SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo"

Átírás

1 SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő diákok számára éháy gyakorlato és feladato keresztül Ezekbe az egész számokkal foglalkozuk: egész számok közötti oszthatóság, az Euklideszi-algoritmus és a legagyobb közös osztó létezése, a prímszámok elemi tulajdoságai, a Diophatoszi-egyeletek éháy speciális esete és még külöféle egyebek Egész számok oszthatósága Legye a pozitív egész számok (vagy természetes számok) halmazáak jelölése Azt modjuk, hogy a osztható a b számmal vagy, ekvivales módo, hogy b osztja a -t, ha létezik, olya c, hogy a = b c Ezt ba vagy ab M képletekkel jelöljük, és azt modjuk, hogy b az a szám osztója, vagy téyezője Hasolóa modhatjuk azt is, hogy az a szám a b többszöröse és ebbe az esetbe a következő jelölést haszáljuk: a = M b Ez a defiíció a em 0 egész számokra is alkalmazható, de a következőkbe mi a pozitív egész számokra szorítkozuk Most a következő elemi oszthatósági feltételekre emlékeztetük: ) Egy a szám osztható -vel, ha az utolsó számjegye páros (azaz osztható -vel); ) Egy a szám osztható 5-tel, ha az utolsó számjegye osztható 5-tel (azaz 0 vagy 5); 3) Egy a szám osztható 3-mal, ha a számjegyeiek az összege osztható 3-mal; 4) Egy a szám osztható 9-cel, ha a számjegyeiek összege 9; 5) Egy a osztható 0 -el, ha darab 0-ra végződik Eek a fejezetek az utolsó részéek kivételével, mide természetes szám a tízes számredszerbeli alakjába lesz feltütetve Mutassuk meg, hogy két páratla vagy két páros szám összege (külöbsége) midig egy páros szám Megoldás Legye m és a két páratla természetes szám, ekkor, m = p+, p és = r +, r Ekkor a+ b = ( p+ r + ) és a b = ( p r), amik egyarát páros számok Az az eset, amikor m és egyarát páros, hasoló Gyakorlatok () Mutassuk meg, hogy mide egész szám eseté ( + ) osztható -vel! 3 Mutassuk meg, hogy mide egész szám eseté ( + )( + ) osztható 3-mal! 4 Keressük meg x értékét úgy, hogy x 5 osztható 3-mal (illetve 9 eseté is keressük meg) 5 Mutassuk meg, hogy két egymást követő köbszám külöbsége soha em osztható -vel! 3 3 Megoldás Azt kapjuk, hogy ( + ) = 3 ( + ) + és mivel + ( ) páros, az -es gyakorlat szerit azt kapjuk, hogy két egymást követő köbszám külöbsége midig páratla Keressük meg 7 utolsó számjegyét! Megoldás Jelöljük ld( u) -val az u szám utolsó jegyét! (ld a last digit agol kifejezés rövidítésekét, jeletése: utolsó számjegy) Ekkor 4 ld (7 ) = Mivel 003 = , azt kapjuk, hogy ld (7 ) = 7 ; ld (7 ) = 9 ; 003 ld (7 ) = 3 7 Mutassuk meg, hogy N = osztható 5-tel! 3 ld (7 ) = 3 ;

2 998 Megoldás utolsó jegye midig 6; utolsó jegye megegyezik 7 utolsó 000 jegyével, ami 3 (mivel 999 = ); utolsó jegye megegyezik 8 utolsó jegyével, ami 6 (mivel 000 osztható 4-gyel) Így, N utolsó számjegye a következő összeg utolsó számjegye lesz, = 5, ami 5, ezért N osztható 5-tel 8 Mutassuk meg, hogy N = osztható 0-zel! Mutassuk meg, hogy a = osztható 7-tel bármely eseté 0 Mutassuk meg, hogy a = osztható 3-mal bármely eseté Bizoyítsuk be a 3 mal (vagy 9-cel) való oszthatóság feltételét! Legagyobb közös osztó és legkisebb közös többszörös Egy p > természetes számot prímszámak hívuk, ha csak osztója va: és ömaga Ellekező esetbe összetett számak hívjuk Mide természetes szám egyedi módo kifejezhető a prím osztóiak szorzatakét Két a és b természetes szám eseté a d természetes számot hívjuk a legagyobb közös osztóak, ha ) d a és d b; ) ha c a és c b akkor c d a és b legagyobb közös osztóját mide esetbe egyértelműe meghatározhatjuk és lko( ab, ) vagy egyszerűe ( ab, ) jelöléssel jelöljük, (hasoló módo bevezethető a legkisebb közös többszörös (továbbiakba lkkt(a,b)) fogalma, legye ez az olvasó dolga): Példa lko(4,90) = 6 például, mivel 3 4 = 3 és 90 = 3 5 Két a és b természetes számot, amikre lko( ab, ) =, relatív prímszámokak evezzük Megjegyzés Ha lko( ab, ) = akkor ab akkor és csakis igaz, ha a és b Példa Legye = 360, a = 4 és b = 90 Ekkor a és b (lásd az előző példát), de em osztható a b -vel, mivel lko( ab, ) = 6 Gyakorlatok () Adott a x természetes szám, keressük meg az x számjegy értékét úgy, hogy a megadott számak osztója legye az: a) 5; b) 6; c) Keressük meg az olya összes x3y alakú számot, ami osztható 5-tel! 3 Keressük meg a legagyobb és legkisebb olya 69x7y alakú számot, amik oszthatóak 8-cal! 4 Keressük meg x és y értékét úgy, hogy 45 osztója legye az 4xy számak! 5 Mutassuk meg, hogy a = osztható 56-tal! 6 Mutassuk meg, hogy az > eseté! a = alakú számok oszthatóak 7-tel mide 7 Mutassuk meg, hogy bármely szám eseté az a = szám osztható 8-cal! 8 Mutassuk meg, hogy 30 osztója az 5 - kifejezések bármely pozitív szám eseté

3 + + 9 Mutassuk meg, hogy az a = szám osztható 980-cal bármely eseté! 0 Legye ab, Mutassuk meg, hogy ha 3a+ 5bM 7 akkor, 4 a+ bm7 Fordítva is igaz? Mutassuk meg, hogy 5x + 7yM 3 akkor és csakis akkor igaz, ha x + 3yM 3 ( xy, ) Mutassuk meg, hogy 5a+ 8bM7 akkor és csakis akkor igaz, ha 4a+ 3bM7 ( ab, ) 3 Mutassuk meg, hogy 3a+ 4bM3 akkor és csakis akkor igaz, ha a+ 7bM 3 ( ab, ) 4 Mutassuk meg, hogy a következő számpárok bármely a) 6+ 5 és 7+ 6; b) 0+ 3 és 5+ 4; c ) és eseté relatív prímek: Egy a összetett szám osztóiak a száma, amiek a prím osztói p, p,, p azα, α,, α kitevőkkel redre, azaz a p α = p K p () a következőképpe adható meg: τ( a) = ( α + )( α + )( α + ) () 3 Példa Az a = szám az a = szorzat formájába írható fel, így az osztóiak a száma: (+ ) ( + ) (+ ) (3 + ) = 48 5 Keressük meg az összes olya kétjegyű számot, amiek potosa 3 osztója va! Megoldás A ()-es képletet haszálva arra jutuk, hogy = és α =, azaz a p formájú számok, ahol p egy prímszám A p = 5 és p = 7 eseté kapuk kétjegyű számokat Így, a keresett számok a 5 és 49 Gyakorlatok (3) 6 Keressük meg az összes olya természetes számot, amiek potosa 4 osztója va, és az osztóiak a szorzata 5! 7 Keressük meg az összes olya égyjegyű számot, amiek potosa 5 osztója va! 8 Keressük meg azt a természetes számot, amiek potosa 6 osztója va, továbbá az osztóiak a szorzata a) 95; b) Keressük meg az ab, 7 < ab 85 számokat úgy, hogy potosa 4 osztójuk legye! 0 Keressük meg az összes olya 0-zel osztható számot, amiek potosa 6 osztója va! Keressük meg a legkisebb olya természetes számot, amiek potosa 4 osztója va!

4 Mutassuk meg, hogy em létezik olya 35-tel osztható háromjegyű természetes szám, amiek potosa 9 osztója va a b 3 Keressük meg a legkisebb és legagyobb olya 3 5 alakú számot, amiek potosa osztója va 4 Keressük meg az x, yz, prímszámokat úgy, hogy az potosa 44 osztója legye x y z = 9 3 számak c 5 Keressük meg az olya 3 a b = 5 7 alakú számokat, amelyekre a 7 számak 36-tal több osztója va, és a 49 számak -vel több osztója va, mit az számak Két vagy több természetes szám legagyobb közös osztóját vagy legkisebb közös többszörösét azoba a számok szorzótéyezőkre botása élkül is meg lehet határozi, az úgy evezett Euklideszi-algoritmussal Legye ab, a két szám úgy, hogy, b 0 és b / a Először elosztjuk az a számot a b számmal és így megkapjuk a háyadost és az r maradékot, azaz q a = b q + r, 0 r < b Ezutá lecseréljük az a számot b-re, b-t pedig r -re, és megismételjük az előbbi műveletet: b = r q + r,0 r < r r = r q + r 3 3 M Amikor elérjük az r + = 0 -t, akkor az előző maradék, azaz r a keresett legagyobb közös osztó, azaz lko( ab, ) = r Példa Keressük meg lko(93,5) értékét! Megoldás Azt kapjuk, hogy 93 = = = = = és ezért l ko(93, 5) = 3 Megjegyzés Egyszerű megláti, hogy 93 = 3 3 és 5= 3 7, ami ugyaazt az eredméyt adja 6 Keressük meg az ab, számokat úgy, hogy a + b = 089 és l ko( ab, ) = Megoldás Azt kapjuk, hogy a = m, b = és lko( ab, ) = Mivel a+ b = 089( = 9), azt kapjuk, hogy m + = 9, ami alapjá a következő relatív prím számpárokat kapjuk: ( m, ) {(,8), (,7), (4,5), (5,4), (7,), (8,)} A keresett számok: (,986),(4,847),(484,605),(847,4),(968,) 7 Keressük két külöböző ab>, számot úgy, hogy lkkt( ab, ) = 667 Megoldás Mivel 667 = 3 9, ezért a két szám a következő lehet: Gyakorlatok (4) a) 3 és 9; b) 3 és 667; c) 9 és 667

5 8 Keressük meg azokat az ab, számokat, amik kielégítik a következő feltételeket: a b = 600 és l kkt( ab, ) = 4 lko( ab, ) 9 Keressük meg az ab, számokat úgy, hogy a + b = 08 és lkkt( ab, ) = Keressük meg az ab, számokat úgy, hogy 3 a = 7 és lkkt( ab, ) = Keressük meg az ab, számokat úgy, hogy lko( ab, ) = 4 és a b = Keressük meg az ab,, a< bszámokat úgy, hogy lkkt( ab, ) lko( ab, ) = 34 Ezt a részt két gyakorlatiasabb feladattal zárjuk, amik a legkisebb közös többszörös és/vagy legagyobb közös osztó segítségével oldhatóak meg 33 Ha egy iskola diákjait -es, 3-as, 4-es, 5-ös, 6-os sorokba redezzük, akkor mide alkalommal egy diák marad ki a sorokból, de ha 7-es sorokba redezzük el a diákokat, akkor mide sor teljes és egy diák sem marad ki Keressük meg az iskolába tauló diákok számáak legkisebb lehetséges számát! Megoldás Mivel lkkt(,3,4,5,6) = 60, ezért a k szám miimális értékét úgy kell megkeresük, hogy A keresett érték a k = 5 (60 k + ) M 7 és így az iskoláak 30 diákja va 34 Egy busz állomásról 4 busz idul 4 külöböző iráyba redre 5, 8, és 8 percekét, 6 és óra között Tudva, hogy először 7:00-kor idul egyszerre mid a égy busz, keressük meg azokat az időpotokat még a ap folyamá, amikor midegyik busz egyszerre idul Megoldás Mivel lkkt(5,8,,8) = 360 és 360 perc = 6 óra, ezért azt kapjuk, hogy a buszok a következő időpotokba idulak mid egyszerre: 7:00; 3:00 és 9:00 Gyakorlatok (5) 35 Ha elosztjuk az a számot 4-gyel, 36-tal, 30-cal és 75-tel, akkor a maradék mide esetbe 5 lesz Keressük meg azt az 0000 a < számot, ami osztható -gyel! 36 Ha egy számot 9-cel, -vel és 5-cel osztuk, akkor az osztási maradék redre 6, 9 és lesz Keressük meg a maradék értékét, ha az számot 80-cal osztjuk! 37 Keressük meg a legkisebb és legagyobb olya háromjegyű számot, hogy 9-cel, 0-zel és 5-tel törtéő osztás eseté is 7 maradékot ad! 38 Keressük meg az összes olya 7-tel osztható háromjegyű számot, hogy -vel, 3-mal, 4-gyel, 5-tel és 6-tal törtéő osztás eseté ugyaayi maradékot ad! 3 Prímszámok A prímszámokkal és összetett számokkal kapcsolatos feladatok számottevőe változatosak A következőkbe bemutatuk éháy példát 3 Keressük meg az összes olya p prímszámot, amire p + egy égyzetszám

6 Megoldás Ha p+ = akkor p = = ( )( + ), ami összetett szám bármely > eseté Az = esetbe azt kapjuk, hogy p = 3, ami egyetle létező kért prímszám, ami a keresett tulajdoságokkal redelkezik 3 Keressük két a, b prímszámot úgy, hogy a + b = 883 Megoldás A kivételével mide prímszám páratla Mivel a+ b páratla ezért a = vagy b = ami azt adja, hogy b = 88 vagy a = 88, ami egy prímszám (elleőrizzük is!) 33 Mutassuk meg, hogy a + és + számok relatív prímek mide emegatív természetes szám eseté! Megoldás A következőt haszáljuk fel: Lemma Két a és b szám akkor és csakis akkor relatív prím, ha létezek olya p, q egész számok, hogy pa + qb = Így a következő jelölést haszálva: a = +, b = + azt kapjuk, hogy úgy, hogy pa + qb = Ezért + és + relatív prímszámok p = +, q = 4 34 Keressük meg az összes olya prímszámot, amire az + 4 és + 8 számok is prímszámok Megoldás Az + 4 és + 8 számok prímszámok, ha páratla és > (az em prímszám) Legye = k +, k A feladatba lévő három szám ekkor * k +, k + 5, k + 9, k (3) Vegyük észre, hogy k = eseté azt a megoldást kapjuk, hogy 3, 7, Megpróbáljuk leelleőrizi, hogy vajo ez adja-e az egyetle megoldást Ezért megpróbáljuk megmutati, hogy az összes többi értékre, amit a k szám felvehet, a feti listá (3) lévő számok közül legalább az egyik em prímszám lesz Kihaszálhatjuk azt a téyt is, hogy a feti megoldásba a legkisebb szám a 3 A 3-at is figyelembe véve, bármely k szám felírható a következő alakok egyikébe: 3 p, 3p+, 3p+, ( p ) mivel 0, vagy maradékot adhat k 3-mal osztva Ha k = 3p+, akkor k + = 3(p+ ) em prímszám (kivétel a p = 0 esetet, amikor k =, ami a már megtalált megoldást adja meg) Ha k = 3p+, akkor k + 5 = 3(p+ 3), ami em prímszám, p Ha k = 3p, akkor k + 9 = 3(p+ 3), ami em prímszám, p Ezért egyedül k = eseté, azaz = 3 eseté lesz midhárom megadott szám egyszerre prímszám Gyakorlatok (6) 35 Mutassuk meg, hogy bármely > 3 természetes szám felírható prímszámok összegekét Végezzük el a felírást = 004 esetére 36 Keressük meg az összes olya prímszámot, ami egyarát felírható két prímszám összegekét és külöbségekét is! 37 Három egymást követő prímszám összege +, Keressük meg ezeket a számokat, ha tudjuk, hogy va köztük két egymást követő szám!

7 38 Keressük meg az abc,, prímszámokat úgy, hogy azok kielégítsék az a+ b- c = 530 és a-b = 966feltételeket! 39 Keressük meg az abc,, prímszámokat úgy, hogy azok kielégítsék az a+ b = 7 és a+ b + c = 994 feltételeket! 30 Keressük meg az összes olya abc,, prímszámot, hogy a+ 0b+ c = 8 3 Keressük meg az összes olya abc,, prímszámot, hogy 3a+ 7b+ 9c = 54 3 Keressük meg az ab, prímszámokat úgy, hogy összegük 555 aba, aab és baa is prímszámok és az 33 Keressük meg a p prímszámot úgy, hogy p+, 3p+, 4p+ 3 és 6p + egyarát prímszámok! 34 Keressük meg az összes prímszámot úgy, hogy +, + 6, + 8 és + 4 szité prímek! 35 Keressük meg az összes olya pozitív prímszámot, amire +, + 3, + 7, + 9 és + 5 egyarát prímszámok 36 Határozzuk meg a p számot úgy, hogy a prímek p p,, p 4 + +, p + 0 számok mid 37 Határozzuk meg az p, számokat úgy, hogy az számok mid prímek p, +, +, + p+ p+ 38 Határozzuk meg az p, számokat úgy, hogy a számok mid prímszámok p p p p p , +, +, +, Határozzuk meg az p, számokat úgy, hogy p, p+ 3, p+ 3, p+ 3, mid prímszámok 3 p Határozzuk meg az összes olya p prímszámot, hogy 4p + egy égyzetszám 3 Határozzuk meg az összes olya p prímszámot, hogy 7p + egy égyzetszám 3 Mutassuk meg, hogy a következő számok összetett számok! 3, 343, 34543, * 33 Mutassuk meg, hogy az a = 0 + 6, szám em egy prímszám Határozzuk meg az a = 5 5 szám jegyeiek a számát! Prímszám-e ez a szám? A + szám prímszám-e? 36 Mutassuk meg, hogy az a = 6 + szám két -él agyobb relatív prímszám szorzata!

8 37 Létezik-e olya természetes szám, hogy az prímszám? 4 3 a = szám egy 38 Bizoyítsuk be az lemmát! 4 Számok más számredszerekbe törtéő megjeleítései Az előző részekbe mide számot a tízes számredszerbeli alakjukba haszáltuk Létezek más számredszerbeli megjeleítések is, amik külöböző okok miatt fotosak: például a -es illetve 6-os számredszerek az iformatikába fotos szerepe stb A kettes számredszer két számjegyet haszál, a 0-t és -et, a hármas számredszerbeli megjeleítés 3 számjegyet haszál: 0-t, -et és -őt és így tovább Hogy jelöljük, hogy az adott N szám egy b alapú számredszerbe va megjeleítve, azt írjuk, hogy N b = 0 eseté elhagyhatjuk a jelölést: ( b) 4 Mutassuk meg, hogy () + (3) + (4) + (5) + (6) =33(8) Megoldás Midegyik számot átalakítjuk a tízes számredszerbeli alakjába: = ; = 3 + = 4; = = ; () (3) (4) = = 3 (5) ; = = 4 3 (6) ; = = 3 33(8) , és leelleőrizzük az egyelőséget Valóba, azt kapjuk, hogy = Határozzuk meg az x számjegy értékét, ha x( x + ) (7) = ( x + ) x (4) Megoldás Igazak kell leie, hogy x + 3 és x Mivel xx ( + ) (7) = 7x+ x+ = 8x+ és ( x + ) x = 4( x + ) + x, így azt kapjuk x = Gyakorlatok (7) 43 Határozzuk meg az x és y számokat úgy, hogy ( x) + 36( y ) = Határozzuk meg az x és y számokat úgy, hogy 3( x) + 3( y) = 3 45 Háy jegyű a p szám a kettes számredszerbe, ha p = (a tízes számredszerbe)? 46 A kettes számredszerbeli alakjuk felírása élkül határozzuk meg, háy jegyűek az 34 és 567 számok a kettes számredszerbe! 47 Keressük meg a köbszámokat az a = 3 (4), b = 35(6), és c = 7(8) számok közt! 5 Kevert feladatok

9 5 Mutassuk meg, hogy az 444 {{ szám felírható két egymást követő pozitív egész szám szorzatakét szer szer 5 Keressük meg az összes olya háromjegyű abc számot, hogy abc = 8abc 53 Mutassuk meg, hogy abab cd = cdcd ab 54 Mutassuk meg, hogy egyetle + eseté sem leszek az a = 5 + és + b = 5 + számok égyzetszámok 55 Prímszám-e az 007 = + szám? 56 Mutassuk meg, hogy 7 4 em égyzetszám egyetle szám eseté sem! 57 Mutassuk meg, hogy hét egymást követő természetes szám égyzetéek összege osztható 7-tel 58 Határozzuk meg az a, b, c, d értékét úgy, hogy abcd + abc + ab + a = Határozzuk meg az a, b, c, d értékét úgy, hogy abcd + bcd + cd + d = 50 Határozzuk meg az a és b em 0 számjegyeket úgy, hogy aa a0a = bbbb 5 Határozzuk meg az a, b, c számjegyeket úgy, hogy ac b= abc 5 Határozzuk meg az a, b, c, d számjegyeket úgy, hogy abcd = cd bcd 53 Határozzuk meg az a, b, c számjegyeket és az számot úgy, hogy abc abc = cba 6 Megoldások, útmutatók, válaszok 6 Gyakorlatok () ld(983 ) = ld(3 ) = 9, mivel 986 (modulo 4), ld (984 ) ld(4 ) 6 a = = és 986 ld (985 ) = 5 Így ld( N ) = 0 és ezért NM0 5 3 (5 3 + ) = ( + ) + ( + ) = = = 8 7, ezért azt kapjuk, hogy am7 Mivel 0 a = (7 9) (3 7) 3 = = = + = M 7 3 ( ) Legye N = aa- aa a megadott szám Azt kapjuk, hogy

10 N = a 0 + a 0 + K + a 0 + a = K 9 = a(9 + ) + a (9 + ) + + a (9 + ) + a = = M + a + a + K + a + a Ezért NM3, (redre 9-re is) akkor és csakis akkor, ha a számjegyeiek az összege osztható 3-mal, illetve redre 9-cel 6 Gyakorlatok () a) x {0,5} ; b) x {0,6} ; c) x = 6 Mivel 5 = 3 5 és lko(3, 5) =, 5 x3y akkor és csakis akkor ha osztható 3-mal és 5-tel is Azt kapjuk, hogy y = 0 és x {, 4,7} ; y = 5 és x {,5,8} 3 ( xy, ) {(0,4), (,), (4,0), (5,8), (7,6),(9,4)} 4 ( xy, ) {(5,0), (0,5), (9,5)} 5 Mivel 56 = 4 39 és lko(4,39) =, ezért elegedő bebizoyítai, hogy N M4 és NM39 Csakugya, így következik, hogy N = ( ) + 3 ( ) ( ) = 39 A, és 984 N = (3+ 3) + 3(3+ 3) (3+ 3) = B 6 és 7 Az 7-hez hasolóa 8 a 5 4 = = ( ) = ( )( + ) = ( -) ( ) ( ) Az és 3 alapjá tudjuk, hogy ( ) ( ) M Mivel 30 = 6 5 és lko(5,6) = ezért azt kell bizoyítauk, hogy am5 Bármely természetes szám felírható a következő alakok egyikébe: {5 k, 5k +, 5k +, 5k + 3, 5k + 4}, k N Ha {5 k, 5k +, 5k + 4}, akkor yilvávalóa am5 Ha = 5k +, akkor + = 5 k + 0 k + 4+ = M 5, míg ha = 5k + 3, akkor + = 5 k + 30 k + 9+ = M 5 9 Az 7-eshez hasolóa 0 Ez a következőből következik: (3a+ 5 b) + 7 (4 a+ b) = 7( a+ b) Visszafelé is yilvávalóa igaz - 3 A 0-hez hasolóa 4 a) Legye d = lko(6+ 5,7+ 6), ami azt jeleti, hogy d és d Ekkor d 6 (7+ 6) - 7 (6+ 5) =, azaz, d = 63 Gyakorlatok (3)

11 3 6 Két esetük lehet, vagy = d d ( d < d ) vagy = d, ahol d, d,d prímszámok A második esetbe az osztók d, d, d 3 de a d 6 = 5 egyeletek icse egész gyöke Így az marad, hogy = dd és a d d dd = 5 kifejezésből azt kapjuk, hogy d = 3 és d = 5 Ezért =5 a keresett szám 7 A számak a következő alakúak kell leie = d 4, d egy prímszám Ezért csak 4 d = 7 eseté lesz egy égyjegyű szám és ekkor = 7 = 40 8 a) = 45 ; b) = 3 9 ab 3 = p, p egy prímszám, vagy ab m ab {74, 77, 8, 85} =, m és prímszám Azt kapjuk, hogy a b 0 Mivel 0 = 5 és 6 = 3, ezért azt kapjuk, hogy = 5 ahol ( a+ )( b+ ) = 6 Ha a =, b =, = 50 ; ha a =, b =, akkor = 0 m p 4 = 3 7 és ie = a b c ahol ( m+ )( + )( p+ ) = 3 7 A legkisebb 6 számot m =, =, p = 6, a = 5, b = 3, c = eseté kapjuk meg, azaz 3 5 = 880 m Legye abc = 7 5 Az osztóiak a száma ( + )( m+ ) = = 3 és m + = 3 Így a legkisebb lehetséges szám a 7 5 = 5 lesz, ami égyjegyű 3 A legkisebb szám a 675 és a legagyobb az 5 (ha elfogadjuk, hogy az a és b szám lehet 0 is) 4 Tudjuk, hogy ( x + )( y + )( z+ ) = 44 Mivel x, y, z prímszámok, ezért a következő szorzatra botást haszáljuk: 44 = ami megadja a megoldásokat: (3,5,5), (5,3,5), (5,5,3) ; } újraíri! 64 Gyakorlatok (4) lko( ab, ) lkkt( ab, ) = a b 4 lko( ab, ) = 600 lko( ab, ) = 0 8 [ ] Így, a = 0, b= 80 vagy a = 80, b= 0 a megoldások 9 3 és a= 77, b= 33 3 ( ab, ) {(4,4), (8,), (,8),(4,4)} 3 Mivel lko( ab, ) a és a lkkt( a, b), ezért következik, hogy lko( ab, ) lkkt( ab, ) ahoa lko( ab, ) (lkkt( ab, ) lko( ab, )), ami szerit 34 lko( ab, ) Alkalmazzuk a következő jelölést d = lko( a, b) Ekkor d {,,7,34} és a megoldások: ( ab, ) {(,35),(5,7), (,36), (4,8), (7,5), (34,68)}

12 65 Gyakorlatok (5) 35 l kkt(4,36,30,75) = 800, így x= 800k+ 5, x Azt kapjuk, hogy x = 705 = + Így 9 ( 3) + és 5 ( + 3) Ezért 80 ( 3) + 3= 80k 36 lkkt(9,,5 = 80), = 9 c + 6; = c + 9 és 5 c3 ( 3) * k = 80k - 3 = 80( k -) + 77 A maradék lkkt(9,0,5) = 90 = 90k + 7 ; {87,997} +, +, azaz, 38 A maradék 0 vagy lehet Ha r = 0 = lkkt(,3,4,5,6,7) k, k {0, 40,630, 840} Ha r = lkkt(,3,4,5,6,7) = 30 és a legkisebb szám a = 30 A megoldások: k, k, azaz, {30, 5, 7, 93} 66 Gyakorlatok (6) 35 Ha = k, akkor = , míg = k + eseté azt kapjuk, hogy = k szer k szor 36 Legye p egy prímszám, p >, így p egy páratla szám Ha q + r = p és q r = p, akkor a q, r számok egyike és a q, r számok egyikéek párosak kell leie, azaz, p = q + = q, ahol q és q prímszámok Ezért p, p és p + mid prímszámok, így p = 5 az egyetle megoldás (bizoyítsuk be!) 37 + = ( + ) M, így a prímszámok egyike páros, azaz egyelő -vel, és így a többi páratla, és így em egymást követő számok Hogy legye két egymást követő prímszám, a 3-ak bee kell leie a halmazba, és a harmadik szám az + 5, ami prímszám = 3 eseté A számok, 3 és 7 38 a = 49, b = 83, c = 39 a =, b = 69, c = 73; a = 69, b =, c = a =, b =, c = és 53 3 a =, b = 3 33 p = 5 34 = 5 35 = 4 36 p = 3 eseté a következő megoldást kapjuk: 3,, 3, 9 Bebizoyítjuk, hogy ez az egyetle megoldás Bármely p természetes szám felírható a következő alakok egyikébe:

13 3 k, 3k +, 3k +, k Ha p = 3k és k >, p egy összetett szám ( p = eseté kapjuk a feti megoldást); Ha p = 3k +, akkor p + = 3(3k + k + ), ami egy összetett szám k ; Ha p = 3k +, akkor p + 0 = 3(3k + 4k + 8), ami egy összetett szám k p p+ p+ 37 Az prímszámak páratlaak kell leie Mivel a,, számok között midig találuk legalább egy M 3+ alakú számot, és legalább egy M 3+ alakú számot (bizoyítsuk be!), ezért a megadott sorozatba akkor és csakis akkor lehetek prímszámok, ha = 3k (és k = ), ellekező esetbe legalább az egyik szám összetett szám lesz Ezért = 3 és a sorozat: p { p+ } { p+ } 3, 3+, 3+, 3+ A következő eseteket vizsgáljuk: p {3 m, 3m +, 3m + m } ) p = 3m eseté azt kapjuk, hogy p 3 m m = ( ) = (7+ ) = M 7+ p+ p ( M7 ) M7 = = + = + p+ = M 7+ 4 p+ és ezért a 3+ = M 7 szám összetett szám m eseté (az m = 0 esetbe p 3 + = 4 egy összetett szám); p+ 3m+ p+ 3m+ ) p = 3m+ eseté azt kapjuk, hogy 3+ = 3+ = 3+ = 3+ = M 7, ami összetett szám m eseté Az m = 0 esetbe egy prímszámokból álló sorozatot kapuk: 3, 5, 7 és ; p 3) p = 3m+ eseté azt kapjuk, hogy 3 + =M 7, egy összetett szám mide m eseté Az m = 0 esetbe p =, és egy prímszámokból álló sorozatot kapuk {3,7,,9} Ezért a feladatuk megoldása ( p, ) {(3,),(3,)} 38 A 53-hoz hasolóa, azt kapjuk, hogy p = 3 és ekkor = Mivel a 3, 3, 3, 3 számok páratlaok, ezért a p számak párosak kell leie, azaz p = Az egymást követő 3, 3, 3, 3 hatváyok utolsó jegyei 3, 9, 7, leszek * valamilye sorredbe bármely eseté Így az egyik hatváy utolsó számjegye 3 lesz és így eek a hatváyak és -ek az összege 5-re fog végződi, azaz osztható lesz 5-tel Így az = 0 vagy = eseteket kaphatjuk, redre a, 3, 5,, 9 és, 5,, 9, 83 megoldásokkal 30 k 4p+ = k p =, k = l +, l és ie 4 p {,5,7} ll ( + ) p =, l Azt kapjuk, hogy 6 3 7p+ = k 7 p = ( k )( k + ) stb A válasz: p = 9 3 3=, 343=, K 33 a = és így a számjegyeiek összege 9, így am9 szer

14 ( ) + { a = 5 = 5 5 = = jegye va Mivel + szer + szer a számjegyeiek összege ( + ) M3, ezért a osztható 3-mal is 35 Vegyük észre, hogy 004 = és ie = ( ) + = ( + )( + ) Így a szám összetett szám a = + = 4 + = (4 + )( ) = 5k, ahol k = K = (5 ) (5 ) + K + (5 ) (5 ) + = M = M 5+, ami relatív prímszám az 5-höz képest 3 szer 37 a = ( + + ) + ( + + ) = ( + + )( + ) = ( + ) ( + ) ami egy * összetett szám, 67 Gyakorlatok (7) 43 x = 5, y = 7 44 x = 7, y = 4 vagy x = 4, y = p = = = { (), így p-ek 004 számjegye va a kettes számredszerbeli alakjába 004 szer < 34 < ; < 567 < Így, 34-ek jegye va és 567-ek 0 jegye va a kettes számredszerbe a = 7 = 3, b = 5 = 5 68 Kevert feladatok 5 a = (+ 0 + K0 ) (+ 0 + K+ 0 ) = = = (+ 0 )= A 0 és 0 + számok oszthatók 3-mal, mivel 0 = = 000 { 3 szer és Továbbá, = = szer 5 abc = 8abc bc = 4 a(bc 5) Megoldások: 8; abab = ab 0

15 54 a = 5000 { és b = 000 { Az a és b számok egyarát oszthatóak 3-mal, de 9-cel szer szer em, így em égyzetszámok 55 Mivel 007 = 9 3, ezért egy összetett szám 56 Bármely égyzetszám felírható a következő alakok egyikébe (bizoyítsuk is be!) Ezutá látjuk, hogy a formájú (ha páratla) 8 k, 8k +, 8k szám 8k + 5 (ha páros) vagy 8k (7 k) + (7k + ) + (7k + ) + (7k + 3) + (7k + 4) + (7k + 5) + (7k + 6) = = M = M7+ = M a =, b = 4; a = 3, b = 9; a = b = a ac b= abc c = 0a (4) b ami azt mutatja, hogy a (5) 6 Az em lehet, hogy c = mivel akkor a (4)-es állításból az következe, hogy 00 = a(0b 9) és így a = 4 (mivel 0 b 9 páratla) és ie 0b 9 = 9 ami lehetetle Ezért c és a (4)-es alapjá azt kapjuk, hogy a 0a 8 (6) b Ha a b {7,8} eseteket megvizsgáljuk, akkor a (6)-osból azt kapjuk, hogy a =, amire a (4)- es em igaz A b = 5 esetbe a (4)-es állításból az következik, hogy a {4,8}, amik em elégítik ki a (6)-ot Ezért a b = eset maradt Az (5)-ből az következik, hogy a páros és a (6)-ból az következik, hogy a 84, azaz a 8 Így a = 8 és akkor a (4)-es szerit azt kapjuk a végé, hogy c = 7 Így, a = 8, b = és c = 7 az egyetle megoldás 5 A 8-hez hasolóa megoldva azt kapjuk, hogy a = 3, b =, c =, d = 5 53 Az egyetle megoldás: a = 9, b = 6, c = 3 és = 97369

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok Valós számok 5 I Valós számok I Természetes, egész és racioális számok I Feladatok (8 oldal) Fogalmazz meg és bizoyíts be egy-egy oszthatósági kritériumot a -vel, -mal, 5-tel, 7-tel, 9-cel, -gyel való

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

SZÁMELMÉLET FELADATSOR

SZÁMELMÉLET FELADATSOR SZÁMELMÉLET FELADATSOR Oszthatóság 1. Az 123x4 számban milyen számjegy állhat x helyén, ha a szám osztható a) 3-mal; e) 6-tal; b) 9-cel; f) 24-gyel; c) 4-gyel; g) 36-tal; d) 8-cal; h) 72-vel? 2. Határozd

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

A Venn-Euler- diagram és a logikai szita

A Venn-Euler- diagram és a logikai szita A Ve-Euler- diagram és a logikai szita Ebbe a részbe a Ve-Euler diagramról, a logikai szitáról, és a két témakör kapcsolatáról íruk, számos jellemző, megoldott feladattal szemléltetve a leírtakat. Az ábrákak

Részletesebben

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam eszközök diákok és csoportok részére 1. félév A kiadvány KHF/4632-14/2008. engedélyszámon 2008.12.16. időponttól tankönyvi engedélyt kapott Educatio

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

25. Matematikai logika, bizonyítási módszerek

25. Matematikai logika, bizonyítási módszerek 5. Matematikai logika, bizoyítási módszerek I. Elméleti összefoglaló Logikai műveletek A matematikai logika állításokkal foglalkozik. Az állítás (vagy kijeletés) olya kijelető modat, amelyről egyértelműe

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis I. ALAPALGORITMUSOK 1. Prímszámvizsgálat Adott egy n természetes szám. Írjunk algoritmust, amely eldönti, hogy prímszám-e vagy sem! Egy számról úgy fogjuk eldönteni, hogy prímszám-e, hogy megvizsgáljuk,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

Tanárverseny 2012. Megoldásvázlatok

Tanárverseny 2012. Megoldásvázlatok Tanárverseny 0 középiskolában tanító tanároknak vázlatok Kidolgozta: Csordásné Szécsi Jolán, Csordás Péter A verseny támogatói: Typotex Kiadó Maxim Kiadó MATEGYE Alapítvány . Mennyivel egyenlő a K E D

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály 5. osztály Józsi bácsi egy farkassal, egy kecskével és egy fej káposztával egy folyóhoz érkezik, amin át szeretne kelni. Csak egy olyan csónak áll rendelkezésére, amellyel a felsoroltak közül csak egyet

Részletesebben

Skatulya-elv. Sava Grozdev

Skatulya-elv. Sava Grozdev Skatulya-elv Sava Grozdev Egy alapvető szabály, azaz elv azt állítja, hogy: ha m testet szétosztunk n csoportba és m > n, akkor legalább két test azonos csoportba fog kerülni. Ezt az elvet különböző országokban

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály)

MEGOLDÓKULCSOK. 1. feladatsor (1. osztály) MEGOLDÓKULCSOK 1. feladatsor (1. osztály) 1. feladat 8 9 10 14 15 16 10 11 12 18 19 20 1. pontdoboz: Hibátlan számszomszédok írása 1 pont, hiba 0 pont. 2. feladat 20 17 14 11 8 5 2 2. pontdoboz: Szabályfelismerésért

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK Telefon: 37-8900 Fax: 37-8901 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. 1. Egy osztási műveletben az osztandó és az osztó összege 89.

Részletesebben

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz Radiális szivattyú járóeré fő méreteie meghatározása előírt - üzemi pothoz iret hajtás eseté szóa jövő asziromotor fordlatszámo % üzemi szlip feltételezésével: 90, 55, 970, 78 /mi Midegyi fordlatszámhoz

Részletesebben

Komplex számok algebrai alakja

Komplex számok algebrai alakja Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z

Részletesebben

6. Elsőbbségi (prioritásos) sor

6. Elsőbbségi (prioritásos) sor 6. Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály 40 rózsát el lehet-e osztani 5 lány között úgy, hogy mindegyik lánynak páratlan számú rózsa jusson? Nem lehet.(1 pont) Öt darab páratlan szám összege páratlan, a 40 páros (1 pont). Hogyan tudnátok

Részletesebben

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok...

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok... Tartalomjegyzék 1. Bevezető... 1.1. A Fiboacci számok és az araymetszési álladó... 1.. Biet-formula...3 1.3. Az araymetszési álladó a geometriába...5. Probléma megfogalmazása...8 3. Iformatikai módszer...8

Részletesebben

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz MÉRÉSMETODIKAI ALAPISMERETEK a FIZIKA kétszitű érettségire felkészítő tafolyamhoz A fizika mukaközösségi foglalkozásoko és a kétszitű érettségi való vizsgáztatásra felkészítő tafolyamoko 004-009-be elhagzottak

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Első rész 1. Bevezetés Tekintsük az ak + b számtani sorozatot, ahol a > 0. Ha a és b nem relatív prímek, akkor (a,b) > 1 osztója

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0711 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Halmazműveletek feladatok

Halmazműveletek feladatok Halmazműveletek feladatok Soroljuk fel a {a; b; c} halmaz összes részhalmazát! Határozza meg az A és B halmazokat, ha tudja, hogy A B ={1;2;3;4;5}; A B ={3;5}; A\B={1}; B\A={2;4 A={-1; 0; 1; 2; 5; 7; 8}

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0813 ÉRETTSÉGI VIZSGA 008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT MATMATIKA ÉRTTSÉGI 011. május 3. KÖZÉPSZINT 1) gyszerűsítse a következő törtet, ahol b 6 b b 36 6 I. Az egyszerűsítés utáni alak: b 6 Összesen: pont ) A, 4 és 5 számjegyek mindegyikének felhasználásával

Részletesebben

MATEMATIKA VERSENY --------------------

MATEMATIKA VERSENY -------------------- Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,

Részletesebben

Ismétlő feladatsor: 10.A/I.

Ismétlő feladatsor: 10.A/I. Ismétlő feladatsor: 0.A/I. Harasztos Barnabás 205. január. Feladat Mekkora az alábbi ábrán (szürkével) jelölt síkidom összterülete? A terület egységének a négyzetrács egy négyzetének területét tekintjük!

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0511 ÉRETTSÉGI VIZSGA 005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika. évfolyam TANULÓK KÖNYVE A kiadváy KHF/438-3/008. egedélyszámo 008..0. időpottól taköyvi egedélyt kapott Educatio Kht. Kompeteciafejlesztő oktatási program kerettaterv

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

Matematika (alsó tagozat)

Matematika (alsó tagozat) Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám rendje A rend fogalma A 1-nek két darab egész kitevőjű hatványa van: 1 és 1. Az i-nek 4 van: i, i 2 = 1, i 3 = i, i 4 = 1. Innentől kezdve ismétlődik: i 5 = i, i 6 = i 2 = 1, stb. Négyesével

Részletesebben

Felkészülés a Versenyvizsgára

Felkészülés a Versenyvizsgára Felkészülés a Versenyvizsgára Feladatok 6. osztályosoknak 1. Ha egy tégla 2 kg meg egy fél tégla, akkor hány kg két tégla? 2. Elköltöttem a pénzem felét, maradt 100 Ft-om. Mennyi pénzem volt eredetileg?

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika. évfolyam TANULÓK KÖNYVE A kiadváy a Nemzeti Fejlesztési Terv Humáerőforrás-fejlesztési Operatív Program 3... közpoti program (Pedagógusok és oktatási szakértők

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak... Biztos, hogy titkos? Szabó István előadása Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...) Története Az ókortól kezdve rengeteg feltört titkosírás létezik. Monoalfabetikus

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 091 ÉRETTSÉGI VIZSGA 011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Hány olyan háromjegyű szám létezik, amelyben a számjegyek összege 5? 15 darab ilyen szám van. 5 = 5+0+0 = 4+1+0 = 3+2+0 = 3+1+1=2+2+1 A keresett számok: 500, 401, 410, 104, 140, 302, 320,203,

Részletesebben

festményeken és nem utolsó sorban az emberi test különböz arányaiban. A következ képek magukért beszélnek:

festményeken és nem utolsó sorban az emberi test különböz arányaiban. A következ képek magukért beszélnek: Az araymetszés és a Fiboacci számok mideütt Tuzso Zoltá Araymetszésrl beszélük, amikor egy meyiséget, illetve egy adott szakaszt úgy osztuk két részre, hogy a kisebbik rész úgy aráylik a agyobbikhoz, mit

Részletesebben

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról 8 Sztakó Péter 00 Eticitás Körösszakálo. Szakdolgozat. DENIA (Debrecei Néprajzi Itézet Adattára) Vermeule, Has Govers, Cora (ed.) 99 The Atropology of Ethicity. Beyod Ethic Groups ad Boudaries. Amsterdam:

Részletesebben

Valószínűség számítás

Valószínűség számítás Valószínűség számítás 1. Mennyi annak a valószínűsége, hogy szabályos játékkockával páratlan számot dobunk? 2. Egy dobozban 7 piros és 13 zöld golyó van. Ha találomra kihúzunk egyet közülük, akkor mekkora

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

MATEMATIKA I. FEKETE MÁRIA. PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu

MATEMATIKA I. FEKETE MÁRIA. PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu MATEMATIKA I. FEKETE MÁRIA PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu 007 PMMANB3 Matematika I. RÉSZLETES TANTÁRGYPROGRAM Hét Ea/Gyak./Lab.. 3 óra előadás

Részletesebben

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu Polinomgy r k Dr. Vattamány Szabolcs 1. Bevezet Ezen jegyzet célja, hogy megismertesse az olvasót az egész, a racionális, a valós és a komplex számok halmaza fölötti polinomokkal. A szokásos jelölést használjuk:

Részletesebben

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és A Valószíűségszámítás II. előadássorozat egyedik témája. A NAGY SZÁMOK TÖRVÉNYE Eze előadás témája a agy számok erős és gyege törvéye. Kissé leegyszerűsítve fogalmazva a agy számok törvéye azt modja ki,

Részletesebben

Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012.

Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012. Curie Matematika Emlékverseny 7. évfolyam I. forduló 2011/2012. A feladatokat írta: Kozma Lászlóné, Sajószentpéter Tóth Jánosné, Szolnok Lektorálta: Fodor Csaba, Szeged Név:..... Iskola:. Beküldési határidő:

Részletesebben

KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE

KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE KÉSZÍTETTE BRÓSCH ZOLTÁN 2015.08.29. Előszó,,Önmagáért szeretem a matematikát, s szeretem mindmáig, mert nem tűri a képmutatást és a homályt, azt

Részletesebben

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április Hány osztója van egy adott számnak? Hány osztója van egy adott számnak? Dr. Tóth László http://www.ttk.pte.hu/matek/ltoth előadásanyag, Pécsi Tudományegyetem, TTK 2008. április. Bevezetés Lehetséges válaszok:

Részletesebben

AZ ÉPÍTÉSZEK MATEMATIKÁJA, I

AZ ÉPÍTÉSZEK MATEMATIKÁJA, I BARABÁS BÉLA FÜLÖP OTTÍLIA AZ ÉPÍTÉSZEK MATEMATIKÁJA, I Ismertető Tartalomjegyzék Pályázati támogatás Godozó Szakmai vezető Lektor Techikai szerkesztő Copyright Barabás Béla, Fülöp Ottília, BME takoyvtar.math.bme.hu

Részletesebben

Kontra József A pedagógiai kutatások módszertana

Kontra József A pedagógiai kutatások módszertana Kotra József A pedagógiai kutatások módszertaa egyetemi jegyzet A kiadváyt A kompetecia-alapú pedagógusképzés regioális szervezeti, tartalmi és módszertai fejlesztése (TÁMOP - 4.1..-08/1/B-009-0003) című

Részletesebben

50. modul 1. melléklet 2. évfolyam tanítói fólia

50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 2. melléklet 2. évfolyam tanítói fólia 50. modul 3. melléklet 2. évfolyam tanítói fólia 50. modul 4. melléklet 2. évfolyam tanítói fólia és csoport

Részletesebben

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013 Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó Második félév Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 0 SZORZÁS ÉS OSZTÁS -VEL Mesélj a képrõl! Hány kerékpár és kerék van a képen?

Részletesebben

A Gauss elimináció ... ... ... ... M [ ]...

A Gauss elimináció ... ... ... ... M [ ]... A Guss elimiáció Tekitsük egy lieáris egyeletredszert, mely m egyeletet és ismeretlet trtlmz: A feti egyeletredszer együtthtómátri és kibővített mátri: A Guss elimiációs módszer tetszőleges lieáris egyeletredszer

Részletesebben

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása Numerius módszere. Nemlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel A Baach-ipo-ierációs módszer A Newo-módszer és válozaai Álaláosío Newo-módszer Egyelemegoldás iervallumelezéssel

Részletesebben

iíiíi Algoritmus poligonok lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógépes adatelőkészítés pattern generátor vezérléséhez)

iíiíi Algoritmus poligonok lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógépes adatelőkészítés pattern generátor vezérléséhez) iíiíi á HlftADÁSfCCHNIKAI TUOOHANfOS EGYíSBLIT (APJA KULCSÁR GÁBOR Híradástechikai Ipari Kutató Itézet Algoritmus poligook lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógép adatelőkészítés patter

Részletesebben

Sok sikert és jó tanulást kívánok! Előszó

Sok sikert és jó tanulást kívánok! Előszó Előszó A Pézügyi számítások I. a Miskolci Egyetem közgazdász appali, kiegészítő levelező és posztgraduális kurzusai oktatott pézügyi tárgyak feladatgyűjteméyéek az első darabja. Tematikája elsősorba a

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné. tankönyv. Hetedik, javított kiadás

Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné. tankönyv. Hetedik, javított kiadás Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné tankönyv 6 Hetedik, javított kiadás Mozaik Kiadó Szeged, 0 Tartalomjegyzék Oszthatóság. A természetes számok

Részletesebben

Év végi ismétlés 9. - Érettségi feladatok

Év végi ismétlés 9. - Érettségi feladatok Halmazok, logika Év végi ismétlés 9. - Érettségi feladatok 1. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először

Részletesebben

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA 1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.

Részletesebben

Δ x Δ px 2. V elektromos. nukleáris. neutron proton

Δ x Δ px 2. V elektromos. nukleáris. neutron proton Nukleáris kölcsöhatás: az atommagba számú proto, és N = számú eutro va, és stabil képződméy Mi tartja össze az atommagot? Heiseberg-féle határozatlasági reláció alapjá egy ukleo becsült kietikus eergiája

Részletesebben

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK

HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK I. Témakör: feladatok 1 Huszk@ Jenő IX.TÉMAKÖR I.TÉMAKÖR HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK Téma A halmaz fogalma, alapfogalmak, elemek száma, üres halmaz, egyenlő halmazok, ábrázolás Venn-diagrammal

Részletesebben

Nemzetközi részvény befektetési lehetõségek Közép- és Kelet-Európa új európai uniós tagállamainak szemszögébõl

Nemzetközi részvény befektetési lehetõségek Közép- és Kelet-Európa új európai uniós tagállamainak szemszögébõl Közgazdasági Szemle, LII. évf., 2005. júius (576 598. o.) BUGÁR GYÖNGYI UZSOKI MÁTÉ Nemzetközi részvéy befektetési lehetõségek Közép- és Kelet-Európa új európai uiós tagállamaiak szemszögébõl Taulmáyuk

Részletesebben

ZIPERNOWSKY MATEMATIKA KUPA

ZIPERNOWSKY MATEMATIKA KUPA ZIPERNOWSKY MATEMATIKA KUPA VERSENY 99 0 KÉSZÜLT A ZIPERNOWSKY KÁROLY MŰSZAKI SZAKKÖZÉPISKOLA FENNÁLLÁSÁNAK 00. ÉVFORDULÓJA ALKALMÁBÓL A FELADATSOROKAT ÖSSZEÁLLÍTOTTA: GOMBOCZ ERNŐ SZERKESZTETTE: KISS

Részletesebben

Matematika, 1 2. évfolyam

Matematika, 1 2. évfolyam Matematika, 1 2. évfolyam Készítette: Fülöp Mária Budapest, 2014. április 29. 1. évfolyam Az előkészítő időszakot megnyújtottuk (4-6 hét). A feladatok a tanulók tevékenységére épülnek. Az összeadás és

Részletesebben

TANÁRI KÉZIKÖNYV a MATEMATIKA

TANÁRI KÉZIKÖNYV a MATEMATIKA El sz Csahóczi Erzsébet Csatár Katalin Kovács Csongorné Morvai Éva Széplaki Györgyné Szeredi Éva TANÁRI KÉZIKÖNYV a MATEMATIKA 7. évfolyam II. kötetéhez TEX 014. június. 0:43 (1. lap/1. old.) Matematika

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

MŰSZAKI ÉS TERMÉSZETTUDOMÁNYI SZEKCIÓ

MŰSZAKI ÉS TERMÉSZETTUDOMÁNYI SZEKCIÓ MŰSZAKI ÉS TERMÉSZETTUDOMÁNYI SZEKCIÓ 127 128 Műszaki és Természettudomáyi Szekció Kiterjedéssel redelkező autoóm robotok gyülekezése Bolla Kálmá 1, Kovács Tamás 2, Fazekas Gábor 2 1 Iformatika Taszék,

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben