Prímszámok a Fibonacci sorozatban

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Prímszámok a Fibonacci sorozatban"

Átírás

1 D é e s T a m á s matematikus-kriptográfus Prímszámok a Fiboacci sorozatba A továbbiakba Fiboacci sorozato az alapsorozatot (u,,,3,5,...), Fiboacci számo az alapsorozat valamely elemét értjük. N.N.Vorobjev []-be bizoyította az u -re voatkozó alábbi tételt: () u + k uk + uuk+ (, k természetes számok) Az () összefüggésből következek az alábbi (), (3), (4) összefüggések: () u u + u u ( u u ) ( + ) ( ) ( ) u u + u u + u + u + u u + u u u ( u + u )( u u ) + u + + Példa: 4, u, u 5, u 5 (5 + )(5 ) A () levezetés szerit tehát, a Fiboacci sorozat mide (kettőél agyobb) páros idexű eleme összetett szám. ( ) (3) u u u + u u u + u ( u + u ) + + ( + ) u+ + u + uu+ u + u + + u ( ) u u Példa: 4, u 3, u 5, u (4) u u u + u u + u u u + u ( ) + ( ) Példa: 4, u, u 3, u

2 . Tétel Ha u a Fiboacci sorozat -ik eleme, akkor u k osztható u -el (k,,3,...). Bizoyítás (teljes idukció): A tétel k eseté triviális, k eseté érvéyes a () összefüggés, azaz a tétel igaz. Tegyük fel, hogy k-ig mide természetes számra igaz a tétel, azaz (5) uk c u (k>, c természetes szám) Vizsgáljuk a k+ esetet: (6) u ( k + ) k k + + c k + + u k ( u + c ) k + + Következméy A Fiboacci sorozat mide u 6k eleme osztható u 6 8-al. Példa: u 89 u u u u u u u Az. tétel általáosításakét adódik a Fiboacci sorozat összetett elemeire voatkozó szükséges és elegedő egzisztecia tétel:. Tétel Legye az idex prímfelbotása p p p k. u q akkor és csak akkor osztója u -ek, ha q p p,...,. { }, p A bizoyítás szükségessége és elegedősége egyarát az. tételből következik. Következméy: A. tétel jelöléseit haszálva kapjuk, hogy u osztható lkkt u, u,..., u ) -vel ( p p pk lkkt a legkisebb közös többszörös jelölése. Ezzel aalóg tétel található []-be a legagyobb közös osztóra.

3 3 Példa: ekkor u u3 u7 3 u6 u4 3 9 u u4 lkkt (,, 3,, 3 9, 3 4) Lásd az. táblázatot! 3. Tétel Ha u prímszám, akkor is prímszám. Bizoyítás: Ha u prímszám, akkor csak két osztója va u és u, ekkor a. tétel miatt összes osztója és, azaz prímszám. A 3. tétel megfordítása csak az alábbi megszorítással érvéyes (lásd 4. tétel). 4. Tétel Ha prímszám, akkor u vagy prímszám, vagy ics olya -él agyobb prímtéyezője, amelyik Fiboacci szám. Bizoyítás: Tegyük fel, hogy prímszám és u k i ( i ), ekkor a. tétel értelmébe i-ek többszöröse, ami elletmodás. Tehát u prímtéyezői között ics Fiboacci szám, kivéve, ha prímszám és az egyetle prímtéyezője ömaga. 5. Tétel Ha k 6 ± (k,,3,...) alakú, akkor u is az, azaz (7) 6k ± u ± mod 6 Bizoyítás (teljes idukció): k eseté u 5, u 3 tehát a tétel állítása teljesül. 5 7 Tegyük fel, hogy k-ra teljesül a tétel. Vizsgáljuk k+-re a 6(k+)+ esetet: ( ) (8) u u u + u u ( u u ) u + u u 6( k + ) + 6k k 6 6k + 7 6k + 6k 6 6k + 7 u ( u + u ) u u u u u 8 u 6k k 6 6k + 8 6k 6 6k + 6k

4 4 Az idukciós feltétel szerit u 6k ± ± mod 6, tehát a (8) levezetés eredméyekét kapott kifejezés mod 6 maradékait az alábbi táblázat foglalja össze: u6k + 8 u6k 3 + mod 6 + Most vizsgáljuk meg a 6(k+)- esetet: ( ) (9) u u u + u u ( u u ) u + u u 6( k + ) 6k k 4 6k + 5 6k + 6k 4 6k + 5 u6k + ( u4 + u5 ) u6k u4 6k + u6 u6k u4 86k + 3 u6k Az idukciós feltétel szerit u 6k ± ± mod 6, tehát a (9) levezetés eredméyekét kapott kifejezés mod 6 maradékát az alábbi táblázat foglalja össze: 8 6k+ 3 u6k + 3 mod 6 Ha az 5. tételt összevetjük a prímszámokra voatkozó [3] ba bizoyított. tétellel, mely szerit mide prímszám 6k-, vagy 6k+ alakú, akkor az alábbi 6. tételhez jutuk: 6. Tétel Ha prímszám, akkor u 6k ± alakú Ha a 6.tételt a [3] ba bizoyított. tétellel (Komplemeter Prímszita tétel) vetjük össze, akkor a következő 7.tételhez jutuk: 7. Tétel Ha prímszám és u em prím, valamit r az u prímtéyezőiek száma, akkor (0) u ( 6k i ± ) r i Figyelembe véve a feti 4. tételt adódik, hogy a (0)-be szereplő 6k i ± prímtéyezők egyike sem Fiboacci szám. Példák: 9, u 9 48(6 6+)(9 6-) , u (93 6-)(403 6-) További példák e dolgozat végé közölt. táblázatba találhatók. NYITOTT PROBLÉMA: Va-e a Fiboacci sorozatak végtele sok prímszám eleme?

5 5 Refereces [] Vorobjev, N.N.: Fiboacci Numbers Pergamo Press, New York, 96. [] Verer E. Hoggatt: Fiboacci ad Lucas Numbers Houghto Miffli Compay, Bosto, 969. [3] Dées Tamás:

6 6. Táblázat A Fiboacci sorozat -73. elemei és ezek prímfelbotása i u i u i prímfelbotása i u i u i prímfelbotása x3x x33x357 prím 3 prím x5x7xx4x6 4 3 prím prím x59369 prím 5 5 prím (6k-) prím prím (6k-) prím 7 3 prím (6k+) x43x89x99x x x5x7x6x x x46x x prím prím (6k+) prím 89 prím (6k-) x97x prím 3 33 prím (6k-) x x597x x5x x33x5x x7x47 prím x prím prím (6k+) x89x66x47454 prím x x5xx x37x3x797x x3x x9489x x99 prím x prím prím (6k+) prím x x47x x x3x7x4x x7x53x x7x47x087x07x x3x9x x33x prím prím (6k-) prím x6849x4993 prím x x67x597x357x x7x47x x37x89x8077x x89x xx3x9x7x9x x357 prím x x3x prím x prím x49x

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

SzA XIII. gyakorlat, december. 3/5.

SzA XIII. gyakorlat, december. 3/5. SzA XIII. gyakorlat, 2013. december. 3/5. Drótos Márton 3 + 2 = 1 drotos@cs.bme.hu 1. Határozzuk meg az Euklidészi algoritmussal lnko(504, 372)-t! Határozzuk meg lkkt(504, 372)-t! Hány osztója van 504-nek?

Részletesebben

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló . Számelmélet I. Feladatok 1. Háy égyzetszám osztója va a 7 5 5 7 számak?. Az pozitív egész számak potosa két pozitív osztója va, az + 1-ek pedig potosa három. Háy pozitív osztója va az + 01 számak? OKTV

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

Á ű Ü Á Ö É Á É É Á É Á ű Á Á ű Ö Ó ű Ó Ó ű Á ű ű ű ű ű ű ű ű É Ü ű ű É É É Ö Ü Ü ű Ü ű Ü É Ó Á Á Ü Ö ű Ü ű Ü Ó ű Ú Ü ű Ü Ü Ú Ü Ü ű Ö Ü Ü Ú Ö Ü ű Ü ű É ű Á ű É É Ú Á ű Á É Ü ű Ú Ó ű ű Ü É Ő ű ű ű Ú Ö

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

ü ü ű ű ü ü ü Á ű ü ü ü ű Ü

ü ü ű ű ü ü ü Á ű ü ü ü ű Ü ü ű ü ű ü ü ü ü Á ü ü ű ű ü ü ü Á ű ü ü ü ű Ü É É Á Á Á Á É Á Á Ő É É É Á É Á É Á É Á ű É É Á Á É É É Á É Á É Á É Á Á ü ű ű ü ü ü ü ü üü ü ü ü ü ü ü ű ü ü ű ü ü ü ü ű ü ü ü ű ü ü ü ü ü ü ü ü ü ü ü ű ü

Részletesebben

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

ö é é ú ö ú Ü ő ű ó ő é ó ú ó ó é é é ó ö é ó é ó é ő ő é ü é ó é ó ő ű é Ó é ü é ó é ü ó ó é ü ó é ő é

ö é é ú ö ú Ü ő ű ó ő é ó ú ó ó é é é ó ö é ó é ó é ő ő é ü é ó é ó ő ű é Ó é ü é ó é ü ó ó é ü ó é ő é Á Á ö Á É Á É ú Á Á ö é é ú ó Á é ú é ó ú ő é é ú é ü é ó ó ó ő é ó ó ó é ó é é ó ó é é ó é ü ü ü ő ó é é Ó ő é é ö ö ő é é é é é ú ő ő é é ó ü ú ő é ö é ő ö ü é ő é é ú ő é ü é ü Ú é ö ö é é ü ó ö é é

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

ű Ó Á ú ü Á É É ü ü Áú Ő Ó Ü Á

ű Ó Á ú ü Á É É ü ü Áú Ő Ó Ü Á Ö Ö ű Ó Á ú ü Á É É ü ü Áú Ő Ó Ü Á ü Á Ó Ü ű Ü Ó Ó ú Ü Ű ú ü Ó ú Ó Ü É Ü Ő Á Ó Ó É Ó ú Ó Á ü Á Ó Ü Ü Ó ú ü ü ü Ü ü Ü Ü ű Ó ű Ű Ó ú Ó Ü Á ü Ü É ű ü ű Ü ú ü ú ü ú Á Ü Ü Ö ü ü Ü ű ú ü ú É ü ú ú Ü Ü Ü ü ú

Részletesebben

ú ú ü ü ú ü Í ü ú ü ú ü ú ü ü ű ü ú ű Í ü ü ú ű ü ű ű ü ü ü ü ű ú Ú ú

ú ú ü ü ú ü Í ü ú ü ú ü ú ü ü ű ü ú ű Í ü ü ú ű ü ű ű ü ü ü ü ű ú Ú ú ú É ú ü ú ü Í ü ú Ú ú ú ü ü ú ü Í ü ú ü ú ü ú ü ü ű ü ú ű Í ü ü ú ű ü ű ű ü ü ü ü ű ú Ú ú Í ú É Í Á Á Í É Á Á Á Í Á Ó Á Á É Á Á É É ű Á É É ú É É Á Á ú Á ü Á Á Á Á Ú É ü ú ú É É ú Ú Á Á É Á É Ó Ú ú Ú Í

Részletesebben

ú ü ő ú ú ü ő

ú ü ő ú ú ü ő É É ú ü ő ú ú ü ő ú ú ú ő ő ú ü ő Ö Ö Ó Ó É É ő É É É É É É É É É ő É É É É ű ű ő ő ú ú ü ú ő ő ő ü ő ú ő É ő ő ü ű ő ő ő ü ü ő ü ő ü ő Ö ő ő ű ü ő ő ő ő ő ő ő ő ü ú ü ő ü ü ő ü ü ő ő ü ő ő ő ő ü ő ő ő

Részletesebben

Ó ö ű Ü Ó Ó Ö Ö Í Ó Ö Ú Ö Ű Ü Ö Ö ö Ü Ó Í ö Ü Í Ü Ú Ö Í Ó Ó Ó Ö Ö Á Ó Ü Ó Ó Ö Ó Ó Ó Ö Ö Í Ó Ö Ó Ó Ó É Ü ű Ó ú

Ó ö ű Ü Ó Ó Ö Ö Í Ó Ö Ú Ö Ű Ü Ö Ö ö Ü Ó Í ö Ü Í Ü Ú Ö Í Ó Ó Ó Ö Ö Á Ó Ü Ó Ó Ö Ó Ó Ó Ö Ö Í Ó Ö Ó Ó Ó É Ü ű Ó ú Á É É É Ü Á Ü Ü ű Í Ó Ü ű Ó Í Ú Ü Ó ű ú Ü ű ö Ó ö ű ű Ó Ó Ó Ő ű Ó Ö ö Ó Ö Ü Í Ü Ó Ü Á Í Ó ü Ú Ó ű ú Ó úü Ó Ú ü Í ű Í Ő Ó Ó Ó Ó Ü ú Í Í Í Ó ö ű Ü Ó Ó Ö Ö Í Ó Ö Ú Ö Ű Ü Ö Ö ö Ü Ó Í ö Ü Í Ü Ú Ö Í Ó Ó Ó Ö

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

ő ő ú ú ő ö ö ö ö ő ö ü ű ü ö ú ö ö ű ü ő ő ő ő ú ő ü ő ő ő ő ő ü ő Ö ő ö ü ő ö ő ú

ő ő ú ú ő ö ö ö ö ő ö ü ű ü ö ú ö ö ű ü ő ő ő ő ú ő ü ő ő ő ő ő ü ő Ö ő ö ü ő ö ő ú ú ú Á ö ő ő ú ú ő ö ö ö ö ő ö ü ű ü ö ú ö ö ű ü ő ő ő ő ú ő ü ő ő ő ő ő ü ő Ö ő ö ü ő ö ő ú ő ö ü ö ö ö ü ő ö ü ö ő ú ö ö Ú ő ö ö ő ö ű ő ő ű ü ü ő ő ő ő ő ő ő ő ő ü ű ű ü ő ü ü ő ö ú ű ö ö ő ü ő ü ü ő

Részletesebben

ö Ö Í ó ö ü ö ö ó ó ü ó Í ö ö ö ó Á ü ü

ö Ö Í ó ö ü ö ö ó ó ü ó Í ö ö ö ó Á ü ü Í ö ü ó ü ó ö Ö Í ó ö ü ö ö ó ó ü ó Í ö ö ö ó Á ü ü ó ö Í ó ö ó ü ó ó ó ö ö ü ü ö Ó Í Í ü ö ö ö ó ü ó ü ö Ö ö ü Ü ö ö ü ó Í ö ö ö ó Ü ö ö ö ó ó ó ó ü ó Ü ö Ü ó Á Á ö ö ö ó ó ó ó ó ó ö ó ű ó ö ö ö ö ü ú

Részletesebben

ó ö í ó í ó í í ü ü í ó ó í ó ó í í Á ö í ö ó ú í ó ó í

ó ö í ó í ó í í ü ü í ó ó í ó ó í í Á ö í ö ó ú í ó ó í Á Á É ó Á ö ú ú ö ö Í ó ö ö í Á ó Á ü ú ü ö ó ú í ó ú í ó ű í ú ó Á ó Á ü ú ó ö í ó í ó í í ü ü í ó ó í ó ó í í Á ö í ö ó ú í ó ó í ö ö í ó ó í í ü ü í ó Á ü ü ü Í ö í ü ó í ű ö ó ó ó ö í ö ó í ó ü ó í

Részletesebben

ö í Á Á Á ö É É í É Á Á Á Á Á É ő ö í ő ö ő ö í ü ő ö ő ö ő ü ö ő ö í ő ő ő ö í ő ő ú ö ű ö ő ö í

ö í Á Á Á ö É É í É Á Á Á Á Á É ő ö í ő ö ő ö í ü ő ö ő ö ő ü ö ő ö í ő ő ő ö í ő ő ú ö ű ö ő ö í ú ö ű ö ő ö í Á Ü ú Á Á Á ö É É í É É Á ö í Á Á Á ö É É í É Á Á Á Á Á É ő ö í ő ö ő ö í ü ő ö ő ö ő ü ö ő ö í ő ő ő ö í ő ő ú ö ű ö ő ö í ö í Á Á Á ö É É í É Á Á Á Á ö ö ú ö ű ö ő ö ö ő í ö í ö í ő ö ü

Részletesebben

Differenciaegyenletek aszimptotikus viselkedésének

Differenciaegyenletek aszimptotikus viselkedésének Differeciaegyeletek aszimptotikus viselkedéséek vizsgálata Mathematica segítségével Botos Zsófia Újvidéki Egyetem TTK Újvidék Szerbia E-mail: botoszsofi@yahoo.com 1. Bevezető Tekitsük az késleltetett diszkrét

Részletesebben

ö ö í í í í ö í í í í í í í í ö ú ö í í í í í ö ö ü í ö í ö í í í ü í í ö Í í ö ü ű í í í í í

ö ö í í í í ö í í í í í í í í ö ú ö í í í í í ö ö ü í ö í ö í í í ü í í ö Í í ö ü ű í í í í í Á É ö úú í ö ö í ű í ú ű Ő ű ű ű Ú ö ö í í í í ö í í í í í í í í ö ú ö í í í í í ö ö ü í ö í ö í í í ü í í ö Í í ö ü ű í í í í í í ö ö í í í ö ö ü í ö ö ü í í ö í í í í ö ű í ö í í ü í ü ü í Í ű ü í ű

Részletesebben

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add

Részletesebben

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0. Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N

Részletesebben

Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán):

Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Oszthatóság Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Azt mondjuk, hogy az a osztója b-nek (jel: a b), ha van olyan c egész, amelyre ac = b. A témakörben a betűk egész

Részletesebben

f(n) n x g(n), n x π 2 6 n, σ(n) n x

f(n) n x g(n), n x π 2 6 n, σ(n) n x Számelméleti függvéyek extremális agyságredje Dr. Tóth László 2006 Bevezetés Ha számelméleti függvéyek, l. multilikatív vagy additív függvéyek agyságredjét vizsgáljuk, akkor először általába az adott függvéy

Részletesebben

ö ö ö ö ö ő ú ü ő ö ü ő ú ő ő ő ö ő ö ü ű ö ü ő ú ő ő ő ű ű ö ő ő ü

ö ö ö ö ö ő ú ü ő ö ü ő ú ő ő ő ö ő ö ü ű ö ü ő ú ő ő ő ű ű ö ő ő ü Á Á Á Ú Ö Á Á É Á Á Á Ó É Á Ő É É Á Á Á Ö Ő Á Á Ó É Ő É ű Á Á Ü ö ú Ö Ú Ó Á Á Á Á Á Ó Á Á ö Ü ö ö ö ö ö ő ú ü ő ö ü ő ú ő ő ő ö ő ö ü ű ö ü ő ú ő ő ő ű ű ö ő ő ü ö ö ü ö ü ő ú ú ö ö ü ő ő ő ú ő ú ö ö ő

Részletesebben

ú É ú Ú ű Ú ű Ú ú Ú ú Ó ú ű ú Ü ú ú ű ű Á ű Ú Á ű ű ű ú Ú ú ú ű Ú Ő Ú

ú É ú Ú ű Ú ű Ú ú Ú ú Ó ú ű ú Ü ú ú ű ű Á ű Ú Á ű ű ű ú Ú ú ú ű Ú Ő Ú ú ű ú ú ű Ú ú ú ú ú É ű ű ú ű Á ű É ú ú ú ú É ú ú É ú ú ú É ú ú ú ú É ú Ú ű Ú ű Ú ú Ú ú Ó ú ű ú Ü ú ú ű ű Á ű Ú Á ű ű ű ú Ú ú ú ű Ú Ő Ú Üú ű Á ű É É ű ú É Á ú Ú ú É ú ú ú ú É ú ú É É ú ú ű ű ű Ú ű É ű

Részletesebben

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis

Részletesebben

ú ú ú ő ő ú ő ő ú ú ú ő ű ú ő ú ú ő ő ú ő ő É ő ő ú ú ő ú ő ő ő ű ő ő ú ú ő ő ő ő ú

ú ú ú ő ő ú ő ő ú ú ú ő ű ú ő ú ú ő ő ú ő ő É ő ő ú ú ő ú ő ő ő ű ő ő ú ú ő ő ő ő ú ú ő ű ő ú ő ő ő ú ő ő ő ű ú ú ő ő ú ő ő ő ő Ú ú ő ű ú ú ú ő ő ú ő ő ú ú ú ő ű ú ő ú ú ő ő ú ő ő É ő ő ú ú ő ú ő ő ő ű ő ő ú ú ő ő ő ő ú ú ű ő ő ő ő ő ő ű ú ő ő ú ő ú Ü ú ú ű ő ő ú ő ő ú É ő ő ú ő ő ő ő

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

é é é é í é ű ü ü é ú é í é ü ü é í ű é é é é é é é é ü é ü é ü é í é é é é í é ü é é ü ü é ü ű é é é ű ü é ü ü é ű é ü é éú é ü é ü ű é ü é éú é é é

é é é é í é ű ü ü é ú é í é ü ü é í ű é é é é é é é é ü é ü é ü é í é é é é í é ü é é ü ü é ü ű é é é ű ü é ü ü é ű é ü é éú é ü é ü ű é ü é éú é é é é Ö é ü é é é ü é í é Ó é Ö é Ú Á é í í ü é é é é ü ü é é é ü é é é ü é ü é í ü é é ü é ü í ü é ü ű é ü ú ü é Í ú ú é ü é é é é í ü é é ü é é é é é é í é ű ü ü é ú é í é ü ü é í ű é é é é é é é é ü é ü

Részletesebben

ű ű É ü ü ő Ó Ü ő ő ü É ő ő ő ő ő ü ő ő Ü ő ő Ü ü

ű ű É ü ü ő Ó Ü ő ő ü É ő ő ő ő ő ü ő ő Ü ő ő Ü ü ű ő ő ü ű ő ő ő Ő ő őű ü ő Ü ű ű É ü ü ő Ó Ü ő ő ü É ő ő ő ő ő ü ő ő Ü ő ő Ü ü ő Ú ő ő ő ő ő ő Ö ő ü ő ő Ő ő ő ő ő ő ő ő ő Ő ő ő ő ü ő ő ü Ó Ő ő ű ű ő ő ő ő Ó ü ő ű ő ő ü ü Ü Ó ő Ó ő ő ő Ő Ő ő ő Ü ő Ü

Részletesebben

ű ő ö ő ő ü ő ö ő Á ő ő ő ő ü ő ő Ó ö ü ü ő ö ű ő ő Ö ő ü űő Ö ú ő ü ú ö ő ö ü ő ü ö ő ö ő Ő ő ü ő ö ü ő ü ö ő ő ű ö ő ö ö ö ü ö ú

ű ő ö ő ő ü ő ö ő Á ő ő ő ő ü ő ő Ó ö ü ü ő ö ű ő ő Ö ő ü űő Ö ú ő ü ú ö ő ö ü ő ü ö ő ö ő Ő ő ü ő ö ü ő ü ö ő ő ű ö ő ö ö ö ü ö ú ő ö ü ő ő Ó ő ü ü ő Ü ő ő ő ő ő ö ő É ö ő ő ö ö ü ő ü ü ő ő ő ü ü ő ő ü ő ü ö ő ő ő ö ö Ö ő ő ö ő ő Ó ö ö ü ű ő ő ü ő ő ő ő ü ő ő ü ü ö ő ő ü Ó ő ő ü ú ű ő ö ő ő ü ő ö ő Á ő ő ő ő ü ő ő Ó ö ü ü ő ö ű ő

Részletesebben

ú ü ü ú

ú ü ü ú Ú Á É Á É Í Á ú ú ú ú ü ü ú ú ű Á É Í Á Í Á É Í Á Á É Í Á Ó É Ú Ú Í Á Á É É É Ö Á Á É É É Á Í Í Á Á Á É Í Á Á É Ú Í Á Á É É É Ú ú ü ú ú ű ú ú ü ú Í Í Á É Í Á Ö É Ö Ú Ű Í Á Á É É ú ü ü ü Í ű ű Ü Á É Í Á

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

ú í ü ü ö ű í í í í ü ö ö ö ö í í í ű í ö Á ö ö í í ü ö ü ü ű

ú í ü ü ö ű í í í í ü ö ö ö ö í í í ű í ö Á ö ö í í ü ö ü ü ű í ö ö ú í ü ü ö ű í í í í ü ö ö ö ö í í í ű í ö Á ö ö í í ü ö ü ü ű ö ö ö ú ü ö ö í í í ö Á ö ö ö ö ö ö ö í ö ö ö ö ö ö ú Ő ö ö ö í ú ú ö ö í ö ö í ű í ö ö ö ö Á ü ö ü ö ü ű ö ö ö í ö í ü í ű í í ö ö Á

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

É Í ó Í Í ó Íó ó ó Á ó ú ö ű ü ú Á Í ó ó

É Í ó Í Í ó Íó ó ó Á ó ú ö ű ü ú Á Í ó ó Í Í Í Í ó ó ó ú ó ő É ú ö ü ú Á Ú ő ö ó ó ó ó ő ő ó ü ő Á ö ű ü É Í ó Í Í ó Íó ó ó Á ó ú ö ű ü ú Á Í ó ó ő ó ú Á ő ü Á ő ú Í É ö Í ö Á Í Á ő ó ő ó ó Á ó ó ó ó ó Íő Á ü ö ó ó ő ó ó Í ö ó ő ú ó Í ö ő ö ó

Részletesebben

ö ö Í ü ö ü ö ű Ü ö ö ö ö ö Ö Ó ö ö Ö ö ö ü ű ö ü ö ö ű ö ü

ö ö Í ü ö ü ö ű Ü ö ö ö ö ö Ö Ó ö ö Ö ö ö ü ű ö ü ö ö ű ö ü ü ö ü ü ü ö ö ö ö ö Í ü ö ü ö ű Ü ö ö ö ö ö Ö Ó ö ö Ö ö ö ü ű ö ü ö ö ű ö ü ö Ö ö ü ü ű ü ö ö ö Ü ű Ü ű Í Í ü ú ü ö ú ö ö ö Á ö ű ö Ö ö ö Ö ö ü ö ö ü ö ü ü ö Í ű ü ü ö ö ö ö ö ö ö ű ö ö ö Ö ö ü ö ö ö ú

Részletesebben

ű Í ő ű ü ő ő ú ő ű ü

ű Í ő ű ü ő ő ú ő ű ü Ó Á É ú ű ű ő ú ő ü ő ü ő ü Ö ű ő ű ő ő ő ű ű Í ő ő ű ű ő Í Í ő Í ő ő ő ú ü ű Í ű ú Í ű Í ő Í Í Í ú ú ű ú ű Í ő ű ü ő ő ú ő ű ü ú ő ű Í ű ű ű ü ő ő ő ő ü ü ő ő Íű ő ő ű ő ü ő ű ü ü ő ő ő ü ő ü ő ő ő ú

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból. Ismétlés: Ha r, s > 0 valós, akkor rcos α + i siα) = scos β + i siβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete scos β+i

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk

Részletesebben

í ű ű ö í ö í ű í ú ű ű ű í Í í ö í Í ÍÍ ö ü ö í ű í ö ö ö ű í í ö í ö í ü ö í í í ű í ű ö ö ö í ű ö ö ű ü ö ö ö í ú ü ű ö ú í ö ö í ü ö ö í í í í í í

í ű ű ö í ö í ű í ú ű ű ű í Í í ö í Í ÍÍ ö ü ö í ű í ö ö ö ű í í ö í ö í ü ö í í í ű í ű ö ö ö í ű ö ö ű ü ö ö ö í ú ü ű ö ú í ö ö í ü ö ö í í í í í í É Á Ú Ö É É É É Ü É ú ö í ü ö ú ö í Ü ü ü ö ö Ő ú í ú ö í ü Á í ű Í í í ú ü ö í í ű í Í ű ü ű í ü ü í ű ú ö Á ö ö ú ö í ű ű ö í ö í ű í ú ű ű ű í Í í ö í Í ÍÍ ö ü ö í ű í ö ö ö ű í í ö í ö í ü ö í í í

Részletesebben

Ö í ó ű í íű ű ó ó ó ó ó ó ó ó ü ó ó Ö ó ü ó ü ó ú ú ú Ö ó ó ó í ó ü úú ü í ó ó ó í Ó Ó ó í Ö í ó ú í ú í ó ü ü ú í í ú í ü ú í

Ö í ó ű í íű ű ó ó ó ó ó ó ó ó ü ó ó Ö ó ü ó ü ó ú ú ú Ö ó ó ó í ó ü úú ü í ó ó ó í Ó Ó ó í Ö í ó ú í ú í ó ü ü ú í í ú í ü ú í Ö ü Ü Ö Ö ü ü ü ó ó ó ü í í ó í Ö í Á í Ü Ó í ó Ö í Í ü ú Ö í ó ű í íű ű ó ó ó ó ó ó ó ó ü ó ó Ö ó ü ó ü ó ú ú ú Ö ó ó ó í ó ü úú ü í ó ó ó í Ó Ó ó í Ö í ó ú í ú í ó ü ü ú í í ú í ü ú í ó ó í í ú í ü ó

Részletesebben

Véges matematika 1. feladatsor megoldások

Véges matematika 1. feladatsor megoldások Véges matematika 1 feladatsor megoldások 1 Háy olya hosszúságú kockadobás-sorozat va, melybe a csak 1-es és 2-es va; Egymástól függetleül döthetük a külöböző dobások eredméyéről, így a taultak szerit a

Részletesebben

ö ü ü ö Ő ü í ü í ü ö ö Ö ó ö ö ö ö ó ö ö ö í ü í Ő Ü ü ö í Á í ü ü ü ö ű ú ö ö ü í Ü Ő ü ü ó ó ó ó í í ó í ö ú ü ü Ö Ö ű ó í ó ó ü ú ü ü ö í ó Ő Ü ó

ö ü ü ö Ő ü í ü í ü ö ö Ö ó ö ö ö ö ó ö ö ö í ü í Ő Ü ü ö í Á í ü ü ü ö ű ú ö ö ü í Ü Ő ü ü ó ó ó ó í í ó í ö ú ü ü Ö Ö ű ó í ó ó ü ú ü ü ö í ó Ő Ü ó ö ö Á É ü Ő Ö í ü í ü í ó ó ó í í ó í ö ú ü ü ö ö ű ó í ó ó ü ú ü ü ö í ö ü ü ö Ő ü í ü í ü ö ö Ö ó ö ö ö ö ó ö ö ö í ü í Ő Ü ü ö í Á í ü ü ü ö ű ú ö ö ü í Ü Ő ü ü ó ó ó ó í í ó í ö ú ü ü Ö Ö ű ó í ó ó

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

SZÁMELMÉLET. Szigeti Jenő

SZÁMELMÉLET. Szigeti Jenő SZÁMELMÉLET Sigeti Jeő. OSZTHATÓSÁG A osthatósággal kapcsolatba égy alapvető eredméyt kölük bioyítás élkül. Jelölje φ() a {,,..., } halmaból ao elemek sámát, amelyek relatív prímek a -he. Ha például p

Részletesebben

Á Á ő É ö ö ő É ő ö ö ő ö É É Á ő É ő ö ö ö ő ő ő ő ő ő Ó É ő ő ő ő ü ő ő ü ü ö ö ő ő ú ű ű ö ő ö ú ő ü ő Ü ö ö ő ö ü ő ö ö ö ö ö ő ő ö ö ő ő ö ú ü ű ü ú ő É Á ő ő ö ő ő Ü ö ő ö ö ü ő ő ú ű ü ő Í ö ü ú

Részletesebben

É É Í ü ü ü ű ü ü ü ü ü ü ú Í ű ú ü ű Á ú Ú ű űü Ú Ú É É ű Ú ü ú ű ú ű ü ű Í Í Ú É Ú Ú Ú Í ú ú Ú Ú É ü űü ü ü ü Ú ű ú ü ú ü ú ű ű ü ú ü ú ü Ú ü ú ü ü ú úü ú ú ü ú ü ú Ú ű ú ü ú Ú ű ü Ú ú ü ú ú ü ü ú ú

Részletesebben

ő ő Á ő ő ő ü ő ü ő ő ő ű ő ő ő ü ő ő ő ő ő ő ő ő ü ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ő ű ő ő ü ü ű ő ő ő Á ő ü Ó ő ő ő ő ő ü ő ü ő ő ő ő ü ő ő ü ő ő ü ő ü ő ü ő ő ő ő ő ü ő ü ü ő ő ő ű ő ű ü ü ő ő

Részletesebben

Í ü ú ü ü ü ü ú ű ű Á ü ü ű ü ű ű ü ü ü ü ü ü ü ű ű ű ű ű ü ű ü ű ü ü ű Ö ű ű ű ü Ö Í ü ű ü ű ű ű ű Í ü ű ű ü ű ű ü ű ü ű ü ű ű ü ű ű ű ű ű ü ü ü ű ü ű ü Í ű ü ű ű ű ü ű ü ü ű ü ű ü ű ü ű ű ű ű ü ü ü ü

Részletesebben

Ü Ö Á Á Á Á É É Ü ű ű ű ű Á Ú Ü Ü ű Á Ú Ü Á Ü Ü Ü ű É Ü É Á ÜÜ Ü Á Ü Ü Ü Ü Ü Ü ű Ú ű ű ű Ü Ú Ü Ü ű Ü ű ű ű ű ű ű ű ű ű Ü Ü ű ű ű ű ű Ü Ü Ü Ú Ü Ü ű Ü Ü ű Ú Ú Ü ű ű Ü Ü Ü ű ű Ú ű Ő Ü Ü Ü Ü Ü Ö Ú ű Ú ű ű

Részletesebben

ö Ö ü ö ü ö Ö í ü ö ü ű ö ö í ö ö ö ö í ü í ö í ö ö ü ú ö í ö ö ö í ö ú ü ö ö ö ű ö ü í í ö í í ö ö ö ü Í í Ú ú ü ű ö í ű ö ö ö ü ú ö ö í ö í ú ö ö ö ö Ö ü Ö ű ö Ö ü ö ö ö ö ü ű ö í ú í Á ü í í ö ü ö Ö

Részletesebben

Ü É É ü ü ú ú Á ü ú ü ú ú ú ü ű É ü ü Ü É Á Á Á ú ü Ö Á ű ű ú ű É ú Ű ű ü ü ú ű ü ú ü ű ü ú ú ü Ú ú Ó ú ü ű ü Í ü ú ü ü ü ü ú ü ú ú ü ú ü ú ű ű ü Ü Ű ú ü ű ú ű ú ú ü Ü ü ü Ü ü Ü ü ü Ó Ö ü Ú ú ü ú ű ü ú

Részletesebben

ő ú É É ő ő ő ő ő ű ő ő ő ő ő ő ő ú ű ő ú ü ü ő ő ü ő ú ú ü ő ő ő Ó É ő ő ő ő ő ő ő ő ő ü ő ő ő Í ü ű ő ő Í ü ő úú ú ű ü É Ő Í ü ő ő ő ő ü ő ű ő ü ő ü Ű ü ü ú ü ü ü ü ú ő ő ő ő ű ő ő ú ü ő ü ő ő ű ü ő

Részletesebben

É É ő ő ő ő Ü ú ú ő ú ú ú ú Ú ő ű ú ű ú ő ú ú ú É É ú Ú ő ő ú ú Ó Ó ú ú ú ő É É Ü Ó É ő ű ú ő ő É ú ú ú ő ő ő ő ő ú ő ő ú ú ú ű ő ő ő ű ő ő ú ő ú ú Ó ő ú ú ú ú ú ő ú ő Ó ő ő ő ú ú ő ő ő ú ű ú ű ű ű ú ő

Részletesebben

Í ú Í Ú É Á É Á Ü Ü Ü É Ü Á É Á Á Í Á Á Á Á É É Á Á Ú É ú Í Ú Í Í ú ú ú Í ú ú ú ú Í ú Ú ú ú ú ú ú ú ú Í Í Í Í Ú Í ú Ú Ú Ö Í ú ú Ú É Ú É ú ű ú ú ú ú ú ú ű ű ú Í ú ú Ú É ú ú ű ú ú ú ú Ú ű Ú ú Ú ú Ú É ű ű

Részletesebben

Ö Ú É ő ú Ü Ú É É ö ú ő ú ú ú ú ö ö ú ő ú ú ö ú Ő ö ő Ö Ú Ó ö ü ú Ü ö ú ü ü ú Ü Ú Ö Ú É ü Ú Ó ú Ú É É ő ú ő ő Ö ö Ö ü Ó Ú ú É ú ú ö úú ú ö Ü Ú É ö ő ő Ó É Ú Ú Ú Ó É É Ü É Ú Ú É ú ö ú ö ő Ú É ö ü ö ő ü

Részletesebben

ű ő Ü ő Ü ő ő ő ő ő ő ő Ó Ú Ú Ü Ú ű Ú Ö ő ő Ó ő Ú ő ő Ú Ú ű ő ő ő ő ő Ú ő ő ő ű ő Ú Ú ő ő ő ő ő Ü ő Ú ő ő ő ű ő Ú Ú ő Ú ő Ú ő Ü ő ő Ö ő ő Ú ő Ú Ú Ü ű Ö ű Ö Ó ő Ó Ú ő ő ő ű ő Ó Ú ő Ü Ú Ü ő ű ő ő ű ő ő ő

Részletesebben

ű ű ű ö ö ö ö ú ö ö ö ú ö ö ö ö ú ö ö ö ö ú ú ú ö ö ö ú ú ú ú ö ö ö ú ű ű ű ú ú ö ö ö ö ú ú ö ű ö ö ö ö ö ö ű ú ö ú ö ö ö ö ö ö ö ö ö ö ű ú ú ö ö ö ö ö ö ú ö ú ö ö ö ö ö ö ú ö ö ú ö ö ú ú ú ö ú ú ú ű ú

Részletesebben

Ó Á Á ű Ü Á Á ű ű ű ű ű Á ű ű Ö ű Á Á Á Ú Ú Á Á Ú Ü Á Ö Ú Ó Ó Ő ű ű Ő ű ű ű ű ű ű ű ű ű ű Ú Ő ű ű ű Á ű ű ű Ü Ü Ü Ú Ó Ü Ü Ö ű Ü Ú Ó Ó Ó ű Ü Ü Ü Ü Á Á Á Ö Ú ű ű ű ű Ö Á ű Ö Ö Ö ű Ú Ó Ö Ö Ö ű ű ű Ú Ú Ö

Részletesebben

ő ö ú ö ű ü ő Ö ő ő ő ő ö ö ö ö Ü Ö Ö Ö Ö ő ő Ö Ú Ő ő Ü ö ő ő ő ő ö ú ö ö ö ő ö ú ö ú ő ű ú ö ú ü ű ö Ú ü ü ö ő ő Ó ÜÜ ő ő ö ö ű ö ö Ü Ó ö ö ú ö ú ű ö ú ö ú ö ö ö ű ő ö ő ö ő ö ú ő ő ő ő ő ú ő ő ő ö ú

Részletesebben

Í Í Ü Á ú Ú É ú Ú Í ű ú ú ú ú ú Í ú ú Ú ú ú ú Ú É ú ű ú ú ű ú ú Í ű ú ú ú Ú É ú ú ú ű ú Ú ű ú Í ű ú ú ú Á ú Ú É É ú ú ú ú ú Á Í ú ú Í Ú É ú ú ú Í Ü ű ú Í ú ú ű ú ú Í Í ú Í Ú É ú ű ú ú ú Í ű ú ú ú ű ű ű

Részletesebben

ü ű Ü ü Ü ü Ü ü ü Ó ü ü ü ü ü ü ü ü ű ű ü ü ü ü ü ű ű ü ü Ú ű ü Ú ű ü ü ü ü ü ü ű Ú Ú ű ü ü ü ü ü ü ü ü ü ü ü ü ü ű ű ü Ú ű ü ü ü ü ü ű ü Ó Ó Ö Ó Ó ü Ö Ó Ü Ó Ó Ó Ó Ó Ö Ó Ó Ö Ó Ó Ó Ó Ü Ü Ú Ó Ó Ö Ó Ó Ó ű

Részletesebben

Í Ú ü Á Á ü ű ü ü Ö É Ő ű ű ú ú ű É ű Í Ü É ü ü Ü úü ü ü Í ú ü Ő ű Í ű Í Ú Í Ú ü ú ű ű Ú ű É ú ú Í ü ü Ú Ú Ú Ú Á ű ü ü Í Ú Á Á ű ü ü Ú Á ű ü ú Ú ü ü Ú Ö É Ö ü ú ú ú ü ü ú Ö Ü ü Ü ú üü Á ú É Í É Í Í ű Á

Részletesebben

Ü ő Á ü ú ü Ó ú ő ú ú ő ü ü Á ú ü Í Ó ú ü ú ü ü Á Á ú ő ú ü ü ő Ö ő Í ő ü ő ü ű ü ú ú ü ü ú ő ű ú ú Á Á Á ő ő ú Ó Ö Á Ö ü ő Á ü ü ü ü ő ű üü ü ő ü ő ü ü Ú ú ü Í ú ü ü ü ő ő ő Á ő ő Ó Ó Á ő ü ü Ó ő ú ő

Részletesebben

Ü Í ú Í É Ú É É Ú Ó ú ü ü ü ú ú Ő ú ú Í ú ú ú ú ű ú ú Á ú ú ú ú ú ú ü ú ü ű É ú ú ű ü ü ú ú ú ú ü ú ü Ú ü ú ú ü ű ú ü ü ü Í ü ú ú ü ú ü ü Ú ü ü ú Ú Á ü ű ü ű ú ú ü ü Ú ü ü ü ü ü ű ű ü ú ú Í ü ú ű ú Ú ü

Részletesebben

ü ő ő Á Á Á Á ú ú ő Í Á Ö Á ü Á ü ő ű ú ü ő ö ü ü ü ú ú ő ö ö ú Á Á Á ü ő ő ű ö ü ö ő ö ű ú ű ú ő ö ú ő ö ü ő ü ü ö ö ő ü ü ű ő ü ö ü ö ő ő ő ö ü ő ü ő ü ö ú ú ü ö ö ü ö ü ő ö ű ű ü ö ü ő ő ú ő ú ő ő ö

Részletesebben

ö Ö Á ö ö ü ö É ű ö ö ú ö ö ö ö Á ö ö ö ö ö ö ü ö ö ü Ö ö ö ú ú ú ö ú ö ü ö ü ö ö ö ö ö ö ö ű ö ö ö ö ö ö ü ö ö ú ö ú ö ö Á ö ö ü ú ü ö ú ű ö ö ö ö ö ö ö É É Í ö É ü É ö ö ű ö ö ö ö ö ü ú üü ö ö ü ö ö

Részletesebben

Ö Á Ö Á ú ú ú ú ú ú ú ú ú ú Ú ú ú ű É ú ú Ó Á ú ú ú ú ú ú Ú ú ú ű ű ű ű Á ú ú ú ú É Ó ú ű ű Á ú ú ú ú Á ú ú ú ú ú ű ú ű ú ű ű ű ű ú Ú ú ű Ú ú ú ú ú Ö É Á Á Á Á ú Á Ú Ü ű Á Á Á Ö É Ú Á É Ü Ü ú Ú ú ú Ú Ú

Részletesebben

Í Á Ó É ö ő Ö ö ő ü ő ü ő ü ö ö ő Ö ú ő ő ú ü ő ő ü ő ő ő ú ö ö ő ű ö ö ü ű ő ö ú ö ú ü ü ű É É É ö ö ú ű ő ú ő ú ő ű ö ö ü ö ű ö ú ö ú ü ú ő ő ö ü ö ű É É ö ö ú ő ö ő Ö ű ú ö ő ö ö ü ő ő ő ö ű ö ő ő ö

Részletesebben

É Ö É É Ö É É Í Ü Ü É Ó ö ú í Á ö í ö Ü ú í ú ö í ö ö í ü ö í ü ü ö ö ö í ü ü ö ú í ö ö ö í ü ü ú í ú í ú ú ú ö ü ö ú í ö ú ü ú ö ö ú ö Á í ö Ü Í Ü ö ö Ü Ó ö ü É í ö í ü ö í ö í í ú í í ü ö ö í ü ö ö í

Részletesebben

É ű ű ú ű ú ű ű ű ű ú ű ú ű Ü Ú Ú ú ű ú ú ú Ú Ú ú Ü ú Ó ú ú É Ő É ú ű ú Ü Ö ú Ö Ö ú ú Ü ú ú ú Ó ú Ö Ó ú ú Ü ű ú ú Ö Ü É Ú Ú Ú Ú É ű Ú Ö ú ú ű ú ú Ú ű ú ű Ú Ü ú Ó ú Ó ú Ü Ó É Ö É ú ú ú ú É ú Ü Ü ú ú ú ú

Részletesebben

ű Ú Ü Ü Ü Ú Ű ű ű Ú Ú ű Ü Ú ű ű ű Ú Ü Ú ű Ú ű Ú Ú Ű Ú Ú Ű ű Ú Ú ű Ú Ú Ú ű Ú Ú ű Ú ű Ú Ú Ú Ú ű Ú Ú ű Ú ű ű ű Ú ű ű Ú Ó Ü Ü Ú Ú Ú ű ű ÜÜ Ú Ü Ú Ü ű Ú Ü Ü ű Ú Ú Ü Ú ű Ú Ú Ö Ü Ü Ú Ú Ú Ú Ü Ú Ö Ü Ú Ö Ü Ü ű Ú

Részletesebben

Á Á Á Á Á Á Á Ú Ő Ő Ő Á Á Ú Á Á Á Ő Ú Ú Á Ú Ú Ú Ú Ú Ú Ő Ű Ú Ő Ú Ú Ú Ú Á Á Ú Ő Ő Ő Ő Ú Á Ő Ő Ű Ő Ú Á Ú Ő Ő Á Ú Ő Ő Ú Ú Ú Ú Á Á Ű Á Á Ő Á Á Ú Á Á Á Ú Ú Ú Ő Ú Ú Ú Ú Ő Ú Ő Ő Ő Ú Ő Ő Ő Ú Ű Ő Ú Ő Á Ú Ő Ú Á Á

Részletesebben

É Ü ú ü Ü Ü ú Ü Ü ü ü Ü ú ú ú ű ü É Ü É Í Ó É ü ű Ü É ü ü É Ü Í Ó Ó Ó Ü Ó Í Ó Ó Ó Í Ü ü Ó Ö Ü ü ü Ü Ü ű Ü Ö Ü É Ü É Ü É É É É É ű Ó É Ö Ö ü ü ú ú ú Ü Ü Ü ú ú Ü ú ú ú ú ú ú Ü ú ú É Ú ü Ú Ú Í Í Ú É Ü Ü Í

Részletesebben

ú Á É ű ű Á ú ú ú Ú ű ú ű Ö ű ú ű É ú ú Ü Ú ú ú ú ú Ó Ú ú Ú Ú ú ú ú ú Ú Ú Ő É ú Á ú ú ú Á ú ú Á Á ú ú ű ú É ű ú ű ú ú ú ú ű ú É ű ú ű Ö Ü ú Ú ú ú Ú ú Ú ű ű ú ú ű É Ú ű Á ú ú ú ú Á ú ú ű ű ú ú ú ú ú ú Á

Részletesebben

ö ü ó ö ü ü ó ó í ó í ó ú ó ö ö ö ü ü í ü ü ó ü ü ü ö ö ö ö í ü ü ö í ü ú ö í Í ö ö ó ö í ú ö ú ó ó ó í ú ö ú ó ó ó í ö ú ö ú ó í ó ü ö ö ó ú ó ó ó Ö ö ü ö í í ó í ü É ü ú ö í í ü í ó ó Í ö ü í ó í ö ö

Részletesebben

Á ü Á Ü Í Ü ü ü ú Ú Ó ü ő ü ö ő ö Ö ú ö ú ö ü ü ő ú ü ü ő ű ő Ö ü ü ő Ú ö ő ü ő ő ö ö ö ö ö ő Í ő ő ő Ü ő ű ő ö ü ü ő ü ő ü ű ú ő ú ö ű ő ű ú ő ú ő Ű ü ő ő ú ő Ú Ö Ö Ö Ö ü Ó ő ö ö ö ö ú ö ü ü ő ő ő ő ű

Részletesebben

ü Ö Ö É Ű ü ű É É É ő Ő É ű É ő ő ő ő ü ü ü ő ő ő Ü ő ő ő ő ü ő ü Í ő ű ü ő ő Ö Ö ő ü Ö Ö ő ő ő Ö ő ü ő ü ü ő Ö ü ü ő ő Ö ő ő ű ő ő ő ő ű ő ő ű ő ő ő ő ő Ö ő ü ő Ö Ö ő ű ű ő ő ő ő É ő ő ő Ö ő É ő ü ü ő

Részletesebben

Í Ö Ű ő í Ú Ó Á ú ó É ű ú ő ó ó ő ó ü Á ó ű Ű ő í Ó Á ű í Ó ó Ó Á ó ó í ó í ó Ö í ú Á É Í Í Ú í í űü í ő í É Ó í í Ú Ü ű Ú ő ő Ű ő ű ő Ú ő ő ő Ü ő ő ű ő í É í í Í Ő ő ó í í ő ő ú ő ő ó ó ő ő ú ő ő Ö ő

Részletesebben

ű Á Ü É Ü Ü Í ö ö ű ö ö ö ü ű ü ü ü ü Í ű Í ű ü ű ö ü ö ű ü ö Í ö ö Ö Á Á É Á Í Ő Ő Ő É Ü É ü É ö Ü ö Ü Ü ö ö ö ö ü ü ű ö ü ü ü É Á É ü ö Í ö ö É ö Á É É Á Á Ü ö ű Ü Á Á É É Á Á Á Á Ö Ü ű Ü ö ü Ü ü Ü Ö

Részletesebben

ö ü ö ü í ü ü ü ö Á Á í ö ö ö ü ü í ü ü ü ö ű ö í í í í ö Ö ú ű ö Í ű ö ö í ö Ó Í ü ö ö í ö ú ű ö ö ö ű ö ö ü ü í í ö Ö ü ú ű ö Í ü ü ü ű ü ü ü ü ú ü í ö ü ü ö Ó ü ú ű ö ű í ö Á ö Á ö í ö ö ü ö ö ü ű í

Részletesebben

Ú Í ü ü Ö É ű ű ű ű Í Ú Í ű ű Ú Á ű Á Á Ú Á Ö Ó ű ű Í Ú ű Ú Ú Á Á Á Í Ű Í Á Ú Ú Ú ű Í ű Í ü É É Ú Ú Ú ű Ú Ú Ú Ú Á É Ú Ú Ú Ú Ú Ú Ú Í Í Ú ű Ú ű Ú Ú Í Í É ű Ó Ú ú Ú Ú Ú Ú Ú Ú Í É ű Í Á Á ű Í ű ű Ú Ú ű Ú

Részletesebben