Véges matematika 1. feladatsor megoldások

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Véges matematika 1. feladatsor megoldások"

Átírás

1 Véges matematika 1 feladatsor megoldások 1 Háy olya hosszúságú kockadobás-sorozat va, melybe a csak 1-es és 2-es va; Egymástól függetleül döthetük a külöböző dobások eredméyéről, így a taultak szerit a megoldás: = 2 b három 1-es és hét 2-es va; Ez ugyaaz, mit a három 1-es és hét 2 sorbarakásai, erre a tault képlet! 3!7! c három 1-es va; Először eldötjük, hol legye a három 1-es Ehhez a dobás közül hármat kell kiválasztai: 3 lehetőség Ha ez eldőlt, akkor a többi dobásról dötük egyekét, ezek midegyikére 5 lehetőségük va Mivel ezek függetle dötések, a megoldás: d három 1-es, két 3-as és öt 5-ös va;! Hasolóa a b feladathoz, ez is egy sorbaredezés, így a megoldás 3!2!5! e va 1-es; Az a megoldásához hasolóa látszik, hogy összese 6 sorozat va Hasolóa látható, hogy azo sorozatok száma, melyekbe ics 1-es, 5 A megoldás ezek külöbsége, azaz 6 5 f legfeljebb három 1-es va? Ezt csak esetszétválasztással lehet megoldai aszerit, hogy potosa háy 1-es va lehet ulla, egy, kettő vagy három Ezeket külö-külö a c megoldásához hasolóa lehet számoli, így a megoldás Háy szelvéyre va szükség a TOTÓ-, hogy biztosa 13/13 találatot érjük el tehát 1 mérkőzés ics? Mide meccsről egymástól függetleül döthetük 3-féleképpe 1,2 vagy x, így a megoldás = Háyféleképpe tehetük fel egy sakktáblára 8 egyforma bástyát úgy, hogy semelyik kettő e üsse egymást? Mide sorba potosa egyet kell teük Az első sorba 8 helyre tehetük Ha ez megva már, akkor a második sorba már csak 7 olya hely lesz, ahol az első em üti a másodikat,, végül a 8 sorba már csak egyféleképpe tehetjük le a bástyát Ezek függetle dötések, így a megoldás = 8! 4 Háy szelvéyre va szükség a LOTTÓ-, hogy biztosa 5 találatot érjük el? A 90 számak bármelyik 5-elemű részhalmaza lehet kihúzott számötös, így 90 5 szelvéyre va szükség 5 A 0, 1, 2, 3, 4, 5 jegyekből háy hatjegyű, 5-tel osztható számot képezhetük, ha mide jegy egyszer szerepel? És ha többször is szerepelhet? Akkor lesz egy szám 5-tel osztható, ha az utolsó jegye 0 vagy 5 A számolást megehezíti, hogy vigyázuk kell rá, hogy az első jegy em lehet 0 Ezt úgy a legegyszerűbb áthidali, hogy szétválasztuk két esetet aszerit, hogy 0-ra végződik-e a szám a Mide jegy csak egyszer szerepelhet Ha 0-ra végződik, akkor az első öt helyre valahogy sorba kell tei az 1, 2, 3, 4, 5 számokat, a lehetőségek száma 5! Ha em 0-ra

2 végződik, akkor 5-re kell végződie Ilyekor az első jegy 4 féle lehet 0 és 5 em, ha ezt eldötöttük, akkor a második megit 4 5 és az első helyre választott em, a harmadik helyre 3, a egyedikre 4, az ötödikre 1 lehetőségük va, így összese mivel függetle dötéseket hoztuk 4 4!-t kapuk A megoldás a kapott két szám összege, azaz 5! 4 4! b Többször is szerepelhet ugyaaz a jegy Itt em kell esetszétválasztás Az első jegyre 5, a második, harmadik, egyedik és ötödik jegyre 6, az utolsó jegyre két lehetőségük va, ezek függetleek, azaz a megoldás Egy 30 fős osztály diákbizottságot választ: elök, titkár, sportfelelős, kultúros, gazdasági felelős Háyféle eredméy lehet, ha Pistiek mideképpe szeretéek tisztséget adi? Először Pistiek aduk tisztséget: 5 lehetőség, majd egyekét a maradék tisztségekre választuk embereket 29, 28, 27, 26 lehetőség Így a megoldás Háy olya -betűs em feltétleül értelmes szó va, melybe 3 a, 5 b és 2 c szerepel és a két c ics egymás mellett? Az összes betűs szó a taultak alapjá! 3!5!2! Azo szavak száma, melyekbe egymás mellé kerül a két c úgy számolható, hogy összeragasztjuk a két c-t és egy betűek 9! fogjuk fel Így az ilye szavak száma 3!5!1! A megoldás a kapott két szám külöbsége, azaz! 3!5!2! 9! 3!5!1! 8 Egy trafikba féle képeslap kapható midegyikből korlátla meyiség Háyféleképpe küldhetük a egy barátukak 3 külöbözőt; A -féle lapból 3 külöbözőt kell választauk, így 3 lehetőség va b öt barátukak egyet-egyet; A barátokak küldött lapokról egymástól függetleül döthetük, így a megoldás 5 c öt barátukak 3 3 külöbözőt? Mide barátukál 3 -féleképpe döthetük a küldött lapokról Ezek a dötések függetleek, így a megoldás Háy olya 6-jegyű szám va, melyek potosa háromféle jegye va, mid páratla, midegyikből 2-2? Először eldötjük, melyik három jegy szerepelje az 1, 3, 5, 7, 9 közül, ez 5 3 lehetőség Ha ez már megva, akkor a kapott háromszor két számot akárhogy sorba kell tei, ezek 6! száma 2!2!2! Tehát a megoldás 5 6! 3 2!2!2! Háy olya 5-jegyű szám va, melybe a 15 szerepel egymás utái jegykét? Ezt csak esetszétválasztással lehet aszerit, hogy hol va bee a 15, rádásul arra is figyeli kell, hogy lehet bee kétszer is a 15, ezt em szabad többször számoluk Ha 15-tel kezdődik, akkor utáa 3 jegyre lehetőségük va, így a megoldás 3 Ha 15 alakú a szám, akkor az első jegy 9 féle, az utolsó kettő féle lehet, így ezek száma 9 2 Ha 15 vagy 15 alakú, akkor az előző esethez hasolóa midkettőél 9 2 lehetőség va Ha ezeket a számokat összeadjuk, akkor kétszer számoljuk a 1515, 1515 és 1515 alakúakat, így ezek számát le kell voi Az első kettő féle, az utosó 9 féle lehet A megoldás tehát

3 11 Háyféleképpe ültethetük le 30 embert a egy kör alakú, 30 személyes asztalhoz; Ha meg leéek számozva a székek, akkor az első székre ülő emberről 30-féleképpe, majd a másodikra ülőről 29 féleképpe,, az utolsóra ülőről 1 féleképpe dötheték, azaz 30! lee a megoldás Mivel az asztal köralakú, ezért em kell két esetet külöbözőek vei, ha csak elforgatottjai egymásak Mide egyes ültetések saját magát is beleszámolva 30 elforgatottja va, eyiszer számol tehát a 30! egy-egy esetet Így a megoldás 30! 30 b 6 kör alakú, 5 személyes asztalhoz, melyek külöböző szíűek; Először eldötjük, kik üljeek az első asztal körül, erre 30 5 lehetőségük va Ha ez megva, akkor leültetjük ezt az 5 embert, erre az a-hoz hasolóa 5! 5 lehetőség va Ezutá dötük a második asztal embereiről, ez 25 5 lehetőség, majd ezeket ültetjük le, 5! 5 lehetőség, Így a megoldás 30 5! 25 5! 20 5! 15 5! 5! ! 5 5 c 6 egyforma, kör alakú, 5 személyes asztalhoz? A megoldás a b feladat megoldása osztva 6!-sal Ugyais a c egy esetéhez a b-ek ayi esete tartozik, aháyféleképpe kiszíezhetjük az asztalokat 6 szíel 12 Háy szigorúa mooto függvéy va az {1, 2,, } halmazból az {1, 2,, 0} halmazba? A szigorú mootoitás miatt, ha eldötjük, kik leszek a képhalmazba, már automatikus, hogy melyik függvéyről va szó Tehát a megoldás 0 13 Egy dobozba cédula va, melyekre redre az 1, 2,, számokat írták Kihúzuk egymás utá 5 cédulát úgy, hogy mide húzás utá a kihúzott cédulát visszatesszük Háy olya eset va, melybe az így kapott számötösbe a számok em csökkeő sorredbe következek? Ha eldötjük, hogy az egyes számok háyszor szerepelek a kihúzottak között pl 3 darab 2-es, 2 darab 7-es, akkor már automatikus, hogy melyik esetről va szó Tehát valójába ismétléses kombiációkat kell számoluk: Háyféleképpe lehet jutalomköyvet 5 diákak kiosztai, ha midekiek legalább egyet akaruk adi és a a köyvek egyformák; Ez aalóg a pézosztással, így a megoldás 5 emberek forit: 9 4 b a köyvek külöbözők? Ezt csak szitával lehet Még em vettük 15 Háy olya em feltétleül értelmes tizekét betűs szó készíthető az a, a, b, b, c, c, d, d, e, e, f, f betűkből, melybe szomszédos betűk em lehetek egyformák? Ezt csak szitával lehet Még em vettük 16 Háy olya 0-jegyű szám va, melybe ics 0, de mide más számjegy szerepel legalább egyszer? Ezt csak szitával lehet Még em vettük 17 Egy 52 lapos fracia kártya csomagot kiosztuk 4 játékosak

4 Legyeek a játékosok A, B, C és D úgy, hogy A ül szembe C-vel, B pedig D-vel a Háy leosztás va? Először dötük A lapjairól: lehetőség Ha ez megva, akkor B lapjairól: lehetőség A megoldás: Más godolatmeettel ez is kijöhet: 52! 13!13!13!13!, a kettő ugyaayi b Háy olya leosztás va, melybe midekiek jut ász? A égy ászt 4! féleképpe oszthatjuk ki Ha ez megva, akkor az a-hoz hasolóa aduk még midekiek 12 lapot A megoldás 4! c Háy olya leosztás va, melybe mide ász egy kézbe került? Eldőször eldötjük, kiek a kezébe kerüljeek az ászok, ez 4 lehetőség Ha ez megva, akkor kiosztjuk aak a lapját, akiél az ászok leszek: 48 9 lehetőség Utáa osztuk a korábbiak szerit a többiekek A megoldás tehát d Háy olya leosztás va, melybe mide figura két egymással szembe ülő játékoshoz került? Eldötjük, melyik két egymással szembe ülőél legyeek az ászok: 2 lehetőség Aztá osztuk azokak, akikek em jut ász: lehetőség Végül a maradék paklit ebbe most már bee vaak a figurák is kiosztjuk aak a két játékosak, akik mellett az első dötésél dötöttük: lehetőség A megoldás: e Háy olya leosztás va, melybe mide játékosak jut mide számból és figurából? Mide számból és figurából 4 va, így mideki mieből egyet kap A 2-eseket is, 3- okat is,, királyokat is, ászokat is 4!-féleképpe oszthatjuk ki, ezek egymástól függetleek, így a megoldás 4! 13 f Háy olya leosztás va, melybe mide játékosak jut legalább egy kőr? Csak szitával lehet, ezt még em taultuk 18 Bizoyítsuk be, hogy a Pascal háromszög bármely sorába a középső elemek a legagyobbak! Azt kell megézi, hogy mikor igaz, hogy k < k1 Beírva a faktoriálisos képletet, majd egyszerűsítve ez arra vezet, hogy k < 1 2 Ez pot azt jeleti, hogy a közepe előtt ő, utáa csökke mide sor Köye látható, hogy páratla eseté a két középső elem egyelő: = 1/2 ld következő feladat 1/2 19 Bizoyítsuk be az alábbi összefüggéseket! a k = k ; Akár a képletből, akár oa látható, hogy a k-elemű és k-elemű részhalmazok párba állíthatók: midekiek a komplemeter legye a párja b k k1 = 1 k1 A faktoriálisos képletet beírva és kicsit számolva kijö 20 Mutassuk meg, hogy 1 k = k1 1 Rajzoljuk le, mit jelet ez a Pascal háromszögbe! k-ra voatkozó idukció k = 1-re köyű elleőrizi Ha k-ig megva, akkor k 1-re: 1 k1 = 1 k k1 = k1 1 k1 = k Hozzuk zárt alakra a következő kifejezést:

5 Ez azt számolja, hogy háyféleképpe választhat egy tagú társaság akárháy de legalább 2 tagú bizottságot és azo belül elököt és titkárt esetszétválasztás a bizottság mérete szerit A megoldás más logikával számolva ugyaez: Igazoljuk a következő összefüggéseket! a = 2 1 ; Midkét oldal egy halmaz páros elemszámú részhalmazait számolja b m 0 k m 1 k 1 m k 0 = m k ; Midkét oldal a következő feladat megoldását adja: Háyféleképpe választhatuk férfi és m ő közül k embert? A jobb oldal ezt közvetleül számolja, hisze teljese midegy, ki férfi és ki ő A bal oldal esetszétválasztást csiál aszerit, hogy háy férfit és háy őt választuk c = 2 ; Ez átlakítható így: = 2 Ez viszot az előzőek speciális esete: férfi ő közül embert választuk d = 3 A biomiális tételt felírva 1 2 -re pot ez jö ki 23 A koordiátaredszerbe adott 5 olya pot, melyek koordiátái egészek ezeket szokás rácspotokak hívi Mutassuk meg, hogy va köztük kettő, melyek által meghatározott szakasz felezőpotja is rácspot! Egy rácspot két koordiátája 4 féle lehet paritás szempotjából: ps,ps, ps,ptl, ptl,ps, ptl,ptl Skatulya elv szerit lesz két egyforma pot, jelölje ezeket a, b és c, d Ekkor a felezéspot is rácspot lesz, mert a paritások egyezése miatt ac 2 és bd 2 is egész 24 Melyik az a legkisebb k, melyre igaz a következő állítás: k égyzetszám között midig va kettő, melyek külöbsége osztható 8-cal? Egy égyzetszám 8-cal osztva háromféle maradékot adhat Így k = 3 még kevés: 1, 4 és 64 jó ellepélda k = 4 viszot már elég, hisze skatulya elv miatt égy szám közt va kető melyek osztási maradéka ugyaaz 25 Mutassuk meg, hogy F 0 F 1 F = F 2 1, ahol F jelöli az Fiboacci számot! 26 Tegyük fel, hogy lépcsőfokot akaruk megmászi úgy, hogy egyszerre egy vagy két fokot léphetük Háy lehetőségük va? 27 Oldjuk meg az alábbi rekurziókat: a a 1 = 3, a 2 = 8, 3-ra pedig a = 2a 1 2a 2 ; b a 1 = 1, a 2 = 3, 3-ra pedig a = a 1 25a 2! 28 Háy betűs szó készíthető az a, b és c betűkből, ha a két b em lehet egymás mellett; b b utá közvetleül em jöhet c? 29 Oldjuk meg az alábbi rekurziót: a 1 = 1, a 2 = 3, 3-ra pedig a = 2a 1 3a 2!

6 30 Adjuk meg olya rekurziót, melyek megoldása a = ! 31 Háyféleképpe juthatuk el az origóból a 18, 6 potba, ha mide lépésbe jobbra fel vagy jobbra le ugorhatuk? És a 18, 9 potba? És a 6, 8 potba? 32 Háyféle sorredbe mehet be 14 fiú és 23 láy a tácterembe, ha mide pillaatba legalább ayi láyak kell bet leie, mit fiúak és a fiúk, illetve láyok egymás közti sorredje em számít? 33 Háy olya 2 1 hosszúságú 1/1 sorozat va, melybe bármely kezdőszelet összege pozitív azaz a 1 > 0, a 1 a 2 > 0,,a 1 a 2 a 21 > 0 és a számok összege 1? 34 Egy kerek asztal körül 2 ember ül Háyféleképpe alkothatak párt úgy, hogy az egy párba lévők kezet foghassaak aélkül, hogy egy másik kezet fogó pár keze alatt vagy felett kellee átyúliuk? 35 Egy barlagászcsapatba 23 férfi és 15 ő va Olya sorredbe szeretéek egy barlag bejáratá bemászi, hogy mide pillaatba legalább ayi férfi maradjo kit, mit ő Háyféleképpe tehetik ezt meg? 36* Száz ember fejére egy-egy fekete vagy fehér sapkát aduk Semmilye jelzést em adhatak egymásak, de mideki körülézhet, tehát a sajátjá kívül midekiről tudja, hogy milye szíű sapka va a fejé Ezek utá sípszóra midekiek fel kell emelie a bal vagy jobb kezét El tudják-e éri, hogy pot a feketék emeljék fel a jobb kezüket és a fehérek a balt vagy esetleg fordítva, a fehérek a jobbat, a feketék a balt? Mielőtt a sapkát kapják, összebeszélhetek

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

AGRÁRMÉRNÖK SZAK Alkalmazott matematika, II. félév Összefoglaló feladatok 2. 4. A síkban 16 db általános helyzetű pont hány egyenest határoz meg?

AGRÁRMÉRNÖK SZAK Alkalmazott matematika, II. félév Összefoglaló feladatok 2. 4. A síkban 16 db általános helyzetű pont hány egyenest határoz meg? KOMBINATORIKA FELADATSOR 1 1. Hányféleképpen rendezhető egy sorba egy óvodás csoport ha 9 lány és 6 fiú van és a lányokat mindig előre akarjuk állítani? 2. Hány 6-jegyű telefonszám van ahol mind 35-tel

Részletesebben

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA A ombiatoria véges elemszámú halmazoat vizsgál. A fő érdése: a halmaz elemeit háyféleéppe lehet sorbaredezi, iválasztai özülü éháyat vagy aár midet bizoyos feltétele mellett, stb. Ezért a ombiatoria alapját

Részletesebben

EGY ÚJ SZÁMHÁROMSZÖG A

EGY ÚJ SZÁMHÁROMSZÖG A BELVÁROSI ÁLTALÁNOS ISKOLA ÉS GIMNÁZIUM BÉKÉSCSABA EGY ÚJ SZÁMHÁROMSZÖG A KOMBINATORIKÁBAN 0 3 4 5 6 7 8 9 0 0 0 0 3 3 0 4 9 8 6 0 5 44 45 0 0 0 6 65 64 35 40 5 0 7 854 855 94 35 70 0 8 4833 483 740 464

Részletesebben

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k. Az 1,, 3,, elemeknek hány permutációja van, amelynek harmadik jegye 1- es? Írjuk fel őket! Annyi ahányféleképpen

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 17. lecke: Kombinatorika (vegyes feladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

A Venn-Euler- diagram és a logikai szita

A Venn-Euler- diagram és a logikai szita A Ve-Euler- diagram és a logikai szita Ebbe a részbe a Ve-Euler diagramról, a logikai szitáról, és a két témakör kapcsolatáról íruk, számos jellemző, megoldott feladattal szemléltetve a leírtakat. Az ábrákak

Részletesebben

Általános taggal megadott sorozatok összegzési képletei

Általános taggal megadott sorozatok összegzési képletei Általáos taggal megadott sorozatok összegzési képletei Kéri Gerzso Ferec. Bevezetés A sorozatok éháy érdekes esetét tárgyaló el adást az alábbi botásba építem fel:. képletek,. alkalmazások, 3. bizoyítás

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

Valószínűségszámítás

Valószínűségszámítás 8. Valószíűségszámítás ESEMÉNYEK 174 Eseméyek formális leírása, műveletek 175 Feladatok 176 A VALÓSZÍNŰSÉG FOGALMA 177 A valószíűség tulajdoságai 178 Mitapéldák 179 Feladatok 181 VALÓSZÍNŰSÉGI VÁLTOZÓK

Részletesebben

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok Valós számok 5 I Valós számok I Természetes, egész és racioális számok I Feladatok (8 oldal) Fogalmazz meg és bizoyíts be egy-egy oszthatósági kritériumot a -vel, -mal, 5-tel, 7-tel, 9-cel, -gyel való

Részletesebben

IV. Sorozatok. Sorozatok bevezetése

IV. Sorozatok. Sorozatok bevezetése Sorozatok Sorozatok bevezetése 8 Az,,, számjegyek és tegelyes tükörképeik együtt alkotják a sorozat tagjait A folytatás lehetséges például az ábrá látható módoko Megjegyzés: A Hogya folytatható típusú

Részletesebben

Valószínűség számítás

Valószínűség számítás Valószínűség számítás 1. Mennyi annak a valószínűsége, hogy szabályos játékkockával páratlan számot dobunk? 2. Egy dobozban 7 piros és 13 zöld golyó van. Ha találomra kihúzunk egyet közülük, akkor mekkora

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 16. lecke: Kombinatorika (alapfeladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

25. Matematikai logika, bizonyítási módszerek

25. Matematikai logika, bizonyítási módszerek 5. Matematikai logika, bizoyítási módszerek I. Elméleti összefoglaló Logikai műveletek A matematikai logika állításokkal foglalkozik. Az állítás (vagy kijeletés) olya kijelető modat, amelyről egyértelműe

Részletesebben

6. Elsőbbségi (prioritásos) sor

6. Elsőbbségi (prioritásos) sor 6. Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe

Részletesebben

Diszkrét matematika feladatok

Diszkrét matematika feladatok gyakorlat Diszkrét matematika feladatok 205/6 tanév, I. félév. Bizonyítsa be teljes indukcióval az alábbi állításokat! n(n + ) (a) + 2 + + n = 2 (b) 2 + 2 2 + + n 2 n(n + )(2n + ) = 6 ( ) 2 n(n + ) (c)

Részletesebben

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok...

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok... Tartalomjegyzék 1. Bevezető... 1.1. A Fiboacci számok és az araymetszési álladó... 1.. Biet-formula...3 1.3. Az araymetszési álladó a geometriába...5. Probléma megfogalmazása...8 3. Iformatikai módszer...8

Részletesebben

Valószínűségszámítás és statisztika, 9 10. évfolyam

Valószínűségszámítás és statisztika, 9 10. évfolyam Valószíűségszámítás és statisztika, 9 0. évfolyam Hraskó Adrás 04. júius 8. 4 TARTALOMJEGYZÉK Tartalomjegyzék Feladatok. A statisztika alapjai............................... Kísérletek....................................

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek megoldásához!

Részletesebben

(6/1) Valószínűségszámítás

(6/1) Valószínűségszámítás (6/1) Valószínűségszámítás 1) Mekkora annak a valószínűsége, hogy szabályos játékkockával páratlan számot dobunk? 2) Egy dobozban 7 piros és 13 zöld golyó van. Ha találomra kihúzunk egyet közülük, akkor

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

71) A 32 lapos magyar kártyából kiosztunk 8 lapot. Hányféleképp lehet, hogy pontosan 3 hetes és 4 ász van közöttük? 72) A 32 lapos magyar kártyából

71) A 32 lapos magyar kártyából kiosztunk 8 lapot. Hányféleképp lehet, hogy pontosan 3 hetes és 4 ász van közöttük? 72) A 32 lapos magyar kártyából Permutációk: 1) Egy sakkverseny döntőjébe 6 játékos került be. Hányféleképp alakulhat a játékosok sorrendje, ha a döntőben mindenki azonos esélyekkel indul? 2) A Mekk Elek név betűiből hányféle (nem feltétlen

Részletesebben

kritikus érték(ek) (critical value).

kritikus érték(ek) (critical value). Hipotézisvizsgálatok (hypothesis testig) A statisztikáak egyik célja lehet a populáció tulajdoságaiak, ismeretle paramétereiek a becslése. A másik tipikus cél: valamely elmélet, hipotézis empirikus bizoyítása

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Próbaérettségi feladatsor_a NÉV: osztály Elért pont: Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 21. lecke: A feltételes valószínűség, események függetlensége Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6 Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica

Részletesebben

Valószínűségszámítás feladatok

Valószínűségszámítás feladatok Valószínűségszámítás feladato A FELADATOK MEGOLDÁSAI A 0. FELADAT UTÁN TALÁLHATÓK.. Egyszerre dobun fel három érmét. Mi anna a valószínűsége, hogy mindegyine ugyanaz az oldala erül felülre?. Két dobóocát

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát!

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát! 1. témakör: HALMAZELMÉLET A feladatok megoldásához használjuk a Négyjegyű függvénytáblázatot! Halmazok: 8-9. oldal 1. Sorold fel az a b x y halmaz összes részhalmazát!. AdottU alaphalmaz, és annak két

Részletesebben

KIMONDHATÓ.?! Magyar Máltai Szeretetszolgálat F o g a d ó P s z i c h o s z o c i á l i s S z o l g á l a t

KIMONDHATÓ.?! Magyar Máltai Szeretetszolgálat F o g a d ó P s z i c h o s z o c i á l i s S z o l g á l a t Az egészséges evelés KIMONDHATÓ.?! Magyar Máltai Szeretetszolgálat F o g a d ó P s z i c h o s z o c i á l i s S z o l g á l a t 8. Előszó Tartalom Mide felőtt volt egyszer gyerek És felő majd az új gyereksereg:

Részletesebben

A rekurzív módszer Erdős Gábor, Nagykanizsa

A rekurzív módszer Erdős Gábor, Nagykanizsa Maga zitű matematikai tehetéggodozá A rekurzív módzer Erdő Gábor, Nagykaiza Gyakra találkozuk olya feladatokkal, amelyekbe agy zámok zerepelek: pot, zámkártya, tb. Az ilye eetekbe kézefekvő ötlet, hogy

Részletesebben

Ismétlés nélküli permutáció

Ismétlés nélküli permutáció Ismétlés nélküli permutáció Hányféleképpen lehet sorba rendezni n különböz elemet úgy, hogy a sorrend számít? (Ezt n elem ismétlés nélküli permutációjának nevezzük.) Például hány féleképpen lehet sorba

Részletesebben

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0. Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N

Részletesebben

kiértékelésének technikája

kiértékelésének technikája 1 H NMR titrálások felvételéek és kiértékeléséek techikája Midazokak, akik elıször próbálkozak NMR titrálásokkal. Készítette: Dr. Lázár Istvá DE Szervetle és Aalitikai Kémiai Taszék Debrece, 2006. jauár

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2014. október 14. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2014. október 14. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2014. október 14. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 14. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

ALGORITMUSOK A MATEMATIKAOKTATÁSBAN

ALGORITMUSOK A MATEMATIKAOKTATÁSBAN Eötvös Lorád Tudomáyegyetem, Természettudomáyi Kar Matematikataítási és Módszertai Közpot ALGORITMUSOK A MATEMATIKAOKTATÁSBAN Készítette: Varga Viktória Matematika Bsc taári szakiráy Témavezető: Fried

Részletesebben

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1

148 feladat 20 ) + ( 1 21 + 2 21 + + 20 200 > 1 2. 1022 + 1. 5. Igazoljuk minél rövidebben, hogy a következő egyenlőség helyes: 51 + 1 52 + + 1 148 feladat a Kalmár László Matematikaversenyről 1. ( 1 19 + 2 19 + + 18 19 ) + ( 1 20 + 2 20 + + 19 20 ) + ( 1 21 + 2 21 + + 20 21 ) + ( 1 22 + 2 22 + + 21 22 ) =? Kalmár László Matematikaverseny megyei

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

Készítette: Ernyei Kitti. Halmazok

Készítette: Ernyei Kitti. Halmazok Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Egy fa tövétől a fára mászik fel egy csiga. Nappalonként 3 métert mászik felfelé, de éjszakánként 2 métert visszacsúszik. Az indulástól számított 10. nap délutánjáig felér a csúcsra. Milyen

Részletesebben

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Sztereó kamera Kató Zoltá Képfeldolgozás és Számítógépes Grafika taszék SZTE (http://www.if.u-szeged.hu/~kato/teachig/) Sztereó kamerák Az emberi látást utáozza 3 Sztereó kamera pár Két, ugaazo 3D látvát

Részletesebben

Színes érettségi feladatsorok matematikából középszint írásbeli

Színes érettségi feladatsorok matematikából középszint írásbeli Színes érettségi feladatsorok matematikából középszint írásbeli I. rész 1. Mivel egyenlő ( x 3) 2, ha x tetszőleges valós számot jelöl? A) x 3 B) 3 x C) x 3 2. Mekkora az a és b szöge az ábrán látható

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben

A 10/2007 (II. 27.) 1/2006 (II. 17.) OM

A 10/2007 (II. 27.) 1/2006 (II. 17.) OM A 0/2007 (II. 27.) SzMM redelettel módosított /2006 (II. 7.) OM redelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe törtéő felvétel és törlés eljárási redjéről alapjá. Szakképesítés, szakképesítés-elágazás,

Részletesebben

PELTON TURBINA MÉRÉSE

PELTON TURBINA MÉRÉSE idrodiamikai Redszerek Taszék PELTON TURBINA MÉRÉSE 1. A mérés célja A mérés célja egy, a gyógyszer- és vegyiparba eergia visszayerés céljára haszálatos saválló jelleggörbéiek felvétele. A turbia jellemzői:

Részletesebben

(2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A)

(2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A) A póker matematikája Mostanában egyre közkedveltebb kártyajáték lett a (Holdem) Poker, melynek az is oka lehet, hogy a televízióban megjelent a nagyobb versenyek közvetítése. Mint minden kártyajátékban,

Részletesebben

SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban:

SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban: SZÁMTANI SOROZATOK Egyszerű feladatok. Egy számtani sorozatban: a) a, a 29, a? 0 b) a, a, a?, a? 80 c) a, a 99, a?, a? 0 20 d) a 2, a2 29, a?, a90? 2 e) a, a, a?, a00? 2. Hány eleme van az alábbi sorozatoknak:

Részletesebben

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója SZAKKÖZÉPISKOLA A 006-007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója. Feladat: Egy számtani sorozat három egymást követő tagjához rendre 3-at, -et, 3-at adva

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

SZÁMELMÉLET FELADATSOR

SZÁMELMÉLET FELADATSOR SZÁMELMÉLET FELADATSOR Oszthatóság 1. Az 123x4 számban milyen számjegy állhat x helyén, ha a szám osztható a) 3-mal; e) 6-tal; b) 9-cel; f) 24-gyel; c) 4-gyel; g) 36-tal; d) 8-cal; h) 72-vel? 2. Határozd

Részletesebben

50. modul 1. melléklet 2. évfolyam tanítói fólia

50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 2. melléklet 2. évfolyam tanítói fólia 50. modul 3. melléklet 2. évfolyam tanítói fólia 50. modul 4. melléklet 2. évfolyam tanítói fólia és csoport

Részletesebben

Halmazok. A és B különbsége: A \ B. A és B metszete: A. A és B uniója: A

Halmazok. A és B különbsége: A \ B. A és B metszete: A. A és B uniója: A Halmazok Érdekes feladat lehet, amikor bizonyos mennyiségű adatok között keressük az adott tulajdonsággal rendelkezők számát. A következőekben azt szeretném megmutatni, hogy a halmazábrák segítségével,

Részletesebben

Elektrokémiai fémleválasztás. Felületi érdesség: definíciók, mérési módszerek és érdesség-változás a fémleválasztás során

Elektrokémiai fémleválasztás. Felületi érdesség: definíciók, mérési módszerek és érdesség-változás a fémleválasztás során Elektrokémiai fémleválasztás Felületi érdesség: defiíciók, mérési módszerek és érdesség-változás a fémleválasztás sorá Péter László Elektrokémiai fémleválasztás Felületi érdesség fogalomköre és az érdesség

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

Matematika 9. matematika és fizika szakos középiskolai tanár. I. fejezet (kb. 16 tanóra) > o < 2015. október 3.

Matematika 9. matematika és fizika szakos középiskolai tanár. I. fejezet (kb. 16 tanóra) > o < 2015. október 3. Matematika 9 Tankönyv és feladatgyűjtemény Juhász László matematika és fizika szakos középiskolai tanár I. fejezet (kb. 16 tanóra) > o < 2015. október 3. copyright: c Juhász László Ennek a könyvnek a használatát

Részletesebben

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött

Részletesebben

MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK!

MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK! MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK! Készítette: Kovács Károlyné MATEMATIKA C 9. ÉVFOLYAM 4. MODUL: OSZTOZZUNK! TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz MÉRÉSMETODIKAI ALAPISMERETEK a FIZIKA kétszitű érettségire felkészítő tafolyamhoz A fizika mukaközösségi foglalkozásoko és a kétszitű érettségi való vizsgáztatásra felkészítő tafolyamoko 004-009-be elhagzottak

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2010. Június 4.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2010. Június 4. EURÓPAI ÉRETTSÉGI 2010 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2010. Június 4. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

Diszkrét matematika I. feladatok

Diszkrét matematika I. feladatok Diszkrét matematika I feladatok 1 Teljes indukció 11 Könnyebb Teljes indukcióval bizonyítsd be az alábbi összefüggéseket: 1 1 + + 3 + + n = 1 + + 3 + + n = n(n + 1) 3 1 + 3 + + n(n + 1) = n(n + 1)(n +

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. október 21. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2008. október 21. EMELT SZINT MATEMATIKA ÉRETTSÉGI 008. október. EMELT SZINT ) Oldja meg a valós számok halmazán az alábbi egyenleteket: a) b) lg 8 0 6 I. (5 pont) (5 pont) a) A logaritmus értelmezése alapján: 80 ( vagy ) Egy szorzat

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok Matematikai alapok és valószínőségszámítás Valószínőségszámítási alapok Bevezetés A tudományos életben vizsgálódunk pontosabb megfigyelés, elırejelzés, megértés reményében. Ha egy kísérletet végzünk, annak

Részletesebben

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL 36 MIXCONTROL AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL Subert Istvá deformáció-elleálló keverékvázat lehet létrehozi. Kiidulási feltétel az alkalmazás helyéek

Részletesebben

Feladatok. 7. Tíz rabló a kincseit egy több lakattal lezárható ládában gyűjti. Az egyes lakatokat egy-egy

Feladatok. 7. Tíz rabló a kincseit egy több lakattal lezárható ládában gyűjti. Az egyes lakatokat egy-egy Feladatok 1. Hányféleképpen állhat sorba n fiú és n lány úgy, hogy azonos neműek ne álljanak egymás mellett?. Hány olyan hétszámjegyű telefonszám készíthető, amiben pontosan két különböző számjegy szerepel,

Részletesebben

7. témakör: kombinatorika. Kidolgozott feladatok:

7. témakör: kombinatorika. Kidolgozott feladatok: 7. témakör: kombinatorika Kidolgozott feladatok:.) A színházba egy fős baráti társaság jegyei egymás mellé szólnak. Hányféleképpen ülhetnek le egymás mellé? Hányféleképpen ülhetnek le akkor, ha András

Részletesebben