laboratórium Kvantum alapú hálózatok

Részletesebben

KVANTUMMECHANIKA. a11.b-nek

KVANTUMMECHANIKA. a11.b-nek KVANTUMMECHANIKA a11.b-nek HŐMÉRSÉKLETI SUGÁRZÁS 1 Hősugárzás: elektromágneses hullám A sugárzás által szállított energia: intenzitás I, T és λkapcsolata? Példa: Nap (6000 K): sárga (látható) Föld (300

Részletesebben

Vezetéknélküli technológia

Vezetéknélküli technológia Vezetéknélküli technológia WiFi (Wireless Fidelity) 802.11 szabványt IEEE definiálta protokollként, 1997 Az ISO/OSI modell 1-2 rétege A sebesség függ: helyszíni viszonyok, zavarok, a titkosítás ki/be kapcsolása

Részletesebben

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken Transzformátor rezgés mérés A BME Villamos Energetika Tanszéken A valóság egyszerűsítése, modellezés. A mérés tervszerűen végrehajtott tevékenység, ezért a bonyolult valóságos rendszert először egyszerűsítik.

Részletesebben

TELE-OPERATOR UTS v.14 Field IPTV műszer. Adatlap

TELE-OPERATOR UTS v.14 Field IPTV műszer. Adatlap TELE-OPERATOR UTS v.14 Field IPTV műszer Adatlap COMPU-CONSULT Kft. 2009. augusztus 3. Dokumentáció Tárgy: TELE-OPERATOR UTS v.14 Field IPTV műszer Adatlap (6. kiadás) Kiadta: CONSULT-CONSULT Kft. Dátum:

Részletesebben

Hálózati réteg. WSN topológia. Útvonalválasztás.

Hálózati réteg. WSN topológia. Útvonalválasztás. Hálózati réteg WSN topológia. Útvonalválasztás. Tartalom Hálózati réteg WSN topológia Útvonalválasztás 2015. tavasz Szenzorhálózatok és alkalmazásaik (VITMMA09) - Okos város villamosmérnöki MSc mellékspecializáció,

Részletesebben

Intelligens biztonsági megoldások. Távfelügyelet

Intelligens biztonsági megoldások. Távfelügyelet Intelligens biztonsági megoldások A riasztást fogadó távfelügyeleti központok felelősek a felügyelt helyszínekről érkező információ hatékony feldolgozásáért, és a bejövő eseményekhez tartozó azonnali intézkedésekért.

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Rubin SMART COUNTER. Műszaki adatlap 1.1. Státusz: Jóváhagyva Készítette: Forrai Attila Jóváhagyta: Parádi Csaba. Rubin Informatikai Zrt.

Rubin SMART COUNTER. Műszaki adatlap 1.1. Státusz: Jóváhagyva Készítette: Forrai Attila Jóváhagyta: Parádi Csaba. Rubin Informatikai Zrt. Rubin SMART COUNTER Műszaki adatlap 1.1 Státusz: Jóváhagyva Készítette: Forrai Attila Jóváhagyta: Parádi Csaba Rubin Informatikai Zrt. 1149 Budapest, Egressy út 17-21. telefon: +361 469 4020; fax: +361

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Számítógépes Hálózatok. 4. gyakorlat

Számítógépes Hálózatok. 4. gyakorlat Számítógépes Hálózatok 4. gyakorlat Feladat 0 Számolja ki a CRC kontrollösszeget az 11011011001101000111 üzenetre, ha a generátor polinom x 4 +x 3 +x+1! Mi lesz a 4 bites kontrollösszeg? A fenti üzenet

Részletesebben

Adja meg, hogy ebben az esetben mely handshake üzenetek kerülnek átvitelre, és vázlatosan adja meg azok tartalmát! (8p)

Adja meg, hogy ebben az esetben mely handshake üzenetek kerülnek átvitelre, és vázlatosan adja meg azok tartalmát! (8p) Adatbiztonság a gazdaságinformatikában PZH 2013. december 9. 1. Tekintsük a következő rejtjelező kódolást: nyílt üzenetek halmaza {a,b}, kulcsok halmaza {K1,K2,K3,K4,K5}, rejtett üzenetek halmaza {1,2,3,4,5}.

Részletesebben

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem 1. A Huffman-kód prefix és forráskiterjesztéssel optimálissá tehető, ezért nem szükséges hozzá a forrás valószínűség-eloszlásának ismerete. 2. Lehet-e tökéletes kriptorendszert készíteni? Miért? a. Lehet,

Részletesebben

Kriptográfiai alapfogalmak

Kriptográfiai alapfogalmak Kriptográfiai alapfogalmak A kriptológia a titkos kommunikációval foglalkozó tudomány. Két fő ága a kriptográfia és a kriptoanalízis. A kriptográfia a titkosítással foglalkozik, a kriptoanalízis pedig

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

Hitelesítés elektronikus aláírással BME TMIT

Hitelesítés elektronikus aláírással BME TMIT Hitelesítés elektronikus aláírással BME TMIT Generátor VIP aláíró Internet Visszavont publikus kulcsok PC Hitelesítő központ Hitelesített publikus kulcsok Aláíró Publikus kulcs és személyes adatok hitelesített

Részletesebben

Számítógép felépítése

Számítógép felépítése Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége

Részletesebben

Shor kvantum-algoritmusa diszkrét logaritmusra

Shor kvantum-algoritmusa diszkrét logaritmusra Ivanyos Gábor MTA SZTAKI Debrecen, 20 január 2. Tartalom és kvantum-áramkörök 2 A diszkrét log probléma Kvantum bit Állapot: a B = C 2 komplex euklideszi tér egy egységvektora: az a 0 + b szuperpozíció

Részletesebben

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen,

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen, MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc Debrecen, 2017. 01. 03. Név: Neptun kód: Megjegyzések: A feladatok megoldásánál használja a géprajz szabályait, valamint a szabványos áramköri elemeket.

Részletesebben

Kábel nélküli hálózatok. Agrárinformatikai Nyári Egyetem Gödöllő 2004

Kábel nélküli hálózatok. Agrárinformatikai Nyári Egyetem Gödöllő 2004 Kábel nélküli hálózatok Agrárinformatikai Nyári Egyetem Gödöllő 2004 Érintett témák Mért van szükségünk kábelnélküli hálózatra? Hogyan válasszunk a megoldások közül? Milyen elemekből építkezhetünk? Milyen

Részletesebben

A lézer alapjairól (az iskolában)

A lézer alapjairól (az iskolában) A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o

Részletesebben

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező

Részletesebben

AUTOMATED FARE COLLECTION (AFC) RENDSZEREK

AUTOMATED FARE COLLECTION (AFC) RENDSZEREK AUTOMATED FARE COLLECTION (AFC) RENDSZEREK A biztonságos elektronikus kereskedelem alapjai Házi feladat 2011. november 28., Budapest Szép Balázs (H2DLRK) Ill Gergely (Z3AY4B) Tartalom Bevezetés AFC általános

Részletesebben

R5 kutatási feladatok és várható eredmények. RFID future R Király Roland - Eger, EKF TTK MatInf

R5 kutatási feladatok és várható eredmények. RFID future R Király Roland - Eger, EKF TTK MatInf R5 kutatási feladatok és várható eredmények RFID future R5 2013.06.17 Király Roland - Eger, EKF TTK MatInf RFID future R5 RFID future - tervezett kutatási feladatok R5 feladatok és várható eredmények Résztevékenységek

Részletesebben

S, mint secure. Nagy Attila Gábor Wildom Kft. nagya@wildom.com

S, mint secure. Nagy Attila Gábor Wildom Kft. nagya@wildom.com S, mint secure Wildom Kft. nagya@wildom.com Egy fejlesztő, sok hozzáférés Web alkalmazások esetében a fejlesztést és a telepítést általában ugyanaz a személy végzi Több rendszerhez és géphez rendelkezik

Részletesebben

Titkosítás NetWare környezetben

Titkosítás NetWare környezetben 1 Nyílt kulcsú titkosítás titkos nyilvános nyilvános titkos kulcs kulcs kulcs kulcs Nyilvános, bárki által hozzáférhető csatorna Nyílt szöveg C k (m) Titkosított szöveg Titkosított szöveg D k (M) Nyílt

Részletesebben

Fénytávközlő rendszerek és alkalmazások

Fénytávközlő rendszerek és alkalmazások Fénytávközlő rendszerek és alkalmazások 2015 ősz Történeti áttekintés 1 A kezdetek 1. Emberré válás kommunikáció megjelenése Információközlés meghatározó paraméterei Mennyiség Minőség Távolság Gyorsaság

Részletesebben

MAC címek (fizikai címek)

MAC címek (fizikai címek) MAC címek (fizikai címek) Hálózati eszközök egyedi azonosítója, amit az adatkapcsolati réteg MAC alrétege használ Gyárilag adott, általában ROM-ban vagy firmware-ben tárolt érték (gyakorlatilag felülbírálható)

Részletesebben

Az Ethernet példája. Számítógépes Hálózatok 2012. Az Ethernet fizikai rétege. Ethernet Vezetékek

Az Ethernet példája. Számítógépes Hálózatok 2012. Az Ethernet fizikai rétege. Ethernet Vezetékek Az Ethernet példája Számítógépes Hálózatok 2012 7. Adatkapcsolati réteg, MAC Ethernet; LAN-ok összekapcsolása; Hálózati réteg Packet Forwarding, Routing Gyakorlati példa: Ethernet IEEE 802.3 standard A

Részletesebben

Informatikai Rendszerek Alapjai

Informatikai Rendszerek Alapjai Informatikai Rendszerek Alapjai Dr. Kutor László A redundancia fogalma és mérése Minimális redundanciájú kódok 1. http://uni-obuda.hu/users/kutor/ IRA 2014 könyvtár Óbudai Egyetem, NIK Dr. Kutor László

Részletesebben

Számítógépes Hálózatok. 5. gyakorlat

Számítógépes Hálózatok. 5. gyakorlat Számítógépes Hálózatok 5. gyakorlat Feladat 0 Számolja ki a CRC kontrollösszeget az 11011011001101000111 üzenetre, ha a generátor polinom x 4 +x 3 +x+1! Mi lesz a 4 bites kontrollösszeg? A fenti üzenet

Részletesebben

Hálózatok. Alapismeretek. A hálózatok célja, építőelemei, alapfogalmak

Hálózatok. Alapismeretek. A hálózatok célja, építőelemei, alapfogalmak Hálózatok Alapismeretek A hálózatok célja, építőelemei, alapfogalmak A hálózatok célja A korai időkben terminálokat akartak használni a szabad gépidők lekötésére, erre jó lehetőség volt a megbízható és

Részletesebben

A kvantum-kommunikáció leírása sűrűségmátrix segítségével

A kvantum-kommunikáció leírása sűrűségmátrix segítségével LOGO A kvantum-kommunikáció leírása sűrűségmátrix segítségével Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Hogyan tekinthetünk a sűrűségmátrixokra? Zaos kvantumrendszerek kvantumállapotra

Részletesebben

A számítástechnika gyakorlata WIN 2000 I. Szerver, ügyfél Protokoll NT domain, Peer to Peer Internet o WWW oftp opop3, SMTP. Webmail (levelező)

A számítástechnika gyakorlata WIN 2000 I. Szerver, ügyfél Protokoll NT domain, Peer to Peer Internet o WWW oftp opop3, SMTP. Webmail (levelező) A számítástechnika gyakorlata WIN 2000 I. Szerver, ügyfél Protokoll NT domain, Peer to Peer Internet o WWW oftp opop3, SMTP Bejelentkezés Explorer (böngésző) Webmail (levelező) 2003 wi-3 1 wi-3 2 Hálózatok

Részletesebben

Számítógép hálózatok gyakorlat

Számítógép hálózatok gyakorlat Számítógép hálózatok gyakorlat 5. Gyakorlat Ethernet alapok Ethernet Helyi hálózatokat leíró de facto szabvány A hálózati szabványokat az IEEE bizottságok kezelik Ezekről nevezik el őket Az Ethernet így

Részletesebben

A fény és az igazi véletlen

A fény és az igazi véletlen A fény és az igazi véletlen Kiss Tamás Magyar Tudományos Akadémia Wigner Fizikai Kutatóközpont Kvantummérés Lendület csoport Fény A világ teremtése 1 Kezdetben teremtette Isten a mennyet és a földet. 2

Részletesebben

A/D és D/A konverterek vezérlése számítógéppel

A/D és D/A konverterek vezérlése számítógéppel 11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,

Részletesebben

Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt.

Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt. Digitális mérőműszerek Digitális jelek mérése Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt. MIRŐL LESZ SZÓ? Mit mérjünk? Hogyan jelentkezik a minőségromlás digitális jel esetében?

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

Adatbázisok elleni fenyegetések rendszerezése. Fleiner Rita BMF/NIK Robothadviselés 2009

Adatbázisok elleni fenyegetések rendszerezése. Fleiner Rita BMF/NIK Robothadviselés 2009 Adatbázisok elleni fenyegetések rendszerezése Fleiner Rita BMF/NIK Robothadviselés 2009 Előadás tartalma Adatbázis biztonsággal kapcsolatos fogalmak értelmezése Rendszertani alapok Rendszerezési kategóriák

Részletesebben

Digitális jelfeldolgozás

Digitális jelfeldolgozás Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés

Részletesebben

2015 november: Titkosítás műholdakkal - Bacsárdi László

2015 november: Titkosítás műholdakkal - Bacsárdi László 2015 november: Titkosítás műholdakkal - Bacsárdi László Bacsárdi László mérnök-informatikus és bankinformatikus mérnök, intézetigazgató egyetemi docens: a Nyugat-magyarországi Egyetem Simonyi Károly Karán

Részletesebben

Számítógépes Hálózatok 2012

Számítógépes Hálózatok 2012 Számítógépes Hálózatok 22 4. Adatkapcsolati réteg CRC, utólagos hibajavítás Hálózatok, 22 Hibafelismerés: CRC Hatékony hibafelismerés: Cyclic Redundancy Check (CRC) A gyakorlatban gyakran használt kód

Részletesebben

Intelligens épületfelügyeleti rendszer tervezése mikrokontrollerrel

Intelligens épületfelügyeleti rendszer tervezése mikrokontrollerrel Intelligens épületfelügyeleti rendszer tervezése mikrokontrollerrel BME-AAIT Informatikai technológiák szakirány Szoftverfejlesztés ágazat Szedenik Ádám A központi modul ATmega644PA nrf24l01+ vezeték nélküli

Részletesebben

54 481 03 0010 54 01 Informatikai hálózattelepítő és - Informatikai rendszergazda

54 481 03 0010 54 01 Informatikai hálózattelepítő és - Informatikai rendszergazda A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Riverbed Sávszélesség optimalizálás

Riverbed Sávszélesség optimalizálás SCI-Network Távközlési és Hálózatintegrációs zrt. T.: 467-70-30 F.: 467-70-49 info@scinetwork.hu www.scinetwork.hu Riverbed Sávszélesség optimalizálás Bakonyi Gábor hálózati mérnök Nem tudtuk, hogy lehetetlen,

Részletesebben

Balatonőszöd, 2013. június 13.

Balatonőszöd, 2013. június 13. Balatonőszöd, 2013. június 13. Egy tesztrendszer kiépítése Minőséges mérőláncok beépítése Hibák generálása Költséghatékony HW környezet kialakítása A megvalósított rendszer tesztelése Adatbázis kialakítása

Részletesebben

Data Security: Access Control

Data Security: Access Control Data Security 1. Alapelvek 2. Titkos kulcsú rejtjelezés 3. Nyilvános kulcsú rejtjelezés 4. Kriptográfiai alapprotokollok I. 5. Kriptográfiai alapprotokollok II. Data Security: Access Control A Rossz talált

Részletesebben

Alapfogalmak. Biztonság. Biztonsági támadások Biztonsági célok

Alapfogalmak. Biztonság. Biztonsági támadások Biztonsági célok Alapfogalmak Biztonság Biztonsági támadások Biztonsági célok Biztonsági szolgáltatások Védelmi módszerek Hálózati fenyegetettség Biztonságos kommunikáció Kriptográfia SSL/TSL IPSec Támadási folyamatok

Részletesebben

Információ és kommunikáció

Információ és kommunikáció Információ és kommunikáció Tanmenet Információ és kommunikáció TANMENET- Információ és kommunikáció Témakörök Javasolt óraszám 1. Hálózati alapismeretek 20 perc 2. Az internet jellemzői 25 perc 3. Szolgáltatások

Részletesebben

Sportági teljesítmény diagnosztika, méréseredmények feldolgozása, alkalmazása az edzéstervezés folyamatában.

Sportági teljesítmény diagnosztika, méréseredmények feldolgozása, alkalmazása az edzéstervezés folyamatában. Sportági teljesítmény diagnosztika, méréseredmények feldolgozása, alkalmazása az edzéstervezés folyamatában. Új technológia a kajak-kenu sportban: ArguStress Sport-Pro Kayak - Általános cél Folyamatosan

Részletesebben

Félreértések elkerülése érdekében kérdezze meg rendszergazdáját, üzemeltetőjét!

Félreértések elkerülése érdekében kérdezze meg rendszergazdáját, üzemeltetőjét! Félreértések elkerülése érdekében kérdezze meg rendszergazdáját, üzemeltetőjét! http://m.equicomferencia.hu/ramada Liszkai János senior rendszermérnök vállalati hálózatok Miről is lesz szó? Adatközpont

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Képrestauráció Képhelyreállítás

Képrestauráció Képhelyreállítás Képrestauráció Képhelyreállítás Képrestauráció - A képrestauráció az a folyamat mellyel a sérült képből eltávolítjuk a degradációt, eredményképpen pedig az eredetihez minél közelebbi képet szeretnénk kapni

Részletesebben

Bevezetés a kvantum informatikába és kommunikációba féléves házi feladat (2015/2016, tavasz)

Bevezetés a kvantum informatikába és kommunikációba féléves házi feladat (2015/2016, tavasz) Bevezetés a kvantum informatikába és kommunikációba féléves házi feladat (2015/2016, tavasz) A házi feladatokkal kapcsolatos követelményekről Kapcsolódó határidők: választás: 5. oktatási hét csütörtöki

Részletesebben

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%.

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

2008 II. 19. Internetes alkalmazások forgalmának mérése és osztályozása. Február 19

2008 II. 19. Internetes alkalmazások forgalmának mérése és osztályozása. Február 19 2008 II. 19. Internetes alkalmazások forgalmának mérése és osztályozása Az óra rövid vázlata kapacitás, szabad sávszélesség ping, traceroute pathcar, pcar pathload pathrate pathchirp BART Sprobe egyéb

Részletesebben

COMET webalkalmazás fejlesztés. Tóth Ádám Jasmin Media Group

COMET webalkalmazás fejlesztés. Tóth Ádám Jasmin Media Group COMET webalkalmazás fejlesztés Tóth Ádám Jasmin Media Group Az előadás tartalmából Alapproblémák, fundamentális kérdések Az eseményvezérelt architektúra alapjai HTTP-streaming megoldások AJAX Polling COMET

Részletesebben

Számítógépes döntéstámogatás. Genetikus algoritmusok

Számítógépes döntéstámogatás. Genetikus algoritmusok BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as

Részletesebben

Előadó: Nagy István (A65)

Előadó: Nagy István (A65) Programozható logikai áramkörök FPGA eszközök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,

Részletesebben

Kvantumszimulátorok. Szirmai Gergely MTA SZFKI. Graphics: Harald Ritsch / Rainer Blatt, IQOQI

Kvantumszimulátorok. Szirmai Gergely MTA SZFKI. Graphics: Harald Ritsch / Rainer Blatt, IQOQI Kvantumszimulátorok Szirmai Gergely MTA SZFKI Graphics: Harald Ritsch / Rainer Blatt, IQOQI A kvantummechanika körülvesz tranzisztor számítógép, mobiltelefon A kvantummechanika körülvesz tranzisztor számítógép,

Részletesebben

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,... RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk

Részletesebben

Hálózati biztonság (772-775) Kriptográfia (775-782)

Hálózati biztonság (772-775) Kriptográfia (775-782) Területei: titkosság (secrecy/ confidentality) hitelesség (authentication) letagadhatatlanság (nonrepudiation) sértetlenség (integrity control) Hálózati biztonság (772-775) Melyik protokoll réteg jöhet

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav54

Részletesebben

Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával

Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával Sztöchiometriai egyenletrendszerek minimális számú aktív változót tartalmazó megoldásainak meghatározása a P-gráf módszertan alkalmazásával * Pannon Egyetem, M szaki Informatikai Kar, Számítástudomány

Részletesebben

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses

Részletesebben

Kétcsatornás autentikáció

Kétcsatornás autentikáció Kétcsatornás autentikáció Az internet banking rendszerek biztonságának aktuális kérdései Gyimesi István, fejlesztési vezető, Cardinal Kft. Az előző részek tartalmából... E-Banking Summit 2012, Cardinal

Részletesebben