Kvantum párhuzamosság Deutsch algoritmus Deutsch-Jozsa algoritmus

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kvantum párhuzamosság Deutsch algoritmus Deutsch-Jozsa algoritmus"

Átírás

1 LOGO Kvatum párhuzamosság Deutsch algoritmus Deutsch-Jozsa algoritmus Gyögyösi László BME Villamosméröki és Iormatikai Kar

2 Bevezető

3 Kvatum párhuzamosság Bármilye biáris üggvéyre, ahol { } { } : 0, 0,, létrehozható olya U uitér kvatumáramkör, amellyel elvégezhető az üggvéy által meghatározott művelet. Azaz, mide klasszikus redszerű művelet egyértelműe megeleltethető egy kvatum-traszormációak: U :, y, y ( ) biáris összeadás

4 Kvatum párhuzamosság Mire képes a megkostruált U kvatum-áramkörük? 0 A kvatumáramkör kimeete: U ( ) y y () ψ = U 0 = U 0 = 0, (0)

5 Kvatum párhuzamosság Egyetle lépésbe meghatározhatjuk a következő művelet értékét: (0) () Egy klasszikus redszerbe ehhez a következő lépéseket kellee végrehajtauk:. Az (0) értékéek kiszámítása. Az () értékéek kiszámítása 3. A két eredméy biáris összeadása Ahol az továbbra is: { 0,} { 0,} :

6 Kvatum párhuzamosság 0 H H H y U y () ψ 0 = 0 ψ = 0 + 0

7 Kvatum párhuzamosság 0 H H H y U y () ψ ha (0) = (), ± = 0 0 ha (0) (), ±

8 Kvatum párhuzamosság 0 H H H y U y () A kapott eredméy átírása utá: ψ 3 0 = ± (0 ) () Azaz, megkaptuk a keresett műveleti értéket: ( 0) () Az kiegyesúlyozott vagy kostas? Egyetle lekérdezéssel megválaszoltuk.

9 Deutsch algoritmus

10 Deutsch algoritmus Az algoritmussal azo egyszerű kérdésre szereték választ kapi, hogy két kvatumbit értéke azoos-e, vagy pedig külöböző. A dötést pedig egyetle mérés alapjá hozzuk, kihaszálva a kvatummechaikai jeleségeket. = = H : Hadamard traszormáció: H ( ) ( ) H 0 = ( 0 + ), H = ( 0 )

11 Deutsch algoritmus Az U kapu: U ( ) y = y. Az üggvéy kostas, vagy kiegyesúlyozott. Egy diszkrét halmazo értelmezett, { 0,} -re képző üggvéy akkor kiegyesúlyozott, ha a 0 és értéket ugyaayiszor vesz el. Akkor, ha a { 0,} { 0,} leképezés sorá az üggvéy a 0-t és az -et is egyszer veszi el, akkor az üggvéyük kiegyesúlyozott. Eltérő esetbe az üggvéy kostas, azaz kétszer veszi el a ullát vagy az egyet. Egy klasszikus redszerbe ahhoz, hogy megállapíthassuk azt, hogy az üggvéy kostas vagy pedig kiegyesúlyozott két mérés szükséges.

12 Deutsch algoritmus. A hálózat állapota a két Hadamard traszormáció utá: (( 0 ) ( 0 )) + = = ( 0 + ) ( 0 ).

13 Deutsch algoritmus Adott tehát az ( ) :0, { } { 0,} egybites üggvéy. Nyílvá csak két ilye üggvéy-osztály létezik. Abba az esetbe, ha az ( ) üggvéy kostas: Kostas Kostas be ki be ki X X* X* X* () Ha az ( ) üggvéy em kostas: Kiegyesúlyozott Kiegyesúlyozott be ki be ki X X* X X* Adott egy üggvéyt megvalósító ekete doboz, amely az Kostas vagy a kiegyesúlyozott üggvéyek egyikét valósítja meg. Melyik a megvalósított üggvéyosztály?

14 Deutsch algoritmus A égy külöböző üggvéyük: X ( ) ( ) 3 ( ) 4 ( ) () Egy klasszikus redszerbe ahhoz, hogy eldöthessük, hogy mi a megvalósított üggvéy, két kérdés szükséges. A bemeetre 0-t, majd -et adva a kimeetekből egyértelműe eldöthető a kérdés. Kostruáljuk meg az üggvéyosztály ( y) reverzibilis változatát! * = Reverzibilis, :. * ( ) y = y

15 A belső orákulum működése

16 Deutsch algoritmus Az U belső elépítése: Ha Kostas, akkor: Kostas Reverzibilis be be ki ki X Y X* Y* () X* Y* Kostas Reverzibilis be be ki ki X Y X* Y* y U

17 Deutsch algoritmus Az Ha U belső elépítése: Kiegyesúlyozott, akkor: Kiegyesúlyozott Reverzibilis be be ki ki X Y X* Y* () X* Y* Kiegyesúlyozott Reverzibilis be be ki ki X Y X* Y* y U

18 Deutsch algoritmus A kapott eredméyek alapjá arra jutottuk, hogy midegyik üggvéy ivertálható Reverzibilis Azoba a ekete-doboz -t továbbra sem tudtuk eltöri, hisze az U kapu kimeetét a belső kimeet határozza meg. ( ) () X* Y* Még midig két mérés kell aak megállapításához, hogy eldöthessük a üggvéyről azt, hogy kostas vagy pedig kiegyesúlyozott. y Hogya oldhatjuk meg a problémát egy mérésből? U

19 Deutsch algoritmus Az U kapu bemeeteire a 0 és állapot szuperpozícióját adjuk: egyetle méréssel meghatározhatjuk, hogy a belső üggvéy melyik üggvéyosztályba tartozik. ( ) Az X bemetre H 0 = ( 0 + ) állapotot, Y-ra pedig a H = ( 0 ) szuperpoált állapotot adjuk. Bemeetek előállítása: Hadamard traszormációval, mid az, mid pedig az y szálo. y () X* Y* U

20 Deutsch algoritmus H 0 = 0 + ( ) () X* Y* * ( ) H X = ( ) ( 0) 0 + ( ) () H = 0 ( ) y U

21 Deutsch algoritmus Azaz, az X* kimeete a ( ) ( 0) 0 + ( ) () szuperpoált állapot jeleik meg, amiből megállapíthatjuk a belső üggvéyt. Ha ( 0) = ( ), akkor a belső üggvéy kostas: az Kostas üggvéy működési táblázata érvéyesül, így a kimeete a következő állapot jeleik meg: ( ) 0 ( ) = ( 0 + ). y () X* Y* U

22 Deutsch algoritmus Azaz, az X* kimeete a ( ) ( 0) 0 + ( ) () szuperpoált állapot jeleik meg, amiből megállapíthatjuk a belső üggvéyt. Ha ( 0) ( ). akkor a belső üggvéy kiegyesúlyozott: az Kiegyesúlyozott üggvéy működési táblázata érvéyesül, így a kimeete a következő állapot jeleik meg: ( ) 0 ( ) 0 + = ( 0 ). y () X* Y* U

23 Deutsch algoritmus Ha a kapott X* kimeetet egy Hadamard kapu bemeetére adjuk, akkor: ( *) H X = * ( ) H X = 0 + = 0, * H X ( 0 ) =. = Összeoglalás: X* Ha a Hadamard traszormáció eredméye 0 : a belső üggvéy kostas, azaz ( 0) ( ) =. () Y* Ha pedig a Hadamard traszormáció eredméye : a belső üggvéy kiegyesúlyozott, azaz ( 0) ( ). y U

24 Lépések részletezése

25 Lépések részletezése I. Hadamard-traszormációk: (( 0 ) ( 0 )) + = = 0 0 ( + ) ( ).

26 Lépések részletezése II. Belső üggvéy: U ( ) y = y = ( ) ( ) ( ) = U 0 = 0.

27 Lépések részletezése Ekkor, ha ( ) = 0: ( 0 ) ( ) ( 0 ) 0 ( ) ( 0 ) 0 ( ) ( ) ( ) ( ) ( ) = = = = = = 0 = 0. Ha ( ) = : ( 0 ) ( ) ( 0 ) ( 0 ) ( 0 ) ( ) ( ) ( ) ( ) ( ) = = = = = = 0 = 0.

28 Mivel ( ) = 0 vagy ( ) U Lépések részletezése =, így: ( ) U ( 0 ) ( ) ( ) ( ) y = y = = = 0. U y = ( 0 + ) ( 0 ) = = U ( 0 + ) ( 0 ) = ( 0 + ) ( ( 0 ) ( ) ) = ( ) ( ( ) = 0 + ( ) ( 0 )) = ( ( ) = ( 0 + ) ( ) ) ( 0 ) = ( ( ) ( 0 ) ( ) () = 0 + ) ( 0 ).

29 Lépések részletezése A teljes bemeet tehát az -re és az y-ra adott szuperpozícióba lévő állapotok direkt szorzata jeleti: ( 0 + ) ( 0 ). A redszerük teljes állapota tehát az y U kapu utá így már megadható. Azoba, az ( ) üggvéy és így az U operátor is csak az = 0, bázisértékekre értelmezett, ezért a teljes bemeetből az bemeetet szétbotjuk bázisértékek szerit: ( 0 + ) ( 0 ) = = 0 ( 0 ) = = ( 0 ). = 0

30 Lépések részletezése Végrehajtva az U traszormációt: = = U F ( 0 ) ( 0 ) ( ) = 0 = 0 = 0 ( ) ( ) = = 0 ( ) ( ) ( ) ( ) = ( 0 ) 0 = = = = 0 ( ) ( ) ( 0 ) ( ) ( ) = = ( 0 ). = 0 = 0 Az utolsó előtti sorba látható átalakítás köye belátható a lehetséges ( ) = 0, értékek helyettesítésével, mivel: ( ) ( ) ( 0 ) ( ) 0 ( ) ( ) ( ) ( 0 ) y = = =. X * Y *

31 Lépések részletezése A kapott végeredméyt természetese kisebb átalakításokkal az előző eredméyre hozhatjuk: ( ) ( ) ( 0 ) = = 0 * X ( ( ) ( 0 ) ( ) () ) = 0 + ( 0 ) = X Y * * * Y X* ( ( ) ( 0 ) ( ) () = 0 + ) ( 0 ) = Y * () Y* ( ( ) ( 0 ) ( ) () = 0 + ) ( 0 ). y U

32 Lépések részletezése Az X* kimeete végrehajtott Hadamard traszormáció eredméye: ( ) ( ) ( ( ) ( 0 ) ( ) () 0 ) = + = = 0 * X ( ) ( 0 ) ( ) () = H 0 + H = ( ) ( 0 ) ( ) ( ) () = 0 ( 0 ) + + = ( ) ( 0 ) ( ) ( 0 ) ( ) () ( ) () = = ( ) ( 0 ) ( ) () ( ) ( 0 ) ( ) () = ( (( ) ( ) ( ) () ) (( ) ( ) ( ) () )) 0 0 =

33 Lépések részletezése Ha a belső üggvéy kostas, akkor a Hadamard traszormáció utá a első szál állapota: 0 =, akkor: Ha ( ) ( ) (( ) ( ) ( ) () ) ( ) ( ) ( ) () = 0 ( (( ) ( ) ( ) () )) 0 = 0 + =± 0. Ha a belső üggvéyük kiegyesúlyozott, akkor ( 0) ( ) ( ) ( ) ( ) () 0 ( ( ) ( 0 ) ( ) () ) = 0 ( (( ) ( ) ( ) () )) 0 = =±., így:

34 Deutsch-Jozsa algoritmus

35 Deutsch-Jozsa algoritmus A Deutsch-Jozsa algoritmus az előzőekbe bemutatott Deutsch algoritmus továbbejlesztéséek tekithető A ő változás a Deutsch algoritmushoz képest: az helyett szál vezérli. Az üggvéy ebbe az esetbe az { } { } : 0, 0, U kaput egy szál leképezést végzi, a belső üggvéy itt is csak a kostas vagy a kiegyesúlyozott üggvéyosztályból kerülhet ki. Mivel a bemeetük most em kétbites, így elképzelhető lee más üggvéyosztály is, azoba ezt mi rögzítettük a kostas és kiegyesúlyozott üggvéyosztályra.

36 Deutsch-Jozsa algoritmus A eladat ugyaaz, mit a Deutsch algoritmus esetébe: egyetle mérésből eldötei a belső üggvéy típusát. Egy klasszikus redszerbe ehhez + mérésre lee szükség. Az előző algoritmus alapjá elmodhatjuk, hogy ha az üggvéy kostas, akkor a megmért összes kotrollszál kimeetéek 0 -ak kell lei, ameyibe eze eltétel em tejesül, akkor a üggvéy kiegyesúlyozott.

37 Lépések részletezése. Mivel mide szálo található egy Hadamard kapu, így elsőkét eze traszormáció elvégzése következik. A traszormációt most azoba bitre kell elvégezi, így a teljes számítási báziso végre kell hajtauk a H traszormációt: H 0 H 0 H 0 H 0 = = ( ) = = = ( 0 ) ( 0 ) ( 0 ) ( 0 ) = = 0 =.

38 Lépések részletezése Alkalmazzuk a Hadamard traszormációt az alsó kezdőértékű szálra! ( 0 ). A redszer állapota ezutá tehát: = 0 ( 0 ).

39 Lépések részletezése. A következő lépésbe az szálas U F traszormáció végrehajtása következik, amelyek eredméye: ( ) ( ) ( ) = 0 0.

40 Lépések részletezése Ezutá ismét végrehajtjuk a Hadamard traszormációkat. A első szálat em a kezdeti 0 állapotba találjuk. A mérésük eredméye az y vektor lesz. A Hadamard traszormációt így elírhatjuk a következőképpe is: H = = 0 ( ) y y y H H ( ) ( = 0 + = ( ) 0 + ( ) ), ( ) ( 0 = 0 = ( ) 0 + ( ) ).

41 Lépések részletezése Az egyetle kvatumbitre érvéyes ormulát kiterjesztve kvatumbitre: H H H H = 0 y y y ( ) 0 ( ) ( ) y0= 0 y= 0 y= 0 y ( ) y y = = 0 0 y0 y y = ( ) ( ) ( ) y y y y = = y y y 0 = y = 0 ( ) y ( ) y, y yyy y = 0 ahol y = y y y y 0 0.

42 Lépések részletezése I. Hadamard traszormációk utái redszerállapot: II. U traszormáció végrehajtása: III. Hadamard traszormációk: = 0 ( ) 0. ( ) ( ) y ( ) y = 0 = y= 0 ( ) ( ) y = ( ) y= 0 = 0 y = ( ) ( ) + y = y. y= 0 = 0 ( ) ( ) ( 0 ) = 0

43 Lépések részletezése ( ) ( ) ( ) = y y = = 0 y= 0 ( ) ( ) ( ) = y y = y= 0 = 0 ( ) ( ) + = y y. y= 0 = 0

44 Lépések részletezése Mivel kiegyesúlyozott üggvéy esetébe mide kimeet 0 értékű, így: y= 0 = 0 ( ) ( ) ( ) 0 0 y y = 0 ( ) ( ) + = y 0. y= 0 = 0 Az -bites ulla kimeethez tartozó valószíűségi amplitúdó tehát: 0 = 0 ( ) ( ).

45 Lépések részletezése A 0 kimeet valószíűsége így: = 0 ( ) ( ), amely valószíűség : ha a belső üggvéy kostas; 0 : ha a belső üggvéy kiegyesúlyozott.

46 Összeoglalás Ha az üggvéy kostas : = 0 ( ) ( ) = ± ( ) =. Ha üggvéy kiegyesúlyozott : = 0 ( ) ( ) = ( + ) = 0.

47 Összeoglalás Összeoglalás Az algoritmus által szolgáltatott kimeet eredméyét a következőképpe oglalhatjuk össze: Ha az ( ) üggvéy kostas, akkor mide mérés eredméye 0. Egyébkét az ( ) üggvéy kiegyesúlyozott.

48 Kiegészítés: Kvatumáramkörök dekompozíciója

49 Az elemi kvatumáramkörök elépítése Uiverzális, reverzibilis kapu A végrehajtás sorá em veszítük iormációt A Tooli kapu a z értékét akkor módosítja, ha és y is : ( ) T, y, z = z y.

50 Elemi kvatumáramkörök Cotrolled CNOT (C NOT vagy Tooli kapu) a b c a b ab c

51 Elemi kvatumáramkörök A Tooli kapu uiverzális, vele bármilye logikai kapu kialakítható. Ugyaakkor eze kapu, - elletétbe a klasszikus NAND kapuval, em veszít iormációt. Bármilye kvatumbites uitér művelet megvalósítható kvatumbites kapuk + két kvatumbites szabályozott NEM kapuk segítségével.

52 Deutsch kapu A Deutsch-kapu a Tooli-kapu ötleté alapul. A kapu eredméye egy θ szöggel törtéő ázisorgatás az tegely körül. R i( θ/) σx θ θ = ie = i cos + iσ X si.

53 Deutsch kapu A három kvatumbites Deutsch-kapu szité uiverzális kapu, Működési elve a Tooli-kapura épül A Deutsch-kapu elépíthető két kvatumbites elemi kapukból is. R i( θ/) σx θ θ = ie = i cos + iσ X si.

54 Deutsch kapu dekompozíciója Az áramkört leegyszerűsíthetjük egy (C-(CU )) kapura, így egy C-CU kaput kapuk. Legye U = R, azaz: U = ir θ = ie R ( ) iπ ( ) / U = e iπ /4 R θ /. ( ) e R -ak választjuk, akkor a Deutsch kaput valósítottuk meg CNOT és U kapuk kombiációjakét. iπ /4 Azaz, ha az U traszormációt U = ( θ /) θ,

55 Elemi kvatumkapuk elbotása Cél: elemi kotrollált-u kapuk elépítése CNOT és egy-kvatumbites uitér kapukból.. Ha = 0 üggvéye, így y : CNOT kapuk iaktívak, az y szál értéke pedig a A,B és C kapuk CBA y. Ha ABC =, y értéke változatla marad. ha A uitér, akkor B és értékét megválaszthatjuk úgy, hogy midkettő, egyarát A legye, így: C kapuk ABC A A A AA = = =.

56 Elemi kvatumkapuk elbotása Abba az esetbe, ha = Azaz, NOT y, a CNOT kapuk aktivizálódak: 0 B 0 = σ B NOT. = σ, így az y vektor kezdeti értéke a következőképpe módosul: A σ A σ A y, ahol A A A uitér traszormáció, akkor, ha az A is uitér. σ σ = U Összeoglalva: két kvatumbites CNOT kapuk, és kvatumbites uitér kapuk segítségével leírható bármilye uiverzális kvatumszámítás.

VÉLETLENÍTETT ALGORITMUSOK. 1.ea.

VÉLETLENÍTETT ALGORITMUSOK. 1.ea. VÉLETLENÍTETT ALGORITMUSOK 1.ea. 1. Bevezetés - (Mire jók a véletleített algoritmusok, alap techikák) 1.1. Gyorsredezés Vegyük egy ismert példát, a redezések témaköréből, méghozzá a gyorsredezés algoritmusát.

Részletesebben

LOGO. Kvantum-tömörítés. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar

LOGO. Kvantum-tömörítés. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar LOGO Kvatum-tömörítés Gyögyösi László BME Villamosméröki és Iformatikai Kar Iformációelméleti alaok összefoglalása A kódolási eljárás Az iformáció átadás hűsége és gazdaságossága a kódolástól függ Az iformáció

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

16. Az AVL-fa. (Adelszon-Velszkij és Landisz, 1962) Definíció: t kiegyensúlyozott (AVL-tulajdonságú) t minden x csúcsára: Pl.:

16. Az AVL-fa. (Adelszon-Velszkij és Landisz, 1962) Definíció: t kiegyensúlyozott (AVL-tulajdonságú) t minden x csúcsára: Pl.: 6. Az AVL-fa Adelszo-Velszkij és Ladisz, 96 Defiíció: t kiegyesúlyozott AVL-tulajdoságú t mide x csúcsára: bal x jobb x. Pl.: A majdem teljes biáris fa AVLtulajdoságú. Az AVL-fára, mit speciális alakú

Részletesebben

6 A teljesítményelektronikai kapcsolások modellezése

6 A teljesítményelektronikai kapcsolások modellezése 6 A teljesítméyelektroikai kapcsolások modellezése A teljesítméyelektroikai beredezések vagy már ömagukba egy bizoyos szabályzott redszert alkotak, vagy egy agyobb szabályozott redszer részét képezik.

Részletesebben

Hiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai

Hiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai közzétéve a szerző egedélyével) Öfüggő szekuder-változó csoport keresése: egy bevezető példa Ez a módszer az állapothalmazo értelmezett partíció-párok elméleté alapul. E helye em lehet céluk az elmélet

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

Shor kvantum-algoritmusa diszkrét logaritmusra

Shor kvantum-algoritmusa diszkrét logaritmusra Ivanyos Gábor MTA SZTAKI Debrecen, 20 január 2. Tartalom és kvantum-áramkörök 2 A diszkrét log probléma Kvantum bit Állapot: a B = C 2 komplex euklideszi tér egy egységvektora: az a 0 + b szuperpozíció

Részletesebben

1. A radioaktivitás statisztikus jellege

1. A radioaktivitás statisztikus jellege A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1 A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Ha N és h R, akkor + h + h Mikor va itt egyelőség? Léyeges-e a h feltétel? Számtai-mértai közép Bármely N és,, R, k 0 k =,, választással k

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a

Részletesebben

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Az érettségi vizsgára előkészülő taulók figyelmébe! 4. Az EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a1 x + b1 y = c1 egyeletredszer megoldása a a x + b y = c Z halmazo (. rész) Ebbe a részbe

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15.

GROVER-algoritmus. Sinkovicz Péter. ELTE, MSc II dec.15. ELTE, MSc II. 2011.dec.15. Áttekintés Feladat Algoritmus Kvantum keresési algoritmus áttekintése Input: N = 2 n elemű tömb, Ψ 1 = 0 1 kezdőállapot, f x0 (x) orákulum függvény. Output: x 0 keresett elem

Részletesebben

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2.

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Statisztika Hipotézisvizsgálat Székely Balázs 2010. december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Előadás vázlat 1 Itervallumbecslések

Részletesebben

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje. 24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor

Részletesebben

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal 5. Komplex számok 5.1. Bevezetés Taulmáyaik sorá többször volt szükség az addig haszált számfogalom kiterjesztésére. Először csak természetes számokat ismertük, később haszáli kezdtük a törteket, illetve

Részletesebben

í ö í í ú ű í í í ú í ű í Ü ö ö ö ü ö ö ö í ö ö ö ö Ö Á ö ö É ö ö ú ú ö ö ú ö í Á Á ö Ü Ú í ÁÁ ö í ö í í ú ű í ö ö í ú É í ű í ö ö É í í ű í ű í É í í ü ű ü ű í Á Á í ü í ü í ü ö ű ö É ü É ú Á Ó í í í

Részletesebben

Ö ü ö ü Ö Ö ü ú ó ü ö ö Ö ó Ö ö ú ö ó ö ö ó ö ö ö í í ö ö ü ü ö í ü ö ö í ö í ó ü ö ö í ü í ö í ü ú ü ö Ö ü ö ű ó í ó ó ó ö í ü ó ó ó ö ö ó ö í ó ü ó ó ö ö ü ó ö ö ó ó ó ü ü ó ó ö ö ü í ö ű ö ű ö ö ű í

Részletesebben

Statisztika 1. zárthelyi dolgozat március 18.

Statisztika 1. zárthelyi dolgozat március 18. Statisztika. zárthelyi dolgozat 009. március 8.. Ismeretle m várható értékű, szórású ormális eloszlásból a következő hatelemű mitát kaptuk:, 48 3, 3, 83 0,, 3, 97 a) Számítsuk ki a mitaközepet és a tapasztalati

Részletesebben

Differenciaegyenletek aszimptotikus viselkedésének

Differenciaegyenletek aszimptotikus viselkedésének Differeciaegyeletek aszimptotikus viselkedéséek vizsgálata Mathematica segítségével Botos Zsófia Újvidéki Egyetem TTK Újvidék Szerbia E-mail: botoszsofi@yahoo.com 1. Bevezető Tekitsük az késleltetett diszkrét

Részletesebben

8. Előadás. 1) Üveg félhenger

8. Előadás. 1) Üveg félhenger 8. Előadás Kompe kidolgozott problémák ) Üveg élheger P: Készítsük egy élheger alakú, törésmutatójú testet. Egyik alapja ézze elék! Sugara legye R 5 mm! A sík elületére bocsájtsuk 45 -os szögbe sugarakat

Részletesebben

Elsőbbségi (prioritásos) sor

Elsőbbségi (prioritásos) sor Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe

Részletesebben

Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar

Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar Algoritmizálás Horváth Gyula Szegedi Tudomáyegyetem Természettudomáyi és Iformatikai Kar horvath@if.u-szeged.hu. Mohó algoritmusok A mohó stratégia elemi 1. Fogalmazzuk meg az optimalizációs feladatot

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

Kvantum-számítógépek, univerzalitás és véges csoportok

Kvantum-számítógépek, univerzalitás és véges csoportok Kvantum-számítógépek, univerzalitás és véges csoportok Ivanyos Gábor MTA SZTAKI BME Matematikai Modellalkotás szeminárium, 2013 szeptember 24. Kvantum bit Kvantum bitek Kvantum kapuk Kvantum-áramkörök

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Kvantum-hibajavítás I.

Kvantum-hibajavítás I. LOGO Kvantum-hibajavítás I. Gyöngyösi László BME Villamosmérnöki és Informatikai Kar Ismétléses kódolás Klasszikus hibajavítás Klasszikus modell: BSC (binary symmetric channel) Hibavalószínűség: p p 0.5

Részletesebben

Pl.: hányféleképpen lehet egy n elemű halmazból k elemű részhalmazt kiválasztani, n tárgyat hányféleképpen lehet szétosztani k személy között stb.?

Pl.: hányféleképpen lehet egy n elemű halmazból k elemű részhalmazt kiválasztani, n tárgyat hányféleképpen lehet szétosztani k személy között stb.? Dr. Vicze Szilvia A kombiatorika a véges halmazokkal foglalkozik. A véges halmazokkal kapcsolatba számos olya probléma vethető fel, amely függetle a halmazok elemeitől. Pl.: háyféleképpe lehet egy elemű

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

6. feladatsor. Statisztika december 6. és 8.

6. feladatsor. Statisztika december 6. és 8. 6. feladatsor Statisztika 200. december 6. és 8.. Egy = 0 szervert tartalmazó kiszolgáló mide szervere mide pillaatba 0 < p < valószíűséggel foglalt, a foglaltságok szerverekét függetleek. Tehát a foglaltak

Részletesebben

GAZDASÁGI MATEMATIKA 1. ANALÍZIS

GAZDASÁGI MATEMATIKA 1. ANALÍZIS SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

Lineáris kódok. u esetén u oszlopvektor, u T ( n, k ) május 31. Hibajavító kódok 2. 1

Lineáris kódok. u esetén u oszlopvektor, u T ( n, k ) május 31. Hibajavító kódok 2. 1 Lieáris kódok Defiíció. Legye SF q. Ekkor S az F q test feletti vektortér. K lieáris kód, ha K az S k-dimeziós altere. [,k] q vagy [,k,d] q. Jelölések: F u eseté u oszlopvektor, u T (, k ) q sorvektor.

Részletesebben

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére.

Kétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére. Véletleített algoritmusok Tegyük fel, hogy va két doboz (A,B), amely egyike 1000 Ft-ot tartalmaz, a másik üres. 500 Ft-ért választhatuk egy dobozt, amelyek a tartalmát megkapjuk. A feladat megoldására

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Kalkulus II., második házi feladat

Kalkulus II., második házi feladat Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,

Részletesebben

Optika. sin. A beeső fénysugár, a beesési merőleges és a visszavert, illetve a megtört fénysugár egy síkban van.

Optika. sin. A beeső fénysugár, a beesési merőleges és a visszavert, illetve a megtört fénysugár egy síkban van. Optika Mi a féy? Látható elektromágeses sugárzás. Geometriai optika (modell) Féysugár: ige vékoy párhuzamos féyyaláb Ezt a modellt haszálva az optikai jeleségek széles köréek magyarázata egyszerű geometriai

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

Kvantummechanika gyakorlo feladatok 1 - Megoldások. 1. feladat: Az eltolás operátorának megtalálásával teljesen analóg módon fejtsük Taylor-sorba

Kvantummechanika gyakorlo feladatok 1 - Megoldások. 1. feladat: Az eltolás operátorának megtalálásával teljesen analóg módon fejtsük Taylor-sorba Kvatummechaika gyakorlo felaatok - Megolások felaat: z eltolás operátoráak megtalálásával teljese aalóg móo fejtsük Taylor-sorba a hullámfüggvéyt a változójába: ψr θ ϕ + ϕ ψr θ ϕ + ψr θ ϕ ϕ + ψr θ ϕ ϕ

Részletesebben

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

Témakörök. Egyed-kapcsolat modell. Alapfogalmak

Témakörök. Egyed-kapcsolat modell. Alapfogalmak Témakörök Alapkocepciók Szoftvertechológia előadás Egyed-kapcsolat modellek Osztálydiagramok Iterakciódiagramok Vezérlési struktúrák Dötési táblák és fák Állapotautomaták Petri hálók Egyed-kapcsolat modell

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

Függvénygörbe alatti terület a határozott integrál

Függvénygörbe alatti terület a határozott integrál Függvéygörbe alatt terület a határozott tegrál Tektsük az üggvéyt a ; tervallumo. Adjuk becslést a görbe az tegely és az egyees között síkdom területére! Jelöljük ezt a területet I-vel! A becslést legegyszerűbbe

Részletesebben

Felépítés Típus 955010/ Konfigurálás setup programmal. Mérési adatok kiolvasása

Felépítés Típus 955010/ Konfigurálás setup programmal. Mérési adatok kiolvasása JUMO Meß- ud Regelgeräte GmbH A-1232 Wie, Pfarrgasse 48 Magyarországi Kereskedelmi Képviselet Telefo: 00-43-1 / 61-061-0 H-1147 Budapest Öv u. 143. Fax: 00-43-1 / 61-061-59 Telefo/fax: 00-36-1 / 467-0835,

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be,

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be, 6 A primitív üggvéy létezése A primitív üggvéy létezése Kitűzött eladatok. Határozd meg az a és b valós paraméterek értékét úgy hogy az : R ae + b üggvéyek létezze primitív üggvéye! >. Az : [ + [ + olytoos

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szit 1011 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fotos tudivalók

Részletesebben

Véges matematika 1. feladatsor megoldások

Véges matematika 1. feladatsor megoldások Véges matematika 1 feladatsor megoldások 1 Háy olya hosszúságú kockadobás-sorozat va, melybe a csak 1-es és 2-es va; Egymástól függetleül döthetük a külöböző dobások eredméyéről, így a taultak szerit a

Részletesebben

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Z

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Z Az érettségi vizsgára előkészülő taulók figyelmébe! EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a x + b y c 5. Az egyeletredszer megoldása a Z halmazo (3. rész) a x + b y c A hivatkozások köyítése

Részletesebben

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik. Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el

Részletesebben

Eseme nyalgebra e s kombinatorika feladatok, megolda sok

Eseme nyalgebra e s kombinatorika feladatok, megolda sok Eseme yalgebra e s kombiatorika feladatok, megolda sok Szűk elméleti áttekitő Kombiatorika quick-guide: - db. elemből db. sorredjeire vagyuk kívácsiak: permutáció - db. elemből m < db. háyféleképp rakható

Részletesebben

NÉMETH LÁSZLÓ VÁROSI MATEMATIKA VERSENY 2013 HÓDMEZŐVÁSÁRHELY OSZTÁLY ÁPRILIS 8.

NÉMETH LÁSZLÓ VÁROSI MATEMATIKA VERSENY 2013 HÓDMEZŐVÁSÁRHELY OSZTÁLY ÁPRILIS 8. . feladat: Eg 5 fős osztálba va fiú és 4 lá. z iskolai bálo (fiú-lá) pár fog tácoli. Háféleképpe tehetik ezt meg? párok sorredje em számít, viszot az, hog ki kivel tácol, az már ige. (0 pot) Válasszuk

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k. 8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),

Részletesebben

Témakörök. Alapkoncepciók. Alapfogalmak. Egyed-kapcsolat modell. Alapfogalmak. Egyed-kapcsolat diagram

Témakörök. Alapkoncepciók. Alapfogalmak. Egyed-kapcsolat modell. Alapfogalmak. Egyed-kapcsolat diagram Témakörök Alapkocepciók Szoftvertechológia elıadás Egyed-kapcsolat modellek Osztálydiagramok Iterakciódiagramok Vezérlési struktúrák Dötési táblák és fák Állapotautomaták Petri hálók Egyed-kapcsolat modell

Részletesebben

Logikai áramkörök, Boole algebra

Logikai áramkörök, Boole algebra Logikai áramkörök, Boole algebra A digitális techiká alapuló eszközök már régóta a köryezetük részei. A mérökök mideapi mukaeszközei a számítógépek és a digitális műszerek. Ezért működésük alapelveit azokak

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus

Részletesebben

Bevezetés az algebrába komplex számok

Bevezetés az algebrába komplex számok Bevezetés az algebrába komplex számok Wettl Ferec Algebra Taszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2015. december 6.

Részletesebben

1. Sajátérték és sajátvektor

1. Sajátérték és sajátvektor 1. Sajátérték és sajátvektor Leképezés diagoális mátrixa. Kérdés Mely bázisba lesz egy traszformáció mátrixa diagoális? A Hom(V) és b 1,...,b ilye bázis. Ha [A] b,b főátlójába λ 1,...,λ áll, akkor A(b

Részletesebben

kismintás esetekben vagy olyanokban, melyeknél a tanulóalgoritmust tesztadatokon szeretnénk

kismintás esetekben vagy olyanokban, melyeknél a tanulóalgoritmust tesztadatokon szeretnénk ÚJRAMINTAVÉTELEZÉSI ELJÁRÁSOK A jackkife (zsebkés) és bootstrap (cipőhúzó a saját kallatyújáál fogva) eljárások agol elevezése is arra utal, hogy itt ad hoc eljárásokról va szó, melyek azoba agyo haszosak

Részletesebben

30 MB INFORMATIKAI PROJEKTELLENŐR. Kálmán Miklós és Rácz József. Tervezési dokumentáció Rendszerterv

30 MB INFORMATIKAI PROJEKTELLENŐR. Kálmán Miklós és Rácz József. Tervezési dokumentáció Rendszerterv INFORMATIKAI PROJEKTELLENŐR 30 MB Tervezési dokumetáció Redszerterv Kálmá Miklós és Rácz József 2016.10.26. MMK Iformatikai projektelleőr képzés 1 Tervezési dokumetáció Redszerterv Megvalósítási tervek

Részletesebben

3. MINTAFELADATSOR EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

3. MINTAFELADATSOR EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató és Fejlesztő Itézet TÁMOP-3.1.1-11/1-01-0001 XXI. századi közoktatás (fejlesztés, koordiáció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR EMELT SZINT 015 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató

Részletesebben

Folytonos idejű rendszerek stabilitása

Folytonos idejű rendszerek stabilitása Folytoos idejű redszerek stabilitása Összeállította: dr. Gerzso Miklós egyetemi doces PTE MIK Műszaki Iformatika Taszék 205.2.06. Itelliges redszerek I. PTE MIK Mérök iformatikus BSc szak Stabilitás egyszerűsített

Részletesebben

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve

Részletesebben

6. Elsőbbségi (prioritásos) sor

6. Elsőbbségi (prioritásos) sor 6. Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe

Részletesebben

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! Fourier sorok FO Trigoometrikus Fourier sorok FO Trigoometrikus redszer Defiíció: trigoometrikus redszer Az {, cos x, si x, cos x, si x, cos 3x, si 3x, } függvéyekből álló (végtele sok függvéyt tartalmazó)

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

prímfaktoriz mfaktorizáció szló BME Villamosmérn és s Informatikai Kar

prímfaktoriz mfaktorizáció szló BME Villamosmérn és s Informatikai Kar Kvantumszámítógép hálózat zat alapú prímfaktoriz mfaktorizáció Gyöngy ngyösi LászlL szló BME Villamosmérn rnöki és s Informatikai Kar Elemi kvantum-összead sszeadók, hálózati topológia vizsgálata Az elemi

Részletesebben

1. Az absztrakt adattípus

1. Az absztrakt adattípus . Az asztrakt adattípus Az iformatikáa az adat alapvető szerepet játszik. A számítógép, mit automata, adatokat gyűjt, tárol, dolgoz fel (alakít át) és továít. Mi adatak foguk tekitei mide olya iformációt,

Részletesebben

Logikai áramkörök, Boole algebra

Logikai áramkörök, Boole algebra Logikai áramkörök, Boole algebra A digitális techiká alapuló eszközök már régóta a köryezetük részei. A mérökök mideapi mukaeszközei a számítógépek és a digitális műszerek. Ezért működésük alapelveit azokak

Részletesebben

Lineáris kódok. sorvektor. W q az n dimenziós s altere. 3. tétel. t tel. Legyen K [n,k,d] kód k d (k 1). Ekkor d(k)=w(k)

Lineáris kódok. sorvektor. W q az n dimenziós s altere. 3. tétel. t tel. Legyen K [n,k,d] kód k d (k 1). Ekkor d(k)=w(k) Defiíci ció. Legye S=F q. Ekkor S az F q test feletti vektortér. r. K lieáris kód, k ha K az S k-dimeziós s altere. [,k] q vagy [,k,d] q. Jelölések: F u eseté u oszlopvektor, u T (, k ) q sorvektor. W

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika

Részletesebben

Stabilitás Irányítástechnika PE MI_BSc 1

Stabilitás Irányítástechnika PE MI_BSc 1 Stabilitás 2008.03.4. Stabilitás egyszerűsített szemlélet példa zavarás utá a magára hagyott redszer visszatér a yugalmi állapotába kvázistacioárius állapotba kerül végtelebe tart alapjelváltás Stabilitás/2

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben

MA1143v A. csoport Név: december 4. Gyak.vez:. Gyak. kódja: Neptun kód:.

MA1143v A. csoport Név: december 4. Gyak.vez:. Gyak. kódja: Neptun kód:. MAv A. csoport Név:... Tekintsük az alábbi mátriot! A 7 a Invertálható-e az A mátri? Ha igen akkor bázistranszformációval határozza meg az inverzét! Ellenőrizze számításait! b Milyen egyéb mátritulajdonságokra

Részletesebben

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló . Számelmélet I. Feladatok 1. Háy égyzetszám osztója va a 7 5 5 7 számak?. Az pozitív egész számak potosa két pozitív osztója va, az + 1-ek pedig potosa három. Háy pozitív osztója va az + 01 számak? OKTV

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz 2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix

Részletesebben

Hanka László. Fejezetek a matematikából

Hanka László. Fejezetek a matematikából Haka László Egyetemi jegyzet Budapest, 03 ÓE - BGK - 304 Szerző: Dr. Haka László adjuktus (OE BGK) Lektor: Hosszú Ferec mestertaár (OE BGK) Fiamak Boldizsárak Előszó Ez az elektroikus egyetemi jegyzet

Részletesebben

Feladatok megoldása. Diszkrét matematika I. Beadandó feladatok. Bujtás Ferenc (CZU7KZ) December 14, feladat: (A B A A \ C = B)

Feladatok megoldása. Diszkrét matematika I. Beadandó feladatok. Bujtás Ferenc (CZU7KZ) December 14, feladat: (A B A A \ C = B) Diszkrét matematika I. Beadadó feladatok Bujtás Ferec (CZU7KZ) December 14 014 Feladatok megoldása 1..1-6. feladat: (A B A A \ C = B) A B A = A \ C = B igazolása: A B A = B \A = Ø = B = A B (Mivel a B-ek

Részletesebben

FANTASZTIKUS KOMBINATORIKA. Adva van n különböző elem. A kiválasztás sorrendje számít VARIÁCIÓ. mateking.hu

FANTASZTIKUS KOMBINATORIKA. Adva van n különböző elem. A kiválasztás sorrendje számít VARIÁCIÓ. mateking.hu FANTASZTIKUS KOMBINATORIKA Adva va külöböző elem Kiválasztuk k darabot Vesszük az összes elemet és sorba rakjuk A kiválasztás sorredje számít A kiválasztás sorredje em számít PERMUTÁCIÓ P matekig.hu Ha

Részletesebben

Az új építőipari termelőiár-index részletes módszertani leírása

Az új építőipari termelőiár-index részletes módszertani leírása Az új építőipari termelőiár-idex részletes módszertai leírása. Előzméyek Az elmúlt évekbe az építőipari árstatisztikába egy új, a korábba haszálatos költségalapú áridextől eltérő termelői ár alapú idexmutató

Részletesebben