Diszkrét matematika 1.
|
|
- Ottó Hegedüs
- 6 évvel ezelőtt
- Látták:
Átírás
1 Diszkrét matematika ősz 1. Diszkrét matematika előadás Mérai László diái alapján Komputeralgebra Tanszék 201. ősz
2 Kombinatorika Diszkrét matematika ősz 2. Kombinatorika Kombinatorika fő célja: Példák: véges halmazok elemeinek elrendezése; elrendezések különböző lehetőségeinek megszámlálása. Nyolc ember közül van legalább kettő, aki a hét ugyanazon napján született. Minimálisan hány ember esetén lesz legalább két embernek ugyanazon a napon a születésnapja? Mennyi a lehetséges rendszámok / telefonszámok / IP címek száma? Legalább hány szelvényt kell kitölteni, hogy biztosan nyerjünk a lottón / totón?
3 Kombinatorika Diszkrét matematika ősz 3. Elemi leszámlálások Adott két véges, diszjunkt halmaz: A = {a 1, a 2,..., a n }, B = {b 1, b 2,..., b m }. Hányféleképpen tudunk választani egy elemet A-ból vagy B-ből? Lehetséges választások: a 1, a 2,..., a n, b 1, b 2,..., b m. Számuk: n + m. Egy cukrászdában 3-féle édes sütemény (isler, zserbó, kókuszkocka) és 2-féle sós sütemény (pogácsa, perec) van. Hányféleképpen tudunk egy édes vagy egy sós sütemény enni? Megoldás: =.
4 Kombinatorika Diszkrét matematika ősz. Elemi leszámlálások Adott két véges, diszjunkt halmaz: A = {a 1, a 2,..., a n }, B = {b 1, b 2,..., b m }. Hányféleképpen tudunk választani elemet A-ból és B-ből? Lehetséges választások: Számuk: n m. b 1 b 2... b m a 1 (a 1, b 1 ) (a 1, b 2 )... (a 1, b m ) a 2 (a 2, b 1 ) (a 2, b 2 )... (a 2, b m ) a n (a n, b 1 ) (a n, b 2 )... (a n, b m ) Egy cukrászdában 3-féle édes sütemény (isler, zserbó, kókuszkocka) és 2-féle sós sütemény (pogácsa, perec) van. Hányféleképpen tudunk egy édes és egy sós sütemény enni? Megoldás: 3 2 = 6.
5 Kombinatorika Diszkrét matematika ősz. Permutáció Tétel Legyen A egy n elemű halmaz. Ekkor az A elemeinek lehetséges sorrendje: P n = n! = n(n 1)(n 2) (n faktoriális). Itt 0! = 1. Reggelire a 2 különböző szendvicset 2! = 2 1 = 2 -féle sorrendben lehet megenni. 3 különböző szendvicset 3! = = 6-féle sorrendben lehet megenni. különböző szendvicset! = = 2-féle sorrendben lehet megenni. A 200 fős évfolyam 200! = , féle sorrendben írhatja alá a jelenléti ívet. Bizonyítás Az n elemből az első helyre n-féleképpen választhatunk, a második helyre n 1-féleképpen választhatunk,... Így az összes lehetőségek száma n(n 1)
6 Kombinatorika Diszkrét matematika ősz 6. Ismétléses permutáció Egy vizsgán hallgató vett részt, 2 darab -es, 3 darab -ös született. Hány sorrendben írhatjuk le az eredményeket? Megoldás Ha figyelembe vesszük a hallgatókat is: (2 + 3)! =! lehetséges sorrend van. Ha a hallgatókat nem tüntetjük fel, egy lehetséges sorrendet többször is figyelembe vettünk: Az -ösöket 3! = 6-féleképpen cserélhetjük, ennyiszer vettünk figyelembe minden sorrendet. Hasonlóan a -eseket 2! = 2-féleképpen cserélhetjük, ennyiszer vettünk figyelembe minden sorrendet. Összes lehetőség:! 2! 3! = =
7 Kombinatorika Diszkrét matematika ősz 7. Ismétléses permutáció Tétel k 1 darab első típusú, k 2 második típusú,..., k m m-edik típusú elem lehetséges sorrendjét az elemek ismétléses permutációinak nevezzük, és számuk n = k 1 + k k m esetén Bizonyítás i n! Pn k1,k2,...,km = k 1! k 2!... k m!. Ha minden elem között különbséget teszünk: (k 1 + k k m )! lehetséges sorrend létezik. Ha az i-edik típusú elemek között nem teszünk különbséget, akkor az előbb megkapott lehetséges sorrendek között k i! egyforma van. Ha az azonos típusú elemek között nem teszünk különbséget, akkor az előbb megkapott lehetséges sorrendek között k 1! k 2!... k m! egyforma van. Így ekkor a lehetséges sorrendek száma: (k 1 + k k m )!. k 1! k 2!... k m!
8 Kombinatorika Diszkrét matematika ősz 8. Variáció Az egyetemen 10 tárgyunk van, ezek közül 3-at szeretnénk hétfőre tenni. Hányféleképpen tehetjük meg ezt? Megoldás Hétfőn az első óránk 10-féle lehet. A második 9-féle, a harmadik 8-féle lehet. Így összesen féleképpen tehetjük meg. Tétel Adott egy n elemű A halmaz. Ekkor k elemet Vn k = n (n 1)... (n k + 1) = n!/(n k)!-féleképpen választhatunk ki. Bizonyítás Az A halmazból először n-féleképpen választhatunk, második esetben (n 1),..., k-adik esetben n k + 1-féleképpen választhatunk.
9 Kombinatorika Diszkrét matematika ősz 9. Ismétléses variáció A 0, 1, 2 számjegyekből hány legfeljebb kétjegyű szám képezhető? Megoldás Az első helyiértékre 3-féleképpen írhatunk számjegyet: A második helyiértékre szintén 3-féleképpen írhatunk számjegyet: Összesen: 3 3 = 9
10 Kombinatorika Diszkrét matematika ősz 10. Ismétléses variáció Tétel Egy n elemű A halmaz elemeiből i Vn k készíthető. = n k darab k hosszú sorozat Bizonyítás A sorozat első elemét n-féleképpen választhatjuk, a második elemét n-féleképpen választhatjuk,... Egy totószelvényt ( helyre 1, 2 vagy x kerülhet) 3 1 = féleképpen lehet kitölteni. Mennyi egy n elemű halmaz összes részhalmazainak száma? Legyen A = {a 1, a 2,..., a n }. Ekkor minden részhalmaz megfelel egy n hosszú 0 1 sorozatnak: ha a sorozat i-edik eleme 1, akkor a i benne van a részhalmazban. (0, 0,..., 0), {a 1, a 3 } (1, 0, 1, 0,..., 0),..., A (1, 1,..., 1) Hány n hosszú 0 1 sorozat van: 2 n.
11 Kombinatorika Diszkrét matematika ősz 11. Kombináció Tétel Egy n elemű A halmaznak a k elemű részhalmazainak száma ( ) n Cn k n! = = k k! (n k)!. Bizonyítás Először válasszunk A elemei közül k darabot a sorrendet figyelembevéve. Ezt n(n 1)... (n k + 1) = n! (n k)!-féleképpen tehetjük meg. Ha a sorrendtől eltekintünk, akkor az előző leszámlálásnál minden k elemű részhalmaz pontosan k!-szor szerepel. Ezzel leosztva kapjuk a k elemű részhalmazok számát. Egy ( ) lottószelvény (90 számból ) lehetséges kitöltéseinek száma: 90 = 90! = = ! 8! 3 2 1
12 Kombinatorika Diszkrét matematika ősz 12. Ismétléses kombináció Tétel Egy n elemű A halmaz elemeiből ha k-szor választunk úgy, hogy egy elemet többször is választhatunk, akkor a lehetséges választások száma ( ) n + k 1 i Cn k =. k Bizonyítás Legyen A = {a 1, a 2,..., a n }. Ekkor minden egyes lehetőségnek megfeleltetünk egy 0 1 sorozatot: 1, 1,..., 1, 0, 1, 1,..., 1, 0,..., 0, 1, 1,..., 1. }{{}}{{}}{{} a 1-ek száma a 2-k száma a n-ek száma Ekkor a sorozatban k darab 1-es van (választott elemek száma), n 1 darab 0 van (szeparátorok száma). Összesen n 1 + k pozíció, ezekből k-t választunk. Ilyen sorozat ( ) n+k 1 k darab van.
13 Kombinatorika Diszkrét matematika ősz 13. Ismétléses kombináció -féle sütemény van a cukrászdában, 8 darabot szeretnénk vásárolni. Hányféleképpen tehetjük ezt meg? Itt n =, k = 8: ( ) = 8 ( 12 8 ) = 12! 8!! = 9. Hányféleképpen dobhatunk dobókockával? Az {1, 2, 3,,, 6} halmazból -ször választunk (sorrend nem számít, egy elemet többször is választhatunk). Ismétléses kombináció n = 6, k = választással: ( ) ( ) = = 10!!! = 22.
14 Kombinatorika Diszkrét matematika ősz 1. Összefoglaló Ismétlés nélküli permutáció n!, n elem lehetséges sorrendje (sorrend számít, egy elem (pontosan) egyszer). Ismétléses permutáció (k 1 + k k m )!, n = k 1 + k k m k 1! k 2!... k m! elem lehetséges sorrendje, ahol az i típusú elemet k i -szer választjuk (sorrend számít, egy elem többször). Ismétlés nélküli variáció n!/(n k)!, n elemből k-t választunk (sorrend számít, egy elem legfeljebb egyszer). Ismétléses variáció n k, n elemből k-szor választunk (sorrend számít, egy elem többször is). ( ) n Ismétlés nélküli kombináció, n elemből k-t választunk (sorrend k nem számít, egy elem legfeljebb egyszer). ( ) n + k 1 Ismétléses kombináció, n elemből k-szor választunk k (sorrend nem számít, egy elem többször is).
15 Kombinatorika Diszkrét matematika ősz 1. Binomiális tétel Tétel Adott x, y R és n N esetén (x + y) n = n k=0 ( ) n x k y n k. k Bizonyítás (x + y) n = (x + y) (x + y)... (x + y) Ha elvégezzük a beszorzást, akkor x k y n k alakú tagokat kapunk, és ezen tagot annyiszor kapjuk meg, ahányszor az n tényezőből k darab x-et választunk. Definíció ( ) n Az alakú számokat (n, k N) binomiális együtthatónak nevezzük. k
16 Kombinatorika Diszkrét matematika ősz 16. Binomiális együttható Tétel ( ) ( ) n n 1. =. k n k ( ) ( ) ( ) n n 1 n 1 2. = +. k k 1 k Bizonyítás ( n ) k azon n hosszú 0 1 sorozatok száma, melyben k darab 1-es van. 1. Az n hosszú 0 1 sorozatok közül azok száma, melyek k darab 1-est tartalmaznak megegyezik azok számával, melyek n k darab 1-est tartalmaznak. 2. Azon n hosszú, k darab 1-est tartalmazó 0 1 sorozatok száma, melynek első tagja 1: ( n 1 k 1). Azon n hosszú, k darab 1-est tartalmazó 0 1 sorozatok száma, melynek első tagja 0: ( ) n 1 k.
17 Kombinatorika Diszkrét matematika ősz 17. Binomiális együttható (x + y) n = n k=0 ( ) n x k y n k : k ( ) n = k n! k!(n k)! n ( n k) (x + y) n x + y x 2 + 2xy + y x 3 + 3x 2 y + 3xy 2 + y x + x 3 y + 6x 2 y 2 + xy 3 + y x + x y + 10x 3 y x 2 y 3 + xy + y
18 Kombinatorika Diszkrét matematika ősz 18. Polinomiális tétel Mennyi lesz? (x + y + z) 2 = x 2 + y 2 + z 2 + 2xy + 2xz + 2yz. (x + y + z) 3 =... Tétel r, n N esetén (x 1 + x x r ) n = Bizonyítás i 1+i i r =n n! i 1! i 2!... i r! x i1 1 x i x ir r. (x 1 + x x r ) n = (x 1 + x x r )(x 1 + x x r ) (x 1 + x x r ). Az ( )( x i1 1 x i )( x r ir együtthatója: ) ( ) n n i 1 n i 1 i 2 n i 1 i 2... i r 1 = i 1 i 2 i 3 i r n! (n i 1)! i 1!(n i 1)! i 2!(n i 1 i (n i 1 i 2... i r 1)! 2)! i r!(n i 1... i r 1 i r )! = n! i 1! i 2! i r!
19 Kombinatorika Diszkrét matematika ősz 19. Polinomiális tétel (x 1 + x x r ) n = (x + y + z) 3 =... i 1+i i r =n i 1 i 2 i 3 3! i 1!i 2!i 3! (x + y + z) 3 = ! 3!0!0! = 1 x 3 3! !1!0! = 3 +3x 2 y 3! !0!1! = 3 +3x 2 z 3! !2!0! = 3 +3xy 2 3! !1!1! = 6 +6xyz 3! !0!2! = 3 +3xz2 3! !3!0! = 1 +y 3 3! !2!1! = 3 +3y 2 z 3! !1!2! = 3 +3yz2 3! !0!3! = 1 +z3 n! i 1!i 2! i r! x i1 1 x i2 2 x r ir
20 Kombinatorika Diszkrét matematika ősz 20. Skatulya-elv Skatulya-elv Ha n darab gyufásdobozunk és n + 1 gyufaszálunk van, akkor akárhogyan rakjuk bele az összes gyufát a skatulyákba, valamelyikben legalább kettő gyufa lesz. Nyolc ember közül van legalább kettő, aki a hét ugyanazon napján született. Az A = {1, 2, 3,,, 6, 7, 8} halmazból bárhogyan választunk ki ötöt, akkor lesz közülük kettő, melyek összege 9. Tekintsük az {1, 8}, {2, 7}, {3, 6}, {, } halmazokat. Ekkor a kiválasztott öt elem közül lesz kettő, melyek azonos halmazban lesznek, így összegük 9.
21 Kombinatorika Diszkrét matematika ősz 21. Szita módszer Hány olyan 1000-nél kisebb szám van, amely nem osztható sem 2-vel, sem 3-mal, sem -tel? Az 1000-nél kisebb számok összes vel osztható = mal osztható = tel osztható 999 = mal osztható 2 -tel osztható 3 -tel osztható 2 3 -tel osztható = = = = = 266
22 Kombinatorika Diszkrét matematika ősz 22. Szita módszer Tétel Legyenek A 1, A 2,..., A n véges halmazok. Ekkor n i=1 A i = n i=1 A i i<j A i A j + i<j<k A i A j A k... Hány olyan 1000-nél kisebb szám van, amely nem osztható sem 2-vel, sem 3-mal, sem -tel? Először: Hány olyan 1000-nél kisebb szám van, amely osztható 2-vel vagy 3-mal vagy -tel? A 1 = {1 n 999 : 2 n} A 1 = ; A 2 = {1 n 999 : 3 n} A 2 = ; A 3 = {1 n 999 : n} A 3 = 999. Hasonlóan A 1 A 2 = , A1 A 3 = 999 2, A2 A 3 = 999 3, A 1 A 2 A 3 = vel vagy 3-mal vagy -tel osztható számok száma:
23 Kombinatorika Diszkrét matematika ősz 23. Általános szita formula Tétel Legyenek A 1,..., A n az A véges halmaz részhalmazai, f : A R tetszőleges függvény. Legyenek S = f (x); x A S r = f (x); 0<i 1<i 2<...<i r n x A i1 A i2... A ir S 0 = f (x). x A\ n i=1 A i Ekkor S 0 = S S 1 + S 2 S 3 ±... + ( 1) n S n. A = {1, 2,..., 999}, A 1 = {n : 1 n < 1000, 2 n}, A 2 = {n : 1 n < 1000, 3 n}, A 3 = {n : 1 n < 1000, n}, f (x) = 1. S 0 : 2-vel, 3-mal, -tel nem osztható 1000-nél kisebb számok száma.
24 Kombinatorika Diszkrét matematika ősz 2. Általános szita formula bizonyítása S 0 = S S 1 + S 2 S 3 ±... + ( 1) n S n : S 0 = f (x), S = f (x) x A\ n i=1 A i x A S r = f (x) 0<i 1<i 2<...<i r n x A i1 A i2... A ir Bizonyítás Ha x A \ n i=1 A i, akkor f (x) mindkét oldalon egyszer szerepel. Ha x n i=1 A i, legyenek A j1,..., A jt azon részhalmazok, melyeknek x eleme. Ekkor f (x) a bal oldalon nem szerepel. Jobb oldalon a f (x) 0<i 1<i 2< <i r n x A i1 A i2 A ir összegben szerepel, ha {i 1,..., i r } {j 1,..., j t }. Ilyen r elemű indexhalmaz ( t r) darab van. Így f (x) együtthatója t ( ) t ( 1) r = 0 (Biz.: gyakorlaton). r r=0
Diszkrét matematika 1.
Diszkrét matematika 1. 2017. ősz 1. Diszkrét matematika 1. 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra Tanszék
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenDefiníció n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük.
9. Kombinatorika 9.1. Permutációk n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük. n elem ismétlés nélküli permutációinak száma: P n = =1 2
RészletesebbenKombinatorika - kidolgozott típuspéldák
Kombinatorika - kidolgozott típuspéldák az összes dolgot sorba rakjuk minden dolog különböző ismétlés nélküli permutáció Hányféleképpen lehet sorba rakni n különböző dolgot? P=1 2... (n-1) n=n! például:
RészletesebbenKombinatorika. I. típus: Hányféleképpen lehet sorba rendezni n különböző elemet úgy, hogy a sorrend számít? (Ismétlés nélküli permutáció)
Kombinatorika Az első n pozitív egész szám szorzatát n faktoriálisnak nevezzük és n! jellel jelöljük: n! := 1 2 3 4... (n 1) n 0! := 1 1! := 1 I. típus: Hányféleképpen lehet sorba rendezni n különböző
Részletesebben7! (7 2)! = 7! 5! = 7 6 5! 5 = = ből 4 elem A lehetőségek száma megegyezik az 5 elem negyedosztályú variációjának számával:
Kombinatorika Variáció - megoldások 1. Hány kétjegyű szám képezhető a 2, 3, 5, 6, 7, 8, 9 számjegyekből. ha minden számjegyet csak egyszer használhatunk fel? A lehetőségek száma annyi, mint amennyi 7 elem
RészletesebbenNyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 1. MA3-1 modul. Kombinatorika
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 1. MA3-1 modul Kombinatorika SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI.
Részletesebbenæ A GYAKORLAT (* feladatok nem kötelezőek)
æ A3 6-7. GYAKORLAT (* feladatok nem kötelezőek) 1. Az 1,2,4,5,7 számkártyák mindegyikének felhasználásával hány különböző 5- jegyű szám készíthető? 2. A 0,2,4,5,7 számkártyák mindegyikének felhasználásával
RészletesebbenBiomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
Részletesebbenæ A GYAKORLAT (* feladatok nem kötelezőek)
æ A3 6-7. GYAKORLAT (* feladatok nem kötelezőek) 1. Az 1,2,4,5,7 számkártyák mindegyikének felhasználásával hány különböző 5- jegyű szám készíthető? 2. A 0,2,4,5,7 számkártyák mindegyikének felhasználásával
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
RészletesebbenKombinatorika avagy hányféleképp? Piros, fehér zöld színekből hány ország számára tudunk különböző zászlókat készíteni?
Kombinatorika avagy hányféleképp? Piros, fehér zöld színekből hány ország számára tudunk különböző zászlókat készíteni? Kombinatorika avagy hányféleképp? Zsuzsi babájának négyféle színes blúza és kétféle
Részletesebben24. tétel. Kombinatorika. A grá fok.
2009/2010 1 Huszk@ Jenő 24. tétel. Kombinatorika. A grá fok. 1.Kombinatorika A kombinatorika a véges halmazokkal foglalkozik. Olyan problémákat vizsgál, amelyek függetlenek a halmazok elemeinek mibenlététől.
RészletesebbenTananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,
// KURZUS: Matematika II. MODUL: Valószínűség-számítás 16. lecke: Kombinatorika (alapfeladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.
Részletesebben8. GYAKORLÓ FELADATSOR MEGOLDÁSA. (b) amelyiknek mindegyik számjegye különböző, valamint a második számjegy a 2-es?
8. GYAKORLÓ FELADATSOR MEGOLDÁSA 1. Az 1, 2,,,, 6 számjegyekből hány hatjegyű számot alkothatunk, (a) amelyiknek mindegyik számjegye különböző? (b) amelyiknek mindegyik számjegye különböző, valamint a
RészletesebbenKombinatorika. Permutáció
Kombinatorika Permutáció 1. Adva van az 1, 2, 3, 4, 5, 6, 7, 8, 9 számjegy. Hány különböző 9-jegyű szám állítható elő ezekkel a számjegyekkel, ha a számjegyek nem ismétlődhetnek? Mi van akkor, ha a szám
RészletesebbenKombinatorika gyakorló feladatok
Kombinatorika gyakorló feladatok Egyszerűbb gyakorló feladatok 1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt? P = 3 2 1 = 6. 3 2. Hány különböző négyjegyű számot
RészletesebbenKombinatorika jegyzet és feladatgyűjtemény
Kombinatorika jegyzet és feladatgyűjtemény Király Balázs, Tóth László Pécsi Tudományegyetem 2011 2 Lektor: Kátai Imre egyetemi tanár, az MTA rendes tagja Tartalomjegyzék Előszó 5 I. Jegyzet 7 I.1. Permutációk,
RészletesebbenTananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,
// KURZUS: Matematika II. MODUL: Valószínűség-számítás 17. lecke: Kombinatorika (vegyes feladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.
RészletesebbenMatematika A3 Valószínűségszámítás, 0. és 1. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 0. és 1. gyakorlat 2013/14. tavaszi félév 1. Kombinatorikus módszer ismétlés nélküli ismétléses permutáció k 1!k 2!...k r! n futó beérkezésének sorrendje n golyót ennyiféleképpen
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Kombinatorika
RészletesebbenSzerencsejátékok. Elméleti háttér
Szerencsejátékok A következőekben a Szerencsejáték Zrt. által adott játékokat szeretném megvizsgálni. Kiszámolom az egyes lehetőségeknek a valószínűségét, illetve azt, hogy mennyi szelvényt kell ahhoz
Részletesebbensemelyik kivett golyót nem tesszük vissza később az urnába. Hányféle színsorrendben tehetjük ezt meg?
VIII. KOMBINATORIKA VIII.1. Kombinatorikai alapfeladatok 1. Példa. Egy urnában egy piros golyó P, egy fehér golyó F és egy zöld golyó Z van. Egymás után kihúzzuk a három golyót, semelyik kivett golyót
RészletesebbenBevezetés a matematikába (2009. ősz) 1. röpdolgozat
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat 1. feladat. Fogalmazza meg a következő ítélet kontrapozícióját: Ha a sorozat csökkenő és alulról korlátos, akkor konvergens. 2. feladat. Vezessük be
RészletesebbenFeladatok és megoldások az 1. sorozat Építőkari Matematika A3
Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;
Részletesebben1. FELADATSOR MEGOLDÁSAI. = 6. Ezek a sorozatok a következők: ab, ac, ba, bc, ca, cb.
1. FELADATSOR MEGOLDÁSAI Elméleti áttekintés Ismétlés nélküli variáció. Egy n elemű halmazból képezhető k elemű sorozatok száma, ha a sorozatok nem tartalmaznak ismétlődést n! (1 = n (n 1... (n k (n k
RészletesebbenKombinatorikai algoritmusok. (Horváth Gyula és Szlávi Péter előadásai felhasználásával)
Kombinatorikai algoritmusok (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával,
RészletesebbenKombinatorikai algoritmusok
Kombinatorikai algoritmusok (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával,
RészletesebbenK O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k
K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k. Az 1,, 3,, elemeknek hány permutációja van, amelynek harmadik jegye 1- es? Írjuk fel őket! Annyi ahányféleképpen
RészletesebbenKOMBINATORIKA. Készítette: Bordi István Tóth Árpád Gimnázium Debrecen,
KOMBINATORIKA 1 Készítette: Bordi Istvá Tóth Árpád Gimázium Debrece, boi@tagdebr.suliet.hu Kérdések: A KOMBINATORIKA TÁRGYA 1. elemet háyféleképpe lehet egymás mellé tei (permutáció). 2. elemből háyféleképpe
RészletesebbenFeladatok és megoldások a 8. hétre Építőkari Matematika A3
Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet
RészletesebbenLogikai szita (tartalmazás és kizárás elve)
Logikai szita (tartalmazás és kizárás elve) Kombinatorika 5. előadás SZTE Bolyai Intézet Szeged, 2016. március 1. 5. ea. Logikai szita két halmazra 1/4 Középiskolás feladat. Egy 30 fős osztályban a matematikát
Részletesebben1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,
RészletesebbenPermutáció (ismétlés nélküli)
Permutáció (ismétlés nélküli) Mi az az ismétlés nélküli permutáció?... 1. Három tanuló, András, Gábor és Róbert együtt mennek az iskolába. Hányféle sorrendben léphetik át az iskola küszöbét? Írja fel a
RészletesebbenKOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula
KOMBINATORIKA ELŐADÁS osztatlan matematka tanár hallgatók számára Szta formula Előadó: Hajnal Péter 2015. 1. Bevezető példák 1. Feladat. Hány olyan sorbaállítása van a a, b, c, d, e} halmaznak, amelyben
RészletesebbenJáték a szavakkal. Ismétléses nélküli kombináció: n különböző elem közül választunk ki k darabot úgy, hogy egy elemet csak egyszer
Játék a szavakkal A következőekben néhány szóképzéssel kapcsolatos feladatot szeretnék bemutatni, melyek során látni fogjuk, hogy egy ábrából hányféleképpen olvashatunk ki egy adott szót, vagy néhány betűből
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
RészletesebbenA biomatematika alapjai és a kapcsolódó feladatok megoldása számítógép segítségével Abonyi-Tóth Zsolt, 2005-2006 készült Harnos Andrea, Reiczigel Jenő zoológus előadásainak valamint Fodor János és Solymosi
RészletesebbenAdatszerkezetek II. 10. előadás
Adatszerkezetek II. 10. előadás Kombinatorikai algoritmusok A kombinatorika: egy véges halmaz elemeinek valamilyen szabály alapján történő csoportosításával, kiválasztásával, sorrendbe rakásával foglalkozik
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenKombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula.
Kombinatorika Variáció, permutáció, kombináció. Binomiális tétel, szita formula.. Kombinatorikai alapfeladatok A kombinatorikai alapfeladatok lényege az, hogy bizonyos elemeket sorba rendezünk, vagy néhányat
RészletesebbenKészítette: Ernyei Kitti. Halmazok
Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer
Részletesebben2018, Diszkrét matematika
Diszkrét matematika 12. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, ománia 2018, őszi félév Miről volt szó az elmúlt előadáson? a diszkrét logaritmus,
RészletesebbenIsmétlés nélküli kombináció
Ismétlés nélküli kombináció Hányféleképpen lehet n különböz elembl kiválasztani k elemet úgy, hogy a sorrend nem számít, és minden elemet csak egyszer választhatunk? 0. Egy 1 fs csoportban hányféleképpen
RészletesebbenFPI matek szakkör 8. évf. 4. szakkör órai feladatok megoldásokkal. 4. szakkör, október. 20. Az órai feladatok megoldása
4. szakkör, 2004. október. 20. Az órai feladatok megoldása Most csak három önmagában nem nehéz feladatot kapsz, és a feladatot magadnak kell általánosítani, szisztematikusan adatot gyűjteni, általános
RészletesebbenA 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták)
A 205/206. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA a speciális tanterv szerint haladó gimnazisták Javítási-értékelési útmutató. feladat Az {,2,...,n} halmaz
RészletesebbenKlasszikus valószínűségi mező megoldás
Klasszikus valószínűségi mező megoldás Ha egy Kísérletnek csak véges sok kimenetele lehet, és az egyes kimeneteleknek, vagyis az elemi eseményeknek azonos a valószínűségük, akkor a kísérelttel kapcsolatos
RészletesebbenARCHIMEDES MATEMATIKA VERSENY
Koszinusztétel Tétel: Bármely háromszögben az egyik oldal négyzetét megkapjuk, ha a másik két oldal négyzetének összegéből kivonjuk e két oldal és az általuk közbezárt szög koszinuszának kétszeres szorzatát.
RészletesebbenEseményalgebra, kombinatorika
Eseméyalgebra, kombiatorika Eseméyalgebra Defiíció. Véletle kísérletek evezük mide olya megfigyelést, melyek több kimeetele lehetséges, és a véletletől függ, (azaz az általuk figyelembevett feltételek
Részletesebben1. A kísérlet naiv fogalma. melyek közül a kísérlet minden végrehajtásakor pontosan egy következik be.
IX. ESEMÉNYEK, VALÓSZÍNŰSÉG IX.1. Események, a valószínűség bevezetése 1. A kísérlet naiv fogalma. Kísérlet nek nevezzük egy olyan jelenség előidézését vagy megfigyelését, amelynek kimenetelét az általunk
RészletesebbenSzámelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
RészletesebbenPl.: hányféleképpen lehet egy n elemű halmazból k elemű részhalmazt kiválasztani, n tárgyat hányféleképpen lehet szétosztani k személy között stb.?
Dr. Vicze Szilvia A kombiatorika a véges halmazokkal foglalkozik. A véges halmazokkal kapcsolatba számos olya probléma vethető fel, amely függetle a halmazok elemeitől. Pl.: háyféleképpe lehet egy elemű
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2016. ősz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2016.
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Kombinatorika
Kombinatorika Modulok: A kombinatorikai feladatok megoldásához három modult használunk: Permutáció (Sorba rendezés) Kombináció (Kiválasztás) Variáció (Kiválasztás és sorba rendezés) DEFINÍCIÓ: (Ismétlés
RészletesebbenMATEMATIKA 11. osztály I. KOMBINATORIKA
MATEMATIKA 11. osztály I. KOMBINATORIKA Kombinatorika I s m é t l é s n é l k ü l i p e r m u t á c i ó 1. Öt diák (A, B, C, D, E) elmegy moziba, és egymás mellé kapnak jegyeket. a) Hányféle sorrendben
RészletesebbenIsmétlés nélküli permutáció
Ismétlés nélküli permutáció Hányféleképpen lehet sorba rendezni n különböz elemet úgy, hogy a sorrend számít? (Ezt n elem ismétlés nélküli permutációjának nevezzük.) Például hány féleképpen lehet sorba
Részletesebben1. A Horner-elrendezés
1. A Horner-elrendezés A polinomok műveleti tulajdonságai Polinomokkal a szokásos módon számolhatunk: Tétel (K2.1.6, HF ellenőrizni) Tetszőleges f,g,h polinomokra érvényesek az alábbiak. (1) (f +g)+h =
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenMatematika A4 I. gyakorlat megoldás
Matematika A I. gyakorlat megoldás 1. Kombinatorikus módszer ismétlés nélküli ismétléses permutáció n! n! k 1!k 2!...k r! n futó beérkezésének sorrendje n golyót ennyiféleképpen állíthatunk sorba, ha k
RészletesebbenMegyei matematikaverseny évfolyam 2. forduló
Megyei matematikaverseny 0. 9. évfolyam. forduló. Mennyi a tizenkilencedik prím és a tizenkilencedik összetett szám szorzata? (A) 00 (B) 0 (C) 0 (D) 04 (E) Az előző válaszok egyike sem helyes.. Az 000
RészletesebbenMatematika szintfelmérő dolgozat a 2018 nyarán felvettek részére augusztus
Matematika szintfelmérő dolgozat a 018 nyarán felvettek részére 018. augusztus 1. (8 pont) Oldjuk meg a következő egyenletet a valós számok halmazán: 6 4 x 13 6 x + 6 9 x = 0 6 ( ) x 4 13 9 6 4 x 13 6
RészletesebbenAzaz 56 7 = 49 darab 8 jegyű szám készíthető a megadott számjegyekből.
1 Kombináció, variáció, permutáció 1. Hányféleképpen rakhatunk be 6 levelet 1 rekeszbe, ha a levelek között nem teszünk különbséget és egy rekeszbe maximum egy levelet teszünk? Mivel egy rekeszbe legfeljebb
RészletesebbenHHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:
Gábor Miklós HHF0CX 5.7-16. Vegyük úgy, hogy a feleségek akkor vannak a helyükön, ha a saját férjeikkel táncolnak. Ekkor már látszik, hogy azon esetek száma, amikor senki sem táncol a saját férjével, megegyezik
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
RészletesebbenKészítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
RészletesebbenDiszkrét matematika II. gyakorlat
Diszkrét matematika II. gyakorlat Absztrakt algebra Bogya Norbert Bolyai Intézet 2014. április 23. Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat 2014. április 23. 1 / 23 Tartalom 1 1.
RészletesebbenDiszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 207. tavasz. Diszkrét matematika 2.C szakirány 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 207.
RészletesebbenDiszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz
Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis
RészletesebbenSzakács Lili Kata megoldása
1. feladat Igazoljuk, hogy minden pozitív egész számnak van olyan többszöröse, ami 0-tól 9-ig az összes számjegyet tartalmazza legalább egyszer! Andó Angelika megoldása Áll.: minden a Z + -nak van olyan
RészletesebbenDiszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
RészletesebbenHALMAZOK TULAJDONSÁGAI,
Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI, 1. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A: a csoport tanulói b) B: Magyarország városai ma c) C: Pilinszky
RészletesebbenAGRÁRMÉRNÖK SZAK Alkalmazott matematika, II. félév Összefoglaló feladatok 2. 4. A síkban 16 db általános helyzetű pont hány egyenest határoz meg?
KOMBINATORIKA FELADATSOR 1 1. Hányféleképpen rendezhető egy sorba egy óvodás csoport ha 9 lány és 6 fiú van és a lányokat mindig előre akarjuk állítani? 2. Hány 6-jegyű telefonszám van ahol mind 35-tel
Részletesebben1. előadás: Halmazelmélet, számfogalom, teljes
1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,
Részletesebben2014. szeptember 24. és 26. Dr. Vincze Szilvia
2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai
RészletesebbenKombinatorika alapjai összefoglaló
Kombinatorika alapjai összefoglaló Permutációk, variációk, kombinációk száma 1. Permutációk: akkor beszélünk permutációról, ha valahány konkrét elemet sorba rendezünk. Pl. a fogorvosnál várakozók beengedésének
RészletesebbenOrszágos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny / Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása. Oldja meg a valós számok legbővebb részhalmazán a egyenlőtlenséget!
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenÖsszegek összege, Bűvös négyzet, Bűvös háromszög és egyebek
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2017/2018.
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Egyszerűsítsd a következő törteket! 77! 3! 74! n! (n )! (n )! (n 1)! Bontsuk fel a faktoriálist a számlálóban és nevezőben is, majd egyszerűsítsünk: 77! 3! 74! = 1 74 75 76 77 1 3 1 74 =
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 9. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Halmazok Diszkrét
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. 2019. május 3. 1. Diszkrét matematika 2. 10. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Mérai László diái alapján Komputeralgebra Tanszék 2019. május
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét
RészletesebbenRamsey-féle problémák
FEJEZET 8 Ramsey-féle problémák "Az intelligens eljárást az jellemzi, hogy még a látszólag megközelíthetetlen célhoz is utat nyit, megfelelő segédproblémát talál ki és először azt oldja meg." Pólya György:
RészletesebbenKombinatorika Gyakorlat. Király Balázs
Kombinatorika Gyakorlat Király Balázs 2 Tartalomjegyzék 1. Permutációk 5 2. Variációk 23 3. Kombinációk 37 4. Binomiális tétel, szitaformula 51 5. Összeszámlálási feladatok 67 6. Zárthelyi Dolgozat 73
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenTanmenet a kombinatorika témaköréhez. Fogalmi háló, összefüggések:
Tanmenet a kombinatorika témaköréhez Átlagos képességű 9. Osztály számára, 4 osztályos gimnáziumban. (Heti 3 óra) Megjegyzés: A kombinatorika, mint önálló egység nem szerepel tanmenetben. 9. Osztályban
RészletesebbenAz értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja
2016/17 I. félév MATEMATIKA szóbeli vizsga 1 A szóbeli vizsga kötelező eleme a félév teljesítésének, tehát azok a diákok is vizsgáznak, akik a többi számonkérést teljesítették. A szóbeli vizsgán az alább
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
RészletesebbenDiszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenMatematika alapjai; Feladatok
Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \
Részletesebben