SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo"

Átírás

1 SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő diákok számára éháy gyakorlato és feladato keresztül Ezekbe az egész számokkal foglalkozuk: egész számok közötti oszthatóság, az Euklideszi-algoritmus és a legagyobb közös osztó létezése, a prímszámok elemi tulajdoságai, a Diophatoszi-egyeletek éháy speciális esete és még külöféle egyebek Egész számok oszthatósága Legye a pozitív egész számok (vagy természetes számok) halmazáak jelölése Azt modjuk, hogy a osztható a b számmal vagy, ekvivales módo, hogy b osztja a -t, ha létezik, olya c, hogy a = b c Ezt ba vagy ab M képletekkel jelöljük, és azt modjuk, hogy b az a szám osztója, vagy téyezője Hasolóa modhatjuk azt is, hogy az a szám a b többszöröse és ebbe az esetbe a következő jelölést haszáljuk: a = M b Ez a defiíció a em 0 egész számokra is alkalmazható, de a következőkbe mi a pozitív egész számokra szorítkozuk Most a következő elemi oszthatósági feltételekre emlékeztetük: ) Egy a szám osztható -vel, ha az utolsó számjegye páros (azaz osztható -vel); ) Egy a szám osztható 5-tel, ha az utolsó számjegye osztható 5-tel (azaz 0 vagy 5); 3) Egy a szám osztható 3-mal, ha a számjegyeiek az összege osztható 3-mal; 4) Egy a szám osztható 9-cel, ha a számjegyeiek összege 9; 5) Egy a osztható 0 -el, ha darab 0-ra végződik Eek a fejezetek az utolsó részéek kivételével, mide természetes szám a tízes számredszerbeli alakjába lesz feltütetve Mutassuk meg, hogy két páratla vagy két páros szám összege (külöbsége) midig egy páros szám Megoldás Legye m és a két páratla természetes szám, ekkor, m = p+, p és = r +, r Ekkor a+ b = ( p+ r + ) és a b = ( p r), amik egyarát páros számok Az az eset, amikor m és egyarát páros, hasoló Gyakorlatok () Mutassuk meg, hogy mide egész szám eseté ( + ) osztható -vel! 3 Mutassuk meg, hogy mide egész szám eseté ( + )( + ) osztható 3-mal! 4 Keressük meg x értékét úgy, hogy x 5 osztható 3-mal (illetve 9 eseté is keressük meg) 5 Mutassuk meg, hogy két egymást követő köbszám külöbsége soha em osztható -vel! 3 3 Megoldás Azt kapjuk, hogy ( + ) = 3 ( + ) + és mivel + ( ) páros, az -es gyakorlat szerit azt kapjuk, hogy két egymást követő köbszám külöbsége midig páratla Keressük meg 7 utolsó számjegyét! Megoldás Jelöljük ld( u) -val az u szám utolsó jegyét! (ld a last digit agol kifejezés rövidítésekét, jeletése: utolsó számjegy) Ekkor 4 ld (7 ) = Mivel 003 = , azt kapjuk, hogy ld (7 ) = 7 ; ld (7 ) = 9 ; 003 ld (7 ) = 3 7 Mutassuk meg, hogy N = osztható 5-tel! 3 ld (7 ) = 3 ;

2 998 Megoldás utolsó jegye midig 6; utolsó jegye megegyezik 7 utolsó 000 jegyével, ami 3 (mivel 999 = ); utolsó jegye megegyezik 8 utolsó jegyével, ami 6 (mivel 000 osztható 4-gyel) Így, N utolsó számjegye a következő összeg utolsó számjegye lesz, = 5, ami 5, ezért N osztható 5-tel 8 Mutassuk meg, hogy N = osztható 0-zel! Mutassuk meg, hogy a = osztható 7-tel bármely eseté 0 Mutassuk meg, hogy a = osztható 3-mal bármely eseté Bizoyítsuk be a 3 mal (vagy 9-cel) való oszthatóság feltételét! Legagyobb közös osztó és legkisebb közös többszörös Egy p > természetes számot prímszámak hívuk, ha csak osztója va: és ömaga Ellekező esetbe összetett számak hívjuk Mide természetes szám egyedi módo kifejezhető a prím osztóiak szorzatakét Két a és b természetes szám eseté a d természetes számot hívjuk a legagyobb közös osztóak, ha ) d a és d b; ) ha c a és c b akkor c d a és b legagyobb közös osztóját mide esetbe egyértelműe meghatározhatjuk és lko( ab, ) vagy egyszerűe ( ab, ) jelöléssel jelöljük, (hasoló módo bevezethető a legkisebb közös többszörös (továbbiakba lkkt(a,b)) fogalma, legye ez az olvasó dolga): Példa lko(4,90) = 6 például, mivel 3 4 = 3 és 90 = 3 5 Két a és b természetes számot, amikre lko( ab, ) =, relatív prímszámokak evezzük Megjegyzés Ha lko( ab, ) = akkor ab akkor és csakis igaz, ha a és b Példa Legye = 360, a = 4 és b = 90 Ekkor a és b (lásd az előző példát), de em osztható a b -vel, mivel lko( ab, ) = 6 Gyakorlatok () Adott a x természetes szám, keressük meg az x számjegy értékét úgy, hogy a megadott számak osztója legye az: a) 5; b) 6; c) Keressük meg az olya összes x3y alakú számot, ami osztható 5-tel! 3 Keressük meg a legagyobb és legkisebb olya 69x7y alakú számot, amik oszthatóak 8-cal! 4 Keressük meg x és y értékét úgy, hogy 45 osztója legye az 4xy számak! 5 Mutassuk meg, hogy a = osztható 56-tal! 6 Mutassuk meg, hogy az > eseté! a = alakú számok oszthatóak 7-tel mide 7 Mutassuk meg, hogy bármely szám eseté az a = szám osztható 8-cal! 8 Mutassuk meg, hogy 30 osztója az 5 - kifejezések bármely pozitív szám eseté

3 + + 9 Mutassuk meg, hogy az a = szám osztható 980-cal bármely eseté! 0 Legye ab, Mutassuk meg, hogy ha 3a+ 5bM 7 akkor, 4 a+ bm7 Fordítva is igaz? Mutassuk meg, hogy 5x + 7yM 3 akkor és csakis akkor igaz, ha x + 3yM 3 ( xy, ) Mutassuk meg, hogy 5a+ 8bM7 akkor és csakis akkor igaz, ha 4a+ 3bM7 ( ab, ) 3 Mutassuk meg, hogy 3a+ 4bM3 akkor és csakis akkor igaz, ha a+ 7bM 3 ( ab, ) 4 Mutassuk meg, hogy a következő számpárok bármely a) 6+ 5 és 7+ 6; b) 0+ 3 és 5+ 4; c ) és eseté relatív prímek: Egy a összetett szám osztóiak a száma, amiek a prím osztói p, p,, p azα, α,, α kitevőkkel redre, azaz a p α = p K p () a következőképpe adható meg: τ( a) = ( α + )( α + )( α + ) () 3 Példa Az a = szám az a = szorzat formájába írható fel, így az osztóiak a száma: (+ ) ( + ) (+ ) (3 + ) = 48 5 Keressük meg az összes olya kétjegyű számot, amiek potosa 3 osztója va! Megoldás A ()-es képletet haszálva arra jutuk, hogy = és α =, azaz a p formájú számok, ahol p egy prímszám A p = 5 és p = 7 eseté kapuk kétjegyű számokat Így, a keresett számok a 5 és 49 Gyakorlatok (3) 6 Keressük meg az összes olya természetes számot, amiek potosa 4 osztója va, és az osztóiak a szorzata 5! 7 Keressük meg az összes olya égyjegyű számot, amiek potosa 5 osztója va! 8 Keressük meg azt a természetes számot, amiek potosa 6 osztója va, továbbá az osztóiak a szorzata a) 95; b) Keressük meg az ab, 7 < ab 85 számokat úgy, hogy potosa 4 osztójuk legye! 0 Keressük meg az összes olya 0-zel osztható számot, amiek potosa 6 osztója va! Keressük meg a legkisebb olya természetes számot, amiek potosa 4 osztója va!

4 Mutassuk meg, hogy em létezik olya 35-tel osztható háromjegyű természetes szám, amiek potosa 9 osztója va a b 3 Keressük meg a legkisebb és legagyobb olya 3 5 alakú számot, amiek potosa osztója va 4 Keressük meg az x, yz, prímszámokat úgy, hogy az potosa 44 osztója legye x y z = 9 3 számak c 5 Keressük meg az olya 3 a b = 5 7 alakú számokat, amelyekre a 7 számak 36-tal több osztója va, és a 49 számak -vel több osztója va, mit az számak Két vagy több természetes szám legagyobb közös osztóját vagy legkisebb közös többszörösét azoba a számok szorzótéyezőkre botása élkül is meg lehet határozi, az úgy evezett Euklideszi-algoritmussal Legye ab, a két szám úgy, hogy, b 0 és b / a Először elosztjuk az a számot a b számmal és így megkapjuk a háyadost és az r maradékot, azaz q a = b q + r, 0 r < b Ezutá lecseréljük az a számot b-re, b-t pedig r -re, és megismételjük az előbbi műveletet: b = r q + r,0 r < r r = r q + r 3 3 M Amikor elérjük az r + = 0 -t, akkor az előző maradék, azaz r a keresett legagyobb közös osztó, azaz lko( ab, ) = r Példa Keressük meg lko(93,5) értékét! Megoldás Azt kapjuk, hogy 93 = = = = = és ezért l ko(93, 5) = 3 Megjegyzés Egyszerű megláti, hogy 93 = 3 3 és 5= 3 7, ami ugyaazt az eredméyt adja 6 Keressük meg az ab, számokat úgy, hogy a + b = 089 és l ko( ab, ) = Megoldás Azt kapjuk, hogy a = m, b = és lko( ab, ) = Mivel a+ b = 089( = 9), azt kapjuk, hogy m + = 9, ami alapjá a következő relatív prím számpárokat kapjuk: ( m, ) {(,8), (,7), (4,5), (5,4), (7,), (8,)} A keresett számok: (,986),(4,847),(484,605),(847,4),(968,) 7 Keressük két külöböző ab>, számot úgy, hogy lkkt( ab, ) = 667 Megoldás Mivel 667 = 3 9, ezért a két szám a következő lehet: Gyakorlatok (4) a) 3 és 9; b) 3 és 667; c) 9 és 667

5 8 Keressük meg azokat az ab, számokat, amik kielégítik a következő feltételeket: a b = 600 és l kkt( ab, ) = 4 lko( ab, ) 9 Keressük meg az ab, számokat úgy, hogy a + b = 08 és lkkt( ab, ) = Keressük meg az ab, számokat úgy, hogy 3 a = 7 és lkkt( ab, ) = Keressük meg az ab, számokat úgy, hogy lko( ab, ) = 4 és a b = Keressük meg az ab,, a< bszámokat úgy, hogy lkkt( ab, ) lko( ab, ) = 34 Ezt a részt két gyakorlatiasabb feladattal zárjuk, amik a legkisebb közös többszörös és/vagy legagyobb közös osztó segítségével oldhatóak meg 33 Ha egy iskola diákjait -es, 3-as, 4-es, 5-ös, 6-os sorokba redezzük, akkor mide alkalommal egy diák marad ki a sorokból, de ha 7-es sorokba redezzük el a diákokat, akkor mide sor teljes és egy diák sem marad ki Keressük meg az iskolába tauló diákok számáak legkisebb lehetséges számát! Megoldás Mivel lkkt(,3,4,5,6) = 60, ezért a k szám miimális értékét úgy kell megkeresük, hogy A keresett érték a k = 5 (60 k + ) M 7 és így az iskoláak 30 diákja va 34 Egy busz állomásról 4 busz idul 4 külöböző iráyba redre 5, 8, és 8 percekét, 6 és óra között Tudva, hogy először 7:00-kor idul egyszerre mid a égy busz, keressük meg azokat az időpotokat még a ap folyamá, amikor midegyik busz egyszerre idul Megoldás Mivel lkkt(5,8,,8) = 360 és 360 perc = 6 óra, ezért azt kapjuk, hogy a buszok a következő időpotokba idulak mid egyszerre: 7:00; 3:00 és 9:00 Gyakorlatok (5) 35 Ha elosztjuk az a számot 4-gyel, 36-tal, 30-cal és 75-tel, akkor a maradék mide esetbe 5 lesz Keressük meg azt az 0000 a < számot, ami osztható -gyel! 36 Ha egy számot 9-cel, -vel és 5-cel osztuk, akkor az osztási maradék redre 6, 9 és lesz Keressük meg a maradék értékét, ha az számot 80-cal osztjuk! 37 Keressük meg a legkisebb és legagyobb olya háromjegyű számot, hogy 9-cel, 0-zel és 5-tel törtéő osztás eseté is 7 maradékot ad! 38 Keressük meg az összes olya 7-tel osztható háromjegyű számot, hogy -vel, 3-mal, 4-gyel, 5-tel és 6-tal törtéő osztás eseté ugyaayi maradékot ad! 3 Prímszámok A prímszámokkal és összetett számokkal kapcsolatos feladatok számottevőe változatosak A következőkbe bemutatuk éháy példát 3 Keressük meg az összes olya p prímszámot, amire p + egy égyzetszám

6 Megoldás Ha p+ = akkor p = = ( )( + ), ami összetett szám bármely > eseté Az = esetbe azt kapjuk, hogy p = 3, ami egyetle létező kért prímszám, ami a keresett tulajdoságokkal redelkezik 3 Keressük két a, b prímszámot úgy, hogy a + b = 883 Megoldás A kivételével mide prímszám páratla Mivel a+ b páratla ezért a = vagy b = ami azt adja, hogy b = 88 vagy a = 88, ami egy prímszám (elleőrizzük is!) 33 Mutassuk meg, hogy a + és + számok relatív prímek mide emegatív természetes szám eseté! Megoldás A következőt haszáljuk fel: Lemma Két a és b szám akkor és csakis akkor relatív prím, ha létezek olya p, q egész számok, hogy pa + qb = Így a következő jelölést haszálva: a = +, b = + azt kapjuk, hogy úgy, hogy pa + qb = Ezért + és + relatív prímszámok p = +, q = 4 34 Keressük meg az összes olya prímszámot, amire az + 4 és + 8 számok is prímszámok Megoldás Az + 4 és + 8 számok prímszámok, ha páratla és > (az em prímszám) Legye = k +, k A feladatba lévő három szám ekkor * k +, k + 5, k + 9, k (3) Vegyük észre, hogy k = eseté azt a megoldást kapjuk, hogy 3, 7, Megpróbáljuk leelleőrizi, hogy vajo ez adja-e az egyetle megoldást Ezért megpróbáljuk megmutati, hogy az összes többi értékre, amit a k szám felvehet, a feti listá (3) lévő számok közül legalább az egyik em prímszám lesz Kihaszálhatjuk azt a téyt is, hogy a feti megoldásba a legkisebb szám a 3 A 3-at is figyelembe véve, bármely k szám felírható a következő alakok egyikébe: 3 p, 3p+, 3p+, ( p ) mivel 0, vagy maradékot adhat k 3-mal osztva Ha k = 3p+, akkor k + = 3(p+ ) em prímszám (kivétel a p = 0 esetet, amikor k =, ami a már megtalált megoldást adja meg) Ha k = 3p+, akkor k + 5 = 3(p+ 3), ami em prímszám, p Ha k = 3p, akkor k + 9 = 3(p+ 3), ami em prímszám, p Ezért egyedül k = eseté, azaz = 3 eseté lesz midhárom megadott szám egyszerre prímszám Gyakorlatok (6) 35 Mutassuk meg, hogy bármely > 3 természetes szám felírható prímszámok összegekét Végezzük el a felírást = 004 esetére 36 Keressük meg az összes olya prímszámot, ami egyarát felírható két prímszám összegekét és külöbségekét is! 37 Három egymást követő prímszám összege +, Keressük meg ezeket a számokat, ha tudjuk, hogy va köztük két egymást követő szám!

7 38 Keressük meg az abc,, prímszámokat úgy, hogy azok kielégítsék az a+ b- c = 530 és a-b = 966feltételeket! 39 Keressük meg az abc,, prímszámokat úgy, hogy azok kielégítsék az a+ b = 7 és a+ b + c = 994 feltételeket! 30 Keressük meg az összes olya abc,, prímszámot, hogy a+ 0b+ c = 8 3 Keressük meg az összes olya abc,, prímszámot, hogy 3a+ 7b+ 9c = 54 3 Keressük meg az ab, prímszámokat úgy, hogy összegük 555 aba, aab és baa is prímszámok és az 33 Keressük meg a p prímszámot úgy, hogy p+, 3p+, 4p+ 3 és 6p + egyarát prímszámok! 34 Keressük meg az összes prímszámot úgy, hogy +, + 6, + 8 és + 4 szité prímek! 35 Keressük meg az összes olya pozitív prímszámot, amire +, + 3, + 7, + 9 és + 5 egyarát prímszámok 36 Határozzuk meg a p számot úgy, hogy a prímek p p,, p 4 + +, p + 0 számok mid 37 Határozzuk meg az p, számokat úgy, hogy az számok mid prímek p, +, +, + p+ p+ 38 Határozzuk meg az p, számokat úgy, hogy a számok mid prímszámok p p p p p , +, +, +, Határozzuk meg az p, számokat úgy, hogy p, p+ 3, p+ 3, p+ 3, mid prímszámok 3 p Határozzuk meg az összes olya p prímszámot, hogy 4p + egy égyzetszám 3 Határozzuk meg az összes olya p prímszámot, hogy 7p + egy égyzetszám 3 Mutassuk meg, hogy a következő számok összetett számok! 3, 343, 34543, * 33 Mutassuk meg, hogy az a = 0 + 6, szám em egy prímszám Határozzuk meg az a = 5 5 szám jegyeiek a számát! Prímszám-e ez a szám? A + szám prímszám-e? 36 Mutassuk meg, hogy az a = 6 + szám két -él agyobb relatív prímszám szorzata!

8 37 Létezik-e olya természetes szám, hogy az prímszám? 4 3 a = szám egy 38 Bizoyítsuk be az lemmát! 4 Számok más számredszerekbe törtéő megjeleítései Az előző részekbe mide számot a tízes számredszerbeli alakjukba haszáltuk Létezek más számredszerbeli megjeleítések is, amik külöböző okok miatt fotosak: például a -es illetve 6-os számredszerek az iformatikába fotos szerepe stb A kettes számredszer két számjegyet haszál, a 0-t és -et, a hármas számredszerbeli megjeleítés 3 számjegyet haszál: 0-t, -et és -őt és így tovább Hogy jelöljük, hogy az adott N szám egy b alapú számredszerbe va megjeleítve, azt írjuk, hogy N b = 0 eseté elhagyhatjuk a jelölést: ( b) 4 Mutassuk meg, hogy () + (3) + (4) + (5) + (6) =33(8) Megoldás Midegyik számot átalakítjuk a tízes számredszerbeli alakjába: = ; = 3 + = 4; = = ; () (3) (4) = = 3 (5) ; = = 4 3 (6) ; = = 3 33(8) , és leelleőrizzük az egyelőséget Valóba, azt kapjuk, hogy = Határozzuk meg az x számjegy értékét, ha x( x + ) (7) = ( x + ) x (4) Megoldás Igazak kell leie, hogy x + 3 és x Mivel xx ( + ) (7) = 7x+ x+ = 8x+ és ( x + ) x = 4( x + ) + x, így azt kapjuk x = Gyakorlatok (7) 43 Határozzuk meg az x és y számokat úgy, hogy ( x) + 36( y ) = Határozzuk meg az x és y számokat úgy, hogy 3( x) + 3( y) = 3 45 Háy jegyű a p szám a kettes számredszerbe, ha p = (a tízes számredszerbe)? 46 A kettes számredszerbeli alakjuk felírása élkül határozzuk meg, háy jegyűek az 34 és 567 számok a kettes számredszerbe! 47 Keressük meg a köbszámokat az a = 3 (4), b = 35(6), és c = 7(8) számok közt! 5 Kevert feladatok

9 5 Mutassuk meg, hogy az 444 {{ szám felírható két egymást követő pozitív egész szám szorzatakét szer szer 5 Keressük meg az összes olya háromjegyű abc számot, hogy abc = 8abc 53 Mutassuk meg, hogy abab cd = cdcd ab 54 Mutassuk meg, hogy egyetle + eseté sem leszek az a = 5 + és + b = 5 + számok égyzetszámok 55 Prímszám-e az 007 = + szám? 56 Mutassuk meg, hogy 7 4 em égyzetszám egyetle szám eseté sem! 57 Mutassuk meg, hogy hét egymást követő természetes szám égyzetéek összege osztható 7-tel 58 Határozzuk meg az a, b, c, d értékét úgy, hogy abcd + abc + ab + a = Határozzuk meg az a, b, c, d értékét úgy, hogy abcd + bcd + cd + d = 50 Határozzuk meg az a és b em 0 számjegyeket úgy, hogy aa a0a = bbbb 5 Határozzuk meg az a, b, c számjegyeket úgy, hogy ac b= abc 5 Határozzuk meg az a, b, c, d számjegyeket úgy, hogy abcd = cd bcd 53 Határozzuk meg az a, b, c számjegyeket és az számot úgy, hogy abc abc = cba 6 Megoldások, útmutatók, válaszok 6 Gyakorlatok () ld(983 ) = ld(3 ) = 9, mivel 986 (modulo 4), ld (984 ) ld(4 ) 6 a = = és 986 ld (985 ) = 5 Így ld( N ) = 0 és ezért NM0 5 3 (5 3 + ) = ( + ) + ( + ) = = = 8 7, ezért azt kapjuk, hogy am7 Mivel 0 a = (7 9) (3 7) 3 = = = + = M 7 3 ( ) Legye N = aa- aa a megadott szám Azt kapjuk, hogy

10 N = a 0 + a 0 + K + a 0 + a = K 9 = a(9 + ) + a (9 + ) + + a (9 + ) + a = = M + a + a + K + a + a Ezért NM3, (redre 9-re is) akkor és csakis akkor, ha a számjegyeiek az összege osztható 3-mal, illetve redre 9-cel 6 Gyakorlatok () a) x {0,5} ; b) x {0,6} ; c) x = 6 Mivel 5 = 3 5 és lko(3, 5) =, 5 x3y akkor és csakis akkor ha osztható 3-mal és 5-tel is Azt kapjuk, hogy y = 0 és x {, 4,7} ; y = 5 és x {,5,8} 3 ( xy, ) {(0,4), (,), (4,0), (5,8), (7,6),(9,4)} 4 ( xy, ) {(5,0), (0,5), (9,5)} 5 Mivel 56 = 4 39 és lko(4,39) =, ezért elegedő bebizoyítai, hogy N M4 és NM39 Csakugya, így következik, hogy N = ( ) + 3 ( ) ( ) = 39 A, és 984 N = (3+ 3) + 3(3+ 3) (3+ 3) = B 6 és 7 Az 7-hez hasolóa 8 a 5 4 = = ( ) = ( )( + ) = ( -) ( ) ( ) Az és 3 alapjá tudjuk, hogy ( ) ( ) M Mivel 30 = 6 5 és lko(5,6) = ezért azt kell bizoyítauk, hogy am5 Bármely természetes szám felírható a következő alakok egyikébe: {5 k, 5k +, 5k +, 5k + 3, 5k + 4}, k N Ha {5 k, 5k +, 5k + 4}, akkor yilvávalóa am5 Ha = 5k +, akkor + = 5 k + 0 k + 4+ = M 5, míg ha = 5k + 3, akkor + = 5 k + 30 k + 9+ = M 5 9 Az 7-eshez hasolóa 0 Ez a következőből következik: (3a+ 5 b) + 7 (4 a+ b) = 7( a+ b) Visszafelé is yilvávalóa igaz - 3 A 0-hez hasolóa 4 a) Legye d = lko(6+ 5,7+ 6), ami azt jeleti, hogy d és d Ekkor d 6 (7+ 6) - 7 (6+ 5) =, azaz, d = 63 Gyakorlatok (3)

11 3 6 Két esetük lehet, vagy = d d ( d < d ) vagy = d, ahol d, d,d prímszámok A második esetbe az osztók d, d, d 3 de a d 6 = 5 egyeletek icse egész gyöke Így az marad, hogy = dd és a d d dd = 5 kifejezésből azt kapjuk, hogy d = 3 és d = 5 Ezért =5 a keresett szám 7 A számak a következő alakúak kell leie = d 4, d egy prímszám Ezért csak 4 d = 7 eseté lesz egy égyjegyű szám és ekkor = 7 = 40 8 a) = 45 ; b) = 3 9 ab 3 = p, p egy prímszám, vagy ab m ab {74, 77, 8, 85} =, m és prímszám Azt kapjuk, hogy a b 0 Mivel 0 = 5 és 6 = 3, ezért azt kapjuk, hogy = 5 ahol ( a+ )( b+ ) = 6 Ha a =, b =, = 50 ; ha a =, b =, akkor = 0 m p 4 = 3 7 és ie = a b c ahol ( m+ )( + )( p+ ) = 3 7 A legkisebb 6 számot m =, =, p = 6, a = 5, b = 3, c = eseté kapjuk meg, azaz 3 5 = 880 m Legye abc = 7 5 Az osztóiak a száma ( + )( m+ ) = = 3 és m + = 3 Így a legkisebb lehetséges szám a 7 5 = 5 lesz, ami égyjegyű 3 A legkisebb szám a 675 és a legagyobb az 5 (ha elfogadjuk, hogy az a és b szám lehet 0 is) 4 Tudjuk, hogy ( x + )( y + )( z+ ) = 44 Mivel x, y, z prímszámok, ezért a következő szorzatra botást haszáljuk: 44 = ami megadja a megoldásokat: (3,5,5), (5,3,5), (5,5,3) ; } újraíri! 64 Gyakorlatok (4) lko( ab, ) lkkt( ab, ) = a b 4 lko( ab, ) = 600 lko( ab, ) = 0 8 [ ] Így, a = 0, b= 80 vagy a = 80, b= 0 a megoldások 9 3 és a= 77, b= 33 3 ( ab, ) {(4,4), (8,), (,8),(4,4)} 3 Mivel lko( ab, ) a és a lkkt( a, b), ezért következik, hogy lko( ab, ) lkkt( ab, ) ahoa lko( ab, ) (lkkt( ab, ) lko( ab, )), ami szerit 34 lko( ab, ) Alkalmazzuk a következő jelölést d = lko( a, b) Ekkor d {,,7,34} és a megoldások: ( ab, ) {(,35),(5,7), (,36), (4,8), (7,5), (34,68)}

12 65 Gyakorlatok (5) 35 l kkt(4,36,30,75) = 800, így x= 800k+ 5, x Azt kapjuk, hogy x = 705 = + Így 9 ( 3) + és 5 ( + 3) Ezért 80 ( 3) + 3= 80k 36 lkkt(9,,5 = 80), = 9 c + 6; = c + 9 és 5 c3 ( 3) * k = 80k - 3 = 80( k -) + 77 A maradék lkkt(9,0,5) = 90 = 90k + 7 ; {87,997} +, +, azaz, 38 A maradék 0 vagy lehet Ha r = 0 = lkkt(,3,4,5,6,7) k, k {0, 40,630, 840} Ha r = lkkt(,3,4,5,6,7) = 30 és a legkisebb szám a = 30 A megoldások: k, k, azaz, {30, 5, 7, 93} 66 Gyakorlatok (6) 35 Ha = k, akkor = , míg = k + eseté azt kapjuk, hogy = k szer k szor 36 Legye p egy prímszám, p >, így p egy páratla szám Ha q + r = p és q r = p, akkor a q, r számok egyike és a q, r számok egyikéek párosak kell leie, azaz, p = q + = q, ahol q és q prímszámok Ezért p, p és p + mid prímszámok, így p = 5 az egyetle megoldás (bizoyítsuk be!) 37 + = ( + ) M, így a prímszámok egyike páros, azaz egyelő -vel, és így a többi páratla, és így em egymást követő számok Hogy legye két egymást követő prímszám, a 3-ak bee kell leie a halmazba, és a harmadik szám az + 5, ami prímszám = 3 eseté A számok, 3 és 7 38 a = 49, b = 83, c = 39 a =, b = 69, c = 73; a = 69, b =, c = a =, b =, c = és 53 3 a =, b = 3 33 p = 5 34 = 5 35 = 4 36 p = 3 eseté a következő megoldást kapjuk: 3,, 3, 9 Bebizoyítjuk, hogy ez az egyetle megoldás Bármely p természetes szám felírható a következő alakok egyikébe:

13 3 k, 3k +, 3k +, k Ha p = 3k és k >, p egy összetett szám ( p = eseté kapjuk a feti megoldást); Ha p = 3k +, akkor p + = 3(3k + k + ), ami egy összetett szám k ; Ha p = 3k +, akkor p + 0 = 3(3k + 4k + 8), ami egy összetett szám k p p+ p+ 37 Az prímszámak páratlaak kell leie Mivel a,, számok között midig találuk legalább egy M 3+ alakú számot, és legalább egy M 3+ alakú számot (bizoyítsuk be!), ezért a megadott sorozatba akkor és csakis akkor lehetek prímszámok, ha = 3k (és k = ), ellekező esetbe legalább az egyik szám összetett szám lesz Ezért = 3 és a sorozat: p { p+ } { p+ } 3, 3+, 3+, 3+ A következő eseteket vizsgáljuk: p {3 m, 3m +, 3m + m } ) p = 3m eseté azt kapjuk, hogy p 3 m m = ( ) = (7+ ) = M 7+ p+ p ( M7 ) M7 = = + = + p+ = M 7+ 4 p+ és ezért a 3+ = M 7 szám összetett szám m eseté (az m = 0 esetbe p 3 + = 4 egy összetett szám); p+ 3m+ p+ 3m+ ) p = 3m+ eseté azt kapjuk, hogy 3+ = 3+ = 3+ = 3+ = M 7, ami összetett szám m eseté Az m = 0 esetbe egy prímszámokból álló sorozatot kapuk: 3, 5, 7 és ; p 3) p = 3m+ eseté azt kapjuk, hogy 3 + =M 7, egy összetett szám mide m eseté Az m = 0 esetbe p =, és egy prímszámokból álló sorozatot kapuk {3,7,,9} Ezért a feladatuk megoldása ( p, ) {(3,),(3,)} 38 A 53-hoz hasolóa, azt kapjuk, hogy p = 3 és ekkor = Mivel a 3, 3, 3, 3 számok páratlaok, ezért a p számak párosak kell leie, azaz p = Az egymást követő 3, 3, 3, 3 hatváyok utolsó jegyei 3, 9, 7, leszek * valamilye sorredbe bármely eseté Így az egyik hatváy utolsó számjegye 3 lesz és így eek a hatváyak és -ek az összege 5-re fog végződi, azaz osztható lesz 5-tel Így az = 0 vagy = eseteket kaphatjuk, redre a, 3, 5,, 9 és, 5,, 9, 83 megoldásokkal 30 k 4p+ = k p =, k = l +, l és ie 4 p {,5,7} ll ( + ) p =, l Azt kapjuk, hogy 6 3 7p+ = k 7 p = ( k )( k + ) stb A válasz: p = 9 3 3=, 343=, K 33 a = és így a számjegyeiek összege 9, így am9 szer

14 ( ) + { a = 5 = 5 5 = = jegye va Mivel + szer + szer a számjegyeiek összege ( + ) M3, ezért a osztható 3-mal is 35 Vegyük észre, hogy 004 = és ie = ( ) + = ( + )( + ) Így a szám összetett szám a = + = 4 + = (4 + )( ) = 5k, ahol k = K = (5 ) (5 ) + K + (5 ) (5 ) + = M = M 5+, ami relatív prímszám az 5-höz képest 3 szer 37 a = ( + + ) + ( + + ) = ( + + )( + ) = ( + ) ( + ) ami egy * összetett szám, 67 Gyakorlatok (7) 43 x = 5, y = 7 44 x = 7, y = 4 vagy x = 4, y = p = = = { (), így p-ek 004 számjegye va a kettes számredszerbeli alakjába 004 szer < 34 < ; < 567 < Így, 34-ek jegye va és 567-ek 0 jegye va a kettes számredszerbe a = 7 = 3, b = 5 = 5 68 Kevert feladatok 5 a = (+ 0 + K0 ) (+ 0 + K+ 0 ) = = = (+ 0 )= A 0 és 0 + számok oszthatók 3-mal, mivel 0 = = 000 { 3 szer és Továbbá, = = szer 5 abc = 8abc bc = 4 a(bc 5) Megoldások: 8; abab = ab 0

15 54 a = 5000 { és b = 000 { Az a és b számok egyarát oszthatóak 3-mal, de 9-cel szer szer em, így em égyzetszámok 55 Mivel 007 = 9 3, ezért egy összetett szám 56 Bármely égyzetszám felírható a következő alakok egyikébe (bizoyítsuk is be!) Ezutá látjuk, hogy a formájú (ha páratla) 8 k, 8k +, 8k szám 8k + 5 (ha páros) vagy 8k (7 k) + (7k + ) + (7k + ) + (7k + 3) + (7k + 4) + (7k + 5) + (7k + 6) = = M = M7+ = M a =, b = 4; a = 3, b = 9; a = b = a ac b= abc c = 0a (4) b ami azt mutatja, hogy a (5) 6 Az em lehet, hogy c = mivel akkor a (4)-es állításból az következe, hogy 00 = a(0b 9) és így a = 4 (mivel 0 b 9 páratla) és ie 0b 9 = 9 ami lehetetle Ezért c és a (4)-es alapjá azt kapjuk, hogy a 0a 8 (6) b Ha a b {7,8} eseteket megvizsgáljuk, akkor a (6)-osból azt kapjuk, hogy a =, amire a (4)- es em igaz A b = 5 esetbe a (4)-es állításból az következik, hogy a {4,8}, amik em elégítik ki a (6)-ot Ezért a b = eset maradt Az (5)-ből az következik, hogy a páros és a (6)-ból az következik, hogy a 84, azaz a 8 Így a = 8 és akkor a (4)-es szerit azt kapjuk a végé, hogy c = 7 Így, a = 8, b = és c = 7 az egyetle megoldás 5 A 8-hez hasolóa megoldva azt kapjuk, hogy a = 3, b =, c =, d = 5 53 Az egyetle megoldás: a = 9, b = 6, c = 3 és = 97369

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle

Részletesebben

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok Valós számok 5 I Valós számok I Természetes, egész és racioális számok I Feladatok (8 oldal) Fogalmazz meg és bizoyíts be egy-egy oszthatósági kritériumot a -vel, -mal, 5-tel, 7-tel, 9-cel, -gyel való

Részletesebben

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel? 5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

VI.Kombinatorika. Permutációk, variációk, kombinációk

VI.Kombinatorika. Permutációk, variációk, kombinációk VI.ombiatorika. ermutációk, variációk, kombiációk VI..ermutációk ismétlés élkül és ismétléssel (sorredi kérdések) l..) Az,, számjegyekből, ismétlés élkül, háy háromjegyű szám írható? F. 6 db. va. A feti

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

SZÁMELMÉLET FELADATSOR

SZÁMELMÉLET FELADATSOR SZÁMELMÉLET FELADATSOR Oszthatóság 1. Az 123x4 számban milyen számjegy állhat x helyén, ha a szám osztható a) 3-mal; e) 6-tal; b) 9-cel; f) 24-gyel; c) 4-gyel; g) 36-tal; d) 8-cal; h) 72-vel? 2. Határozd

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK!

MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK! MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK! Készítette: Kovács Károlyné MATEMATIKA C 9. ÉVFOLYAM 4. MODUL: OSZTOZZUNK! TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

Véges matematika 1. feladatsor megoldások

Véges matematika 1. feladatsor megoldások Véges matematika 1 feladatsor megoldások 1 Háy olya hosszúságú kockadobás-sorozat va, melybe a csak 1-es és 2-es va; Egymástól függetleül döthetük a külöböző dobások eredméyéről, így a taultak szerit a

Részletesebben

1. Az absztrakt adattípus

1. Az absztrakt adattípus . Az asztrakt adattípus Az iformatikáa az adat alapvető szerepet játszik. A számítógép, mit automata, adatokat gyűjt, tárol, dolgoz fel (alakít át) és továít. Mi adatak foguk tekitei mide olya iformációt,

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

Számelmélet. 7 8. évfolyam. Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György. 2015. október 19.

Számelmélet. 7 8. évfolyam. Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György. 2015. október 19. Számelmélet 7 8. évfolyam Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György 2015. október 19. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás,

Részletesebben

GAZDASÁGI MATEMATIKA 1. ANALÍZIS

GAZDASÁGI MATEMATIKA 1. ANALÍZIS SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

A Venn-Euler- diagram és a logikai szita

A Venn-Euler- diagram és a logikai szita A Ve-Euler- diagram és a logikai szita Ebbe a részbe a Ve-Euler diagramról, a logikai szitáról, és a két témakör kapcsolatáról íruk, számos jellemző, megoldott feladattal szemléltetve a leírtakat. Az ábrákak

Részletesebben

FANTASZTIKUS KOMBINATORIKA. Adva van n különböző elem. A kiválasztás sorrendje számít VARIÁCIÓ. mateking.hu

FANTASZTIKUS KOMBINATORIKA. Adva van n különböző elem. A kiválasztás sorrendje számít VARIÁCIÓ. mateking.hu FANTASZTIKUS KOMBINATORIKA Adva va külöböző elem Kiválasztuk k darabot Vesszük az összes elemet és sorba rakjuk A kiválasztás sorredje számít A kiválasztás sorredje em számít PERMUTÁCIÓ P matekig.hu Ha

Részletesebben

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

10. évfolyam, harmadik epochafüzet

10. évfolyam, harmadik epochafüzet 0. évfolyam, harmadik epochafüzet (Sorozatok, statisztika, valószíűség) Tulajdoos: MÁSODIK EPOCHAFÜZET TARTALOM I. Sorozatok... 4 I.. Sorozatok megadása, defiíciója... 4 I.. A számtai sorozat... 0 I...

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály A mellékelt ábrán két egymás melletti mező számának összege mindig a közvetlen felettük lévő mezőben szerepel. Fejtsétek meg a hiányzó számokat! 96 23 24 17 A baloldali három mezőbe tartozó

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam eszközök diákok és csoportok részére 1. félév A kiadvány KHF/4632-14/2008. engedélyszámon 2008.12.16. időponttól tankönyvi engedélyt kapott Educatio

Részletesebben

148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =?

148 feladat 21 + + 20 20 ) + ( 1 21 + 2 200 > 1 2. 1022 + 1 51 + 1 52 + + 1 99 2 ) (1 1 100 2 ) =? 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal 5. Komplex számok 5.1. Bevezetés Taulmáyaik sorá többször volt szükség az addig haszált számfogalom kiterjesztésére. Először csak természetes számokat ismertük, később haszáli kezdtük a törteket, illetve

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK Függvéek és tulajdoságaik 69 III FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK 6 Gakorlatok és feladatok ( oldal) Írd egszerűbb alakba: a) tg( arctg ) ; c) b) cos( arccos ) ; d) Megoldás a) Bármel f : A B cos ar

Részletesebben

25. Matematikai logika, bizonyítási módszerek

25. Matematikai logika, bizonyítási módszerek 5. Matematikai logika, bizoyítási módszerek I. Elméleti összefoglaló Logikai műveletek A matematikai logika állításokkal foglalkozik. Az állítás (vagy kijeletés) olya kijelető modat, amelyről egyértelműe

Részletesebben

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis I. ALAPALGORITMUSOK 1. Prímszámvizsgálat Adott egy n természetes szám. Írjunk algoritmust, amely eldönti, hogy prímszám-e vagy sem! Egy számról úgy fogjuk eldönteni, hogy prímszám-e, hogy megvizsgáljuk,

Részletesebben

2. témakör: Számhalmazok

2. témakör: Számhalmazok 2. témakör: Számhalmazok Olvassa el figyelmesen az elméleti áttekintést, és értelmezze megoldási lépéseket, a definíciókat, tételeket. Próbálja meg a minta feladatokat megoldani! Feldolgozáshoz szükségesidö:

Részletesebben

Hosszmérés finomtapintóval 2.

Hosszmérés finomtapintóval 2. Mechatroika, Optika és Gépészeti Iformatika Taszék kiadva: 0.0.. Hosszmérés fiomtapitóval. A mérések helyszíe: D. épület 53-as terem. Az aktuális mérési segédletek a MOGI Taszék holapjá érhetők el, a www.mogi.bme.hu

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató 1. A 23-as szám című misztikus filmben

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

FELADATOK A KALKULUS C. TÁRGYHOZ

FELADATOK A KALKULUS C. TÁRGYHOZ FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy

Részletesebben

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13 Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8

Részletesebben

1992. évi verseny, 2. nap. legkisebb d szám, amelyre igaz, hogy bárhogyan veszünk fel öt pontot

1992. évi verseny, 2. nap. legkisebb d szám, amelyre igaz, hogy bárhogyan veszünk fel öt pontot 1991. évi verseny, 1. nap 1. Bizonyítsd be, hogy 1 101 + 1 102 + 1 103 +... + 1 200 < 1 2. 2. Egy bálon 42-en vettek részt. Az első lány elmondta, hogy 7 fiúval táncolt, a második lány 8-cal, a harmadik

Részletesebben

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l! KOMBINATORIKAI ALAPFOGALMAK A ombiatoria általába a véges halmazora voatozó redezési és leszámlálási feladatoal foglalozi. Az elemi ombiatoria legtöbb esetbe a övetező ét érdés egyiére eresi a választ:

Részletesebben

KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsôn

KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsôn A FIZIKA TANÍTÁSA KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsô Griz Márto ELTE Elméleti Fizikai Taszék Meszéa Tamás Ciszterci Red Nagy Lajos Gimázima Pécs, a Fizika taítása PhD program hallgatója

Részletesebben

ALGORITMUSOK A MATEMATIKAOKTATÁSBAN

ALGORITMUSOK A MATEMATIKAOKTATÁSBAN Eötvös Lorád Tudomáyegyetem, Természettudomáyi Kar Matematikataítási és Módszertai Közpot ALGORITMUSOK A MATEMATIKAOKTATÁSBAN Készítette: Varga Viktória Matematika Bsc taári szakiráy Témavezető: Fried

Részletesebben

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója SZAKKÖZÉPISKOLA A 006-007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója. Feladat: Egy számtani sorozat három egymást követő tagjához rendre 3-at, -et, 3-at adva

Részletesebben

1 pont Bármely formában elfogadható pl.:, avagy. 24 4

1 pont Bármely formában elfogadható pl.:, avagy. 24 4 2012. február 2. 8. évfolyam TMat2 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat2 A javítókulcsban feltüntetett válaszokra a megadott

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:

Részletesebben

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA A ombiatoria véges elemszámú halmazoat vizsgál. A fő érdése: a halmaz elemeit háyféleéppe lehet sorbaredezi, iválasztai özülü éháyat vagy aár midet bizoyos feltétele mellett, stb. Ezért a ombiatoria alapját

Részletesebben

Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa

Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa 1. Mutasd meg, hogy a tízes számrendszerben felírt 111111111111 tizenhárom jegyű szám összetett szám, azaz

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot

Részletesebben

Mátrixok. 2015. február 23. 1. Feladat: Legyen ( 3 0 1 4 1 1 ( 1 0 3 2 1 0 B = A =

Mátrixok. 2015. február 23. 1. Feladat: Legyen ( 3 0 1 4 1 1 ( 1 0 3 2 1 0 B = A = Mátrixok 25. február 23.. Feladat: Legyen A ( 3 2 B ( 3 4 Határozzuk meg A + B, A B, 2A, 3B, 2A 3B,A T és (B T T mátrixokat. A deníciók alapján ( + 3 + 3 + A + B 2 + 4 + + ( 4 2 6 2 ( ( 3 3 2 4 A B 2 4

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 00/0-es tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató.

Részletesebben

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Országos döntő, 1. nap - 2015. május 29.

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Országos döntő, 1. nap - 2015. május 29. 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Országos döntő, 1. nap - 015. május 9. ÖTÖDIK OSZTÁLY - ok 1. Egy háromjegyű szám középső számjegyét elhagyva egy kétjegyű számot kaptunk. A két szám összege

Részletesebben

Általános taggal megadott sorozatok összegzési képletei

Általános taggal megadott sorozatok összegzési képletei Általáos taggal megadott sorozatok összegzési képletei Kéri Gerzso Ferec. Bevezetés A sorozatok éháy érdekes esetét tárgyaló el adást az alábbi botásba építem fel:. képletek,. alkalmazások, 3. bizoyítás

Részletesebben

A táblára felírtuk a 0-tól 2003-ig terjedő egész számokat (tehát összesen 2004 db számot). Mekkora a táblán levő számjegyek összege?

A táblára felírtuk a 0-tól 2003-ig terjedő egész számokat (tehát összesen 2004 db számot). Mekkora a táblán levő számjegyek összege? ! " # $ %& '()(* $ A táblára felírtuk a 0-tól 00-ig terjedő egész számokat (tehát összesen 004 db számot). Mekkora a táblán levő számjegyek összege? 0 0 0 0 0. 9 7. 9 9 9 + ')./ &,- $ Először a 0-tól 999-ig

Részletesebben

IV. Sorozatok. Sorozatok bevezetése

IV. Sorozatok. Sorozatok bevezetése Sorozatok Sorozatok bevezetése 8 Az,,, számjegyek és tegelyes tükörképeik együtt alkotják a sorozat tagjait A folytatás lehetséges például az ábrá látható módoko Megjegyzés: A Hogya folytatható típusú

Részletesebben

TESZTEK. 1. feladatsor (C) 1 2. (E) 1 2. Mivel egyenlő 4 5 + 5 4? (A) 19 (C) 2 (D) 41 (C) 5 2. (E) 3 4. Mennyi az értéke az 1 2 1 3 + 1 6 1

TESZTEK. 1. feladatsor (C) 1 2. (E) 1 2. Mivel egyenlő 4 5 + 5 4? (A) 19 (C) 2 (D) 41 (C) 5 2. (E) 3 4. Mennyi az értéke az 1 2 1 3 + 1 6 1 TESZTEK. feladatsor. Mivel egyenlő 3 + 2 5? (A) 2 5 (B) 3 8 (C) 2 (D) 5 (E) 2. Mivel egyenlő 4 5 + 5 4? (A) 9 0 (B) 39 20 (C) 2 (D) 4 20 (E) 2 0 3. Mennyi az 3 + 2 5 összeg értéke? (A) 32 5 (B) 9 8 (C)

Részletesebben

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez

Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Gál Józsefné Tanmenetjavaslat a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Dinasztia Tankönyvkiadó Budapest, 2002 Írta: Gál Józsefné Felelôs szerkesztô: Ballér Judit ISBN 963 657 144 9

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

Sorozatok - kidolgozott típuspéldák

Sorozatok - kidolgozott típuspéldák 1. oldal, összesen: 8 oldal Sorozatok - kidolgozott típuspéldák Elmélet: Számtani sorozat: a 1 a sorozat első tagja, d a különbsége a sorozat bármelyik tagját kifejezhetjük a 1 és d segítségével: a n =

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

FELADATOK a Bevezetés a matematikába I tárgyhoz

FELADATOK a Bevezetés a matematikába I tárgyhoz FELADATOK a Bevezetés a matematiába I tárgyhoz a számítástechia taár főisolai és a programozó matematius szao számára 2004 ovember 4 FIGYELEM: a számtech szaosoa csa a övetező feladato ellee: 2,6,7,8,9-13,16-25,27,31-33

Részletesebben

SZÁMRENDSZEREK. c) 136; 253 7. c) 3404; 6514 8. = 139 c) 31210 4. = 508 e) 150 6 = 5843.

SZÁMRENDSZEREK. c) 136; 253 7. c) 3404; 6514 8. = 139 c) 31210 4. = 508 e) 150 6 = 5843. SZÁMRENDSZEREK 1933. A megadott sorrendet követve írtuk át a számokat: a) 2-es számrendszerben: 11; 1001; 1100; 10001; 10111; 100110; 1011011. b) 3-as számrendszerben: 21;110;1011; 1020; 10100; 10102;

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban:

SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban: SZÁMTANI SOROZATOK Egyszerű feladatok. Egy számtani sorozatban: a) a, a 29, a? 0 b) a, a, a?, a? 80 c) a, a 99, a?, a? 0 20 d) a 2, a2 29, a?, a90? 2 e) a, a, a?, a00? 2. Hány eleme van az alábbi sorozatoknak:

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Ellentett) Egy szám ellentettjén azt a számot értjük, amelyet a számhoz hozzáadva az 0 lesz. Egy szám ellentettje megegyezik a szám ( 1) szeresével. Számfogalmak kialakítása:

Részletesebben

Tömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása

Tömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása Tömbök kezelése Példa: Vonalkód ellenőrzőjegyének kiszámítása A számokkal jellemzett adatok, pl. személyi szám, adószám, taj-szám, vonalkód, bankszámlaszám esetében az elírásból származó hibát ún. ellenőrző

Részletesebben

300 válogatott matematikafeladat 7 8. osztályosoknak

300 válogatott matematikafeladat 7 8. osztályosoknak VILLÁMKÉRDÉSEK 300 válogatott matematikafeladat 7 8. osztályosoknak 1. Adottak az 1 x, 2 x, 3 x,..., 100 x számok. Számold ki a szorzatukat, ha x = 18. 2. Adottak az 1 x, 2 x, 3 x,..., 100 x számok. Számold

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez

- hányadost és az osztót összeszorozzuk, majd a maradékot hozzáadjuk a kapott értékhez 1. Számtani műveletek 1. Összeadás 73 + 19 = 92 összeadandók (tagok) összeg Összeadáskor a tagok felcserélhetőek, az összeg nem változik. a+b = b+a Összeadáskor a tagok tetszőlegesen csoportosíthatóak

Részletesebben

Kombinatorika feladatok

Kombinatorika feladatok Kombiatorika feladatok 1. Tüdérországba csak 2 magáhagzót és 2 mássalhagzót haszálak. A szavakba legalább 1 mássalhagzó és legalább 1 magáhagzó va. Háy külöböző hárombetűs szó létezik Tüdérországba, ha

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0. Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N

Részletesebben

SZAKDOLGOZAT. Sempergel József

SZAKDOLGOZAT. Sempergel József SZAKDOLGOZAT Sempergel József Debrecen 2007 Debreceni Egyetem Matematikai Intézet A SZÁMELMÉLET MEGJELENÉSE A KÖZÉPISKOLAI OKTATÁSBAN Témavezető: Dr. Bérczes Attila Készítette: Sempergel József Informatika

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK Telefon: 37-8900 Fax: 37-8901 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. 1. Egy osztási műveletben az osztandó és az osztó összege 89.

Részletesebben

IV. A MATEMATIKAI LOGIKA ELEMEI

IV. A MATEMATIKAI LOGIKA ELEMEI 8 A matematikai logika elemei IV A MATEMATIKAI LOGIKA ELEMEI IV Kijeletések, logikai értékek Értelmezés Állításak evezük mide yelvtai értelembe vett kijelető modatot Például a következő modatok állítások:

Részletesebben