Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,"

Átírás

1 // KURZUS: Matematika II. MODUL: Valószínűség-számítás 16. lecke: Kombinatorika (alapfeladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1. fejezet Elméleti összefoglaló n elem különböző sorrendjeinek (az n elem permutációinak) a száma: P n =n!=n ( n 1 ) Ha az n elem között k1, k2,..., kl ( k 1 + k k l =n ) darab egyező van, akkor az n elem ismétléses permutációinak száma: P n k 1, k 2,..., k l = n! k 1! k 2!... k l! n különböző elemből k különböző kiválasztunk ( k n ) úgy, hogy az elemek sorrendje számít, az így keletkező variációk száma: V n,k =n ( n 1 )... ( n k+1 )= n! ( n k )!. Ha egy elem többször is szerepelhet, akkor az ismétléses variációk száma: V n,k ism = n k Ha n különböző elemből k darabot kiválasztunk ( k n ) úgy, hogy az elemek sorrendje nem számít, a keletkező kombinációk száma: C n,k = V n,k P k = n ( n 1 )... ( n k+1 ) k! = n! k! ( n k )! =( n k ), 0!=1. Ha a kiválasztott elem ismétlődhet, akkor a felírható ismétléses kombinációk száma: C n,k ism =( n+k 1 k ) Kidolgozott feladatok Hányféleképpen alakulhat a végső sorrend a 16 csapatos labdarúgó bajnokságban? Megoldás: 16 különböző elem (csapat) sorrendjének száma: 16!= , A fenti bajnokságban az utolsó kettő kiesik. Hányféle lehet a sorrend, ha az egyik kieső a Botláb FC? Megoldás: Ha a Botláb FC utolsó, akkor a csapatok 15!-féleképpen végezhetnek előtte. Ha a Botláb FC utolsó előtti, ekkor a többi csapatot megint csak 15!-féleképpen rakhatjuk sorba. Vagyis a lehetséges sorrendek száma: 15!+15! 2, A 100 méteres gyorsúszás döntőjébe 3 egyesült államokbeli, 2 ausztrál, 1 orosz, 1 holland és 1 magyar versenyző került. Hányféle lehet a végső sorrend a nemzetek szempontjából, ha coedu.sze.hu/print.php4?print_items= 1/7

2 a) a magyar úszó győzött? b) a végén az amerikai himnuszt játszották? Megoldás: A kérdés a sorrend a nemzetek szempontjából, tehát az egy nemzetbeli versenyzőket nem tekintjük megkülönböztethetőnek. (Pl., ha az élen 2 amerikai végzett, akkor nekünk mindegy, hogy ki az első és ki a második.) a) Ha a magyar győzött, akkor a többiek a maradék hét helyen osztoznak. Így a lehetséges sorrendek száma a nemzetek szempontjából: P 7 3,2,1,1 = 7! 3! 2! 1! 1! =420. b) Ha valamelyik amerikai győzött, akkor a maradék hét helyre: P 7 2,2,1,1,1 = 7! 2! 2! 1! 1! 1! =1260. (Ha John Smith 1. és Joe Taylor 4. lett, akkor ez a nemzetek szempontjából ugyanaz, mintha fordítva történt volna.) Hányféleképpen alakulhatott ki a legendás 6:3 végeredmény (pl. hat magyar gól után 3 angol gól, vagy 2 magyar után egy angol és így tovább, stb.)? Megoldás: A meccsen 9 gól született (6 magyar és 3 angol) ezek lehetséges sorrendjeinek számát kell meghatározni (ismétléses permutáció) P 9 6,3 = 9! 6! 3! = Közép-Languszta királya végre zászlót szeretett volna adni népének. Tanácsadóira hallgatva háromsávos, különböző színekből álló lobogót választott. Hányféleképpen tehette ezt meg, ha a rendelkezésre álló színek a következők voltak: piros, kék, sárga, zöld, fehér, fekete? Megoldás: 6 színből kell választani hármat úgy, hogy a színek sorrendje is számít (variáció) V 6,3 =6 5 4= 6! ( 6 3 )! = 6! 3! = Néhány év múlva a forradalom elsöpörte a királyságot, az ország új zászlót szeretett volna. A demokratikus pártok megegyeztek abban, hogy a lobogó középső sávja a citromfa-ültetvényekre való tekintettel sárga lesz. Most hányféle lehetőség van? Megoldás: A maradék öt színből kell kettőt kiválasztani úgy, hogy a sorrend is számít: V 5,2 =5 4= 5! ( 5 2 )! = 5! 3! = Hányféleképpen fordulhat elő ultiban, hogy a kezdetben kapott 10 lap közül 5 piros és 5 zöld? (A játékot természetesen 32 lapos magyar kártyával játsszák.) Megoldás: A pakliban minden színből (piros, zöld, makk, tök) 8 lap található. A pakliban levő 8 piros közül "választódik ki" az az 5, ami hozzánk kerül. Az osztás után csak az számít, hogy mit osztottak nekünk, de az nem fontos, hogy milyen sorrendben, ezért kombinációról van szó. Ezek lehetséges száma: ( 8 5 ). Az 5 zöld lapra hasonló érvelés áll. Összegezve: minden egyes piros ötöshöz ( 8 5 ) -féleképpen választhatunk öt zöldet, vagyis a coedu.sze.hu/print.php4?print_items= 2/7

3 lehetséges esetek száma: ( 8 5 ) ( 8 5 )= Egy hagyományos lottószelvény ára 175 Ft (2005. november 20-án). Mekkora összeget kell befektetnünk, hogy biztos 5 találatunk legyen? Megoldás: A húzáskor 90 számból választanak ki ötöt. Nem számít, hogy milyen sorrendben húzzák ki ezeket, csak az számít, hogy végül is mik lesznek a nyerő számok (tehát kombinációról van szó). C 90,5 =( 90 5 )= Ennyi lottószelvény ára: 175 ( 90 5 )= Ft A tornász vb-n 30 ország csapata indult. Hányféleképpen alakulhat ki a hatos döntő mezőnye, ha a rendező ország csapata biztosan ott lesz? Megoldás: A döntőbe jutás ténye számít, a 6 közötti sorrend még nem. Vagyis a rendezőt leszámítva a maradék 29 csapatból kell kiválasztani másik öt továbbjutót (kombináció). C 29,5 =( 29 5 )= Hányféle négyjegyű szám állítható elő az 1, 2, 3, 4, 5, 6, 7 számjegyekből, ha: a) minden számjegy csak egyszer szerepelhet; b) a számjegyek többször is szerepelhetnek? Megoldás: a) Ebben az esetben 7 különböző elemből kell kiválasztani négyet úgy, hogy a sorrend is számít (hiszen egy számban számít a számjegyek sorrendje). Vagyis ismétlés nélküli variációról van szó, tehát a lehetséges sorrendek száma: 7! ( 7 4 )! = 7! 3! = =840. Így ebben az esetben 840 különböző számot állíthatunk elő. Úgy is megszámolhattuk volna a lehetőségeket, hogy a következőképp gondolkodunk: az 1. helyre 7-féle szám kerülhet; a 2. helyre 6-féle; a 3. helyre 5-féle; a 4. helyre pedig 4-féle szám kerülhet, így a lehetőségek száma: =840. b) Ha egy számjegy többször is szerepelhet, akkor 7 különböző elemből kell 4-et kiválasztani úgy, hogy egy elem többször is szerepelhet, továbbá számít a kiválasztás sorrendje, tehát itt ismétléses variációról van szó. A lehetséges sorrendek száma tehát: 7 4 =2401. Gondolkodhattunk volna az a) részhez hasonlóan úgy is, hogy az 1. helyre 7-féle szám kerülhet; a 2. helyre szintén 7-féle; a 3. helyre szintén 7-féle; a 4. helyre pedig ismét 7-féle szám kerülhet, így a lehetőségek száma: = 7 4 =2401. Ellenőrző feladatok coedu.sze.hu/print.php4?print_items= 3/7

4 1. feladat Hányféle nyolcjegyű szám állítható elő az 1, 2, 3, 4, 5, 6, 7, 8 számjegyekből, ha minden számjegy csak egyszer szerepelhet? ! feladat Hányféle nyolcjegyű szám állítható elő az 1, 2, 3, 4, 5, 6, 7, 8 számjegyekből, ha minden számjegy többször is szerepelhet? 8 8 8! feladat Hányféle jelsorozat állítható elő 4 darab "!" 3 darab "?" jelből? 12 7! feladat Lékó Péter egy sakkversenyen 8 játszmából négyet nyert, kétszer remizett, kétszer veszített. Hányféleképpen történhetett ez, ha csak az coedu.sze.hu/print.php4?print_items= 4/7

5 egyes partik kimenetele számít? 8 4 8! feladat Hányféle négyjegyű szám állítható elő az 1, 2, 3, 4, 5, 6, 7, 8 számjegyekből, ha minden számjegy csak egyszer szerepelhet? feladat Ha többször is szerepelhet? feladat Egy vasútállomásról 10 vagonból álló tehervonat-szerelvényeket indítanak. Minden szerelvény 5 zöld, 2 kék és 3 piros vagonból áll. Hány különböző összeállítás lehetséges? 30 coedu.sze.hu/print.php4?print_items= 5/7

6 2520 5! 3! 2! feladat Egy fagyizóban 12-féle fagylalt közül választhatunk. Hányféle háromgombócos fagyit vehetünk, ha minden gombóc különböző, és tölcsérbe kapjuk (számít a sorrend)? 12! feladat Egy fagyizóban 12-féle fagylalt közül választhatunk. Hányféle háromgombócos fagyit vehetünk, ha minden gombóc különböző, és kehelybe kapjuk (nem számít a sorrend)? ! feladat A 0, 1, 2, 3, 4, 5 számjegyekből hányféle 45-re végződő ötjegyű szám készíthető, ha minden számjegy csak egyszer szerepelhet? 18 coedu.sze.hu/print.php4?print_items= 6/7

7 coedu.sze.hu/print.php4?print_items= 7/7

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 17. lecke: Kombinatorika (vegyes feladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 21. lecke: A feltételes valószínűség, események függetlensége Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k. Az 1,, 3,, elemeknek hány permutációja van, amelynek harmadik jegye 1- es? Írjuk fel őket! Annyi ahányféleképpen

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 22. lecke: A teljes valószínűség tétele és a Bayes-tétel Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

Definíció n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük.

Definíció n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük. 9. Kombinatorika 9.1. Permutációk n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük. n elem ismétlés nélküli permutációinak száma: P n = =1 2

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 1. MA3-1 modul. Kombinatorika

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 1. MA3-1 modul. Kombinatorika Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 1. MA3-1 modul Kombinatorika SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI.

Részletesebben

Permutáció (ismétlés nélküli)

Permutáció (ismétlés nélküli) Permutáció (ismétlés nélküli) Mi az az ismétlés nélküli permutáció?... 1. Három tanuló, András, Gábor és Róbert együtt mennek az iskolába. Hányféle sorrendben léphetik át az iskola küszöbét? Írja fel a

Részletesebben

Matematika A4 I. gyakorlat megoldás

Matematika A4 I. gyakorlat megoldás Matematika A I. gyakorlat megoldás 1. Kombinatorikus módszer ismétlés nélküli ismétléses permutáció n! n! k 1!k 2!...k r! n futó beérkezésének sorrendje n golyót ennyiféleképpen állíthatunk sorba, ha k

Részletesebben

Kombinatorika gyakorló feladatok

Kombinatorika gyakorló feladatok Kombinatorika gyakorló feladatok Egyszerűbb gyakorló feladatok 1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt? P = 3 2 1 = 6. 3 2. Hány különböző négyjegyű számot

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

AGRÁRMÉRNÖK SZAK Alkalmazott matematika, II. félév Összefoglaló feladatok 2. 4. A síkban 16 db általános helyzetű pont hány egyenest határoz meg?

AGRÁRMÉRNÖK SZAK Alkalmazott matematika, II. félév Összefoglaló feladatok 2. 4. A síkban 16 db általános helyzetű pont hány egyenest határoz meg? KOMBINATORIKA FELADATSOR 1 1. Hányféleképpen rendezhető egy sorba egy óvodás csoport ha 9 lány és 6 fiú van és a lányokat mindig előre akarjuk állítani? 2. Hány 6-jegyű telefonszám van ahol mind 35-tel

Részletesebben

Diszkrét matematika II. gyakorlat

Diszkrét matematika II. gyakorlat Diszkrét matematika II. gyakorlat Absztrakt algebra Bogya Norbert Bolyai Intézet 2014. április 23. Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat 2014. április 23. 1 / 23 Tartalom 1 1.

Részletesebben

Ismétlés nélküli kombináció

Ismétlés nélküli kombináció Ismétlés nélküli kombináció Hányféleképpen lehet n különböz elembl kiválasztani k elemet úgy, hogy a sorrend nem számít, és minden elemet csak egyszer választhatunk? 0. Egy 1 fs csoportban hányféleképpen

Részletesebben

1. FELADATSOR MEGOLDÁSAI. = 6. Ezek a sorozatok a következők: ab, ac, ba, bc, ca, cb.

1. FELADATSOR MEGOLDÁSAI. = 6. Ezek a sorozatok a következők: ab, ac, ba, bc, ca, cb. 1. FELADATSOR MEGOLDÁSAI Elméleti áttekintés Ismétlés nélküli variáció. Egy n elemű halmazból képezhető k elemű sorozatok száma, ha a sorozatok nem tartalmaznak ismétlődést n! (1 = n (n 1... (n k (n k

Részletesebben

Eseményalgebra, kombinatorika

Eseményalgebra, kombinatorika Eseméyalgebra, kombiatorika Eseméyalgebra Defiíció. Véletle kísérletek evezük mide olya megfigyelést, melyek több kimeetele lehetséges, és a véletletől függ, (azaz az általuk figyelembevett feltételek

Részletesebben

(2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A)

(2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A) A póker matematikája Mostanában egyre közkedveltebb kártyajáték lett a (Holdem) Poker, melynek az is oka lehet, hogy a televízióban megjelent a nagyobb versenyek közvetítése. Mint minden kártyajátékban,

Részletesebben

Ismétlés nélküli permutáció

Ismétlés nélküli permutáció Ismétlés nélküli permutáció Hányféleképpen lehet sorba rendezni n különböz elemet úgy, hogy a sorrend számít? (Ezt n elem ismétlés nélküli permutációjának nevezzük.) Például hány féleképpen lehet sorba

Részletesebben

Kombinatorika alapjai összefoglaló

Kombinatorika alapjai összefoglaló Kombinatorika alapjai összefoglaló Permutációk, variációk, kombinációk száma 1. Permutációk: akkor beszélünk permutációról, ha valahány konkrét elemet sorba rendezünk. Pl. a fogorvosnál várakozók beengedésének

Részletesebben

71) A 32 lapos magyar kártyából kiosztunk 8 lapot. Hányféleképp lehet, hogy pontosan 3 hetes és 4 ász van közöttük? 72) A 32 lapos magyar kártyából

71) A 32 lapos magyar kártyából kiosztunk 8 lapot. Hányféleképp lehet, hogy pontosan 3 hetes és 4 ász van közöttük? 72) A 32 lapos magyar kártyából Permutációk: 1) Egy sakkverseny döntőjébe 6 játékos került be. Hányféleképp alakulhat a játékosok sorrendje, ha a döntőben mindenki azonos esélyekkel indul? 2) A Mekk Elek név betűiből hányféle (nem feltétlen

Részletesebben

46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY

46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY 6. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató NEGYEDIK OSZTÁLY 1. Írd be az 1, 2, 5, 6, 7, 8, 9, 10, 11 és 12 számokat a kis körökbe úgy, hogy a szomszédos számok különbsége

Részletesebben

Környezet statisztika

Környezet statisztika Környezet statisztika Permutáció, variáció, kombináció k számú golyót n számú urnába helyezve hányféle helykitöltés lehetséges, ha a golyókat helykitöltés Minden urnába akárhány golyó kerülhet (ismétléses)

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

A biomatematika alapjai és a kapcsolódó feladatok megoldása számítógép segítségével Abonyi-Tóth Zsolt, 2005-2006 készült Harnos Andrea, Reiczigel Jenő zoológus előadásainak valamint Fodor János és Solymosi

Részletesebben

23. Kombinatorika, gráfok

23. Kombinatorika, gráfok I Elméleti összefoglaló Leszámlálási alapfeladatok 23 Kombinatorika, gráfok A kombinatorikai alapfeladatok esetek, lehetőségek összeszámlálásával foglalkoznak Általában n jelöli a rendelkezésre álló különbözőfajta

Részletesebben

Kombinatorika A A B C A C A C B

Kombinatorika A A B C A C A C B . Egy ló, egy tehén, egy cica, egy nyúl és egy kakas megkéri a révészt, hogy vigye át őket a túlsó partra. Hányféle sorrendben szállíthatja át őket a révész, ha egyszerre vagy egy nagy testű állatot, vagy

Részletesebben

7. témakör: kombinatorika. Kidolgozott feladatok:

7. témakör: kombinatorika. Kidolgozott feladatok: 7. témakör: kombinatorika Kidolgozott feladatok:.) A színházba egy fős baráti társaság jegyei egymás mellé szólnak. Hányféleképpen ülhetnek le egymás mellé? Hányféleképpen ülhetnek le akkor, ha András

Részletesebben

KOMBINATORIKA. Készítette: Bordi István Tóth Árpád Gimnázium Debrecen,

KOMBINATORIKA. Készítette: Bordi István Tóth Árpád Gimnázium Debrecen, KOMBINATORIKA 1 Készítette: Bordi Istvá Tóth Árpád Gimázium Debrece, boi@tagdebr.suliet.hu Kérdések: A KOMBINATORIKA TÁRGYA 1. elemet háyféleképpe lehet egymás mellé tei (permutáció). 2. elemből háyféleképpe

Részletesebben

Valószínűség számítás

Valószínűség számítás Valószínűség számítás 1. Mennyi annak a valószínűsége, hogy szabályos játékkockával páratlan számot dobunk? 2. Egy dobozban 7 piros és 13 zöld golyó van. Ha találomra kihúzunk egyet közülük, akkor mekkora

Részletesebben

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát!

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát! 1. témakör: HALMAZELMÉLET A feladatok megoldásához használjuk a Négyjegyű függvénytáblázatot! Halmazok: 8-9. oldal 1. Sorold fel az a b x y halmaz összes részhalmazát!. AdottU alaphalmaz, és annak két

Részletesebben

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY 45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató HARMADIK OSZTÁLY 1. Marci tolltartójában fekete, piros és kék ceruzák vannak, összesen 20 darab. Hány fekete ceruza van

Részletesebben

(6/1) Valószínűségszámítás

(6/1) Valószínűségszámítás (6/1) Valószínűségszámítás 1) Mekkora annak a valószínűsége, hogy szabályos játékkockával páratlan számot dobunk? 2) Egy dobozban 7 piros és 13 zöld golyó van. Ha találomra kihúzunk egyet közülük, akkor

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

ARCHIMEDES MATEMATIKA VERSENY

ARCHIMEDES MATEMATIKA VERSENY Ismétléses permutáció: ha az elemek között van olyan, amelyik többször is előfordul, az elemek egy sorba rendezését ismétléses permutációnak nevezzük. Tétel: ha n elem között p 1, p 2, p 3, p k darab megegyező

Részletesebben

KockaKobak Országos Matematikaverseny osztály

KockaKobak Országos Matematikaverseny osztály KockaKobak Országos Matematikaverseny 9-10. osztály 016. november 4. A feladatsort készítette: RÓKA SÁNDOR Lektorálta: DR. KISS GÉZA Anyanyelvi lektor: ASZÓDINÉ KOVÁCS MÁRIA A válaszlapról másold ide az

Részletesebben

MATEMATIKA C 6. évfolyam 5. modul A MAGYAR KÁRTYA

MATEMATIKA C 6. évfolyam 5. modul A MAGYAR KÁRTYA MATEMATIKA C 6. évfolyam 5. modul A MAGYAR KÁRTYA Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 5. MODUL: A MAGYAR KÁRTYA TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály Hallott szöveg

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK Telefon: 37-8900 Fax: 37-8901 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. 1. Egy osztási műveletben az osztandó és az osztó összege 89.

Részletesebben

SET. Például: SET mert: Szín: 3 egyforma. Alak: 3 egyforma. Darab: 3 egyforma. Telítettség: 3 különböző

SET. Például: SET mert: Szín: 3 egyforma. Alak: 3 egyforma. Darab: 3 egyforma. Telítettség: 3 különböző 1 SET A SET játékszabályairól röviden, már ha valaki nem ismerné: Hogy néznek ki a kártyalapok? Minden kártyán van egy ábra, aminek 4 jellemzője van. Minden kategória további három különböző lehetőséget

Részletesebben

::JÁTÉKLAP:: Társasjáték Portál. Coloretto

::JÁTÉKLAP:: Társasjáték Portál. Coloretto Coloretto Tervezte: Michael Schacht Kiadja: ABACUSSPIELE Verlags GmbH & Co. KG, 63303 Dreieich info@abacusspiele.de www.abacusspiele.de 3-5 játékos részére, 8 éves kortól, játékidő kb. 30 perc Összefoglaló

Részletesebben

MAGYAR BOWLING és TEKE SZÖVETSÉG TEKE SZAKÁGI SZÖVETSÉG

MAGYAR BOWLING és TEKE SZÖVETSÉG TEKE SZAKÁGI SZÖVETSÉG ORSZÁGOS SERDÜLŐ ÉS IFJÚSÁGI FIÚ EGYÉNI, SPRINT ÉS ÖSSZETETT EGYÉNI BAJNOKSÁG 2016. ÉVI VERSENYKIÍRÁSA A bajnokság kiírása a Magyar Bowling és Tekeszövetség Teke Szakági Szövetsége /továbbiakban: MATESZ/

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Kombinatorika

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Kombinatorika Kombinatorika Modulok: A kombinatorikai feladatok megoldásához három modult használunk: Permutáció (Sorba rendezés) Kombináció (Kiválasztás) Variáció (Kiválasztás és sorba rendezés) DEFINÍCIÓ: (Ismétlés

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

Valószínűségszámítás feladatok

Valószínűségszámítás feladatok Valószínűségszámítás feladato A FELADATOK MEGOLDÁSAI A 0. FELADAT UTÁN TALÁLHATÓK.. Egyszerre dobun fel három érmét. Mi anna a valószínűsége, hogy mindegyine ugyanaz az oldala erül felülre?. Két dobóocát

Részletesebben

46. Grósz Erzsébet: A MAGYAR KÁRTYA a fejlesztésben

46. Grósz Erzsébet: A MAGYAR KÁRTYA a fejlesztésben 46. Grósz Erzsébet: A MAGYAR KÁRTYA a fejlesztésben A matematikai készségek kialakítása, és megerősítése a magyar kártya segítségével Kidolgozta: Grósz Erzsébet fejlesztő pedagógus A magyar kártya méltatlanul

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

KOMBINATORIKA Permutáció

KOMBINATORIKA Permutáció Permutáció 1) Három tanuló, András, Gábor és Miklós együtt megy iskolába. Hányféle sorrendben léphetik át az iskola küszöbét? Írja fel a lehetséges sorrendeket! 2) Hány különböző négyjegyű számot alkothatunk

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA május 6. MINISZTÉRIUMA május 6. 8:00 EMBERI ERFORRÁSOK

MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA május 6. MINISZTÉRIUMA május 6. 8:00 EMBERI ERFORRÁSOK I. rész II. rész a feladat sorszáma maximális pontszám elért pontszám maximális pontszám 1. 11 2. 12 51 3. 14 4. 14 16 16 64 16 16 8 nem választott feladat Az írásbeli vizsgarész pontszáma 115 elért pontszám

Részletesebben

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja 2016/17 I. félév MATEMATIKA szóbeli vizsga 1 A szóbeli vizsga kötelező eleme a félév teljesítésének, tehát azok a diákok is vizsgáznak, akik a többi számonkérést teljesítették. A szóbeli vizsgán az alább

Részletesebben

Alkotások adott feltételekkel

Alkotások adott feltételekkel Alkotások adott feltételekkel 1.2 Alapfeladat Alkotások adott feltételekkel 2. feladatcsomag adott számú elemből néhány elem kiválasztása (konkrét tevékenységek tapasztalatai alapján), a lehetséges esetek

Részletesebben

III. Mikulás T LA SE KUPA

III. Mikulás T LA SE KUPA III. Mikulás T LA SE KUPA III. Mikulás T LA SE KUPA RENDEZŐJE Törökbálinti Labdarúgó Akadémia Sportegyesület Horváth Ferenc Tel: +36 20 454-1763 E-mail: labdarugoakademia@gmail.com Haraszti Zoltán Tel:+36

Részletesebben

Versenykiírás és program

Versenykiírás és program Versenykiírás és program A torna helyszíne: Dabas, Kossuth Zsuzsanna Szakképző Iskola József Attila u. 107 Rendező: Dabas-Gyón FC A torna időpontjai: 2015. február 8. és március 1. Korosztályok: U-7 /2008/

Részletesebben

MAGYAR BOWLING és TEKE SZÖVETSÉG

MAGYAR BOWLING és TEKE SZÖVETSÉG ORSZÁGOS SERDÜLŐ ÉS IFJÚSÁGI FIÚ EGYÉNI, SPRINT ÉS ÖSSZETETT EGYÉNI BAJNOKSÁG 2014-2015. ÉVI V E R S E N Y K I Í R Á S A A bajnokság kiírása a Magyar Bowling és Tekeszövetség Teke Szakági Szövetsége /továbbiakban:

Részletesebben

KOMBINATORIKA, VALÓSZÍNÛSÉGSZÁMÍTÁS

KOMBINATORIKA, VALÓSZÍNÛSÉGSZÁMÍTÁS KOMBINATORIKA, VALÓSZÍNÛSÉGSZÁMÍTÁS Vegyes kombinatorikai feladatok 964. a) Akármelyik golyót rakhatjuk az elsõ helyre, ez három lehetõség. Ha például a piros golyó került elõre, akkor a második helyre

Részletesebben

MATEMATIKA 10. osztály (Elnézést a tegezésért, gyerekeknek készült eredetileg. ) I. GYÖKVONÁS. x j)

MATEMATIKA 10. osztály (Elnézést a tegezésért, gyerekeknek készült eredetileg. ) I. GYÖKVONÁS. x j) MATEMATIKA 10. osztály (Elnézést a tegezésért, gyerekeknek készült eredetileg. ) I. GYÖKVONÁS Négyzetgyök 1. Számítsd ki számológép nélkül a pontos értékét: a) 0 4 1 7 8 6 7 d) 00 18. Melyik a nagyobb?

Részletesebben

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam 01/01 1. évfolyam 1. Egy röplabda bajnokságban minden csapat pontosan egyszer játszik a többi csapat mindegyikével. A bajnokságból még két forduló van hátra és eddig 104 mérkőzést játszottak le. Hány csapat

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

12. Kombinatorika, valószínűségszámítás

12. Kombinatorika, valószínűségszámítás I. Nulladik ZH-ban láttuk: 12. Kombinatorika, valószínűségszámítás 1. Bornemissza Gergely elfelejtette a lőporraktár négy számjegyes pinkódját. Csak arra emlékszik, hogy vagy 1552 volt, vagy a számjegyek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Gráfok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Gráfok MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK MEGOLDÁSI KÖZÉP SZINT Gráfok 1) Egy gráfban 4 csúcs van. z egyes csúcsokból 3; 2; 2; 1 él indul. Hány éle van a gráfnak? Egy lehetséges ábrázolás: gráfnak 4 éle van. (ábra

Részletesebben

PRÓBAÉRETTSÉGI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2016. január 16. KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím SG-s csoport Pontszám 2016. január 16. II. Időtartam: 135 perc STUDIUM

Részletesebben

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van! 1. Melyik a nagyobb? a) 6 5 vagy 5 7 b) vagy 11 10 vagy Gyökvonás 5 11 vagy 6 8 55 e) 7 vagy 60 16 1. Hozd egyszerűbb alakra a következő kifejezéseket! a) 7 18 b) 1 5 75 8 160 810 650 8a 5 a 7a e) 15a

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Kombinatorika. 1. Ismétlés nélküli permutáció

Kombinatorika. 1. Ismétlés nélküli permutáció Kombinatorika A kombinatorika keretén belül tanuljuk: ismétlés nélküli permutációk, ismétléses permutációk, ismétlés nélküli variációk, ismétléses variációk, ismétlés nélküli kombinációk, ismétléses kombinációk.

Részletesebben

1. Kombinatorikai bevezetés példákkal, (színes golyók):

1. Kombinatorikai bevezetés példákkal, (színes golyók): 1. Kombinatoriai bevezetés példáal, (színes golyó: (a ismétlés nélüli permutáció (sorba rendezés: n ülönböz szín golyót hányféleépp állíthatun sorba? 10-et? n! 10! (b ismétléses permutáció: n 1 piros,

Részletesebben

Kártyázzunk véges geometriával

Kártyázzunk véges geometriával Kártyázzunk véges geometriával Bogya Norbert Bolyai Intézet Egyetemi tavasz, 2016 Tartalom Dobble Véges geometria Dobble újratöltve SET Kérdések Hogy tudunk ilyen kártyákat konstruálni? 8 helyett más

Részletesebben

A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly

A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly 5. osztály 1. A MATEK szó minden betűjének megfeleltetünk egy-egy számjegyet a következők szerint: M + A

Részletesebben

II.4. LÓVERSENY. A feladatsor jellemzői

II.4. LÓVERSENY. A feladatsor jellemzői II.4. LÓVERSENY Tárgy, téma A feladatsor jellemzői Kombinatorika ismétlés nélküli és ismétléses permutáció, variáció és ismétlés nélküli kombináció. Leszámlálás. Előzmények Cél Egyszerű leszámlálási feladatok.

Részletesebben

A JÁTÉK CÉLJA A játékosok célja megszabadulni az összes kockájuktól. A győztes az lesz, akinek ez elsőként sikerül.

A JÁTÉK CÉLJA A játékosok célja megszabadulni az összes kockájuktól. A győztes az lesz, akinek ez elsőként sikerül. WASABI Játékszabály A JÁTÉK CÉLJA A játékosok célja megszabadulni az összes kockájuktól. A győztes az lesz, akinek ez elsőként sikerül. A JÁTÉK ELŐKÉSZÜLETEI A játék kezdetén minden játékos kap 4 kockát,

Részletesebben

Próba érettségi feladatsor április I. RÉSZ

Próba érettségi feladatsor április I. RÉSZ Név: osztály: Próba érettségi feladatsor 2007 április 17-18 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2013. október 15. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2013. október 15. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2013. október 15. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. október 15. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

1. A Honfoglaló játék célja. 1. A Honfoglaló játék célja 2. A csapatok kialakítása 3. Kérdéskártyák

1. A Honfoglaló játék célja. 1. A Honfoglaló játék célja 2. A csapatok kialakítása 3. Kérdéskártyák Tartalom 1. A Honfoglaló játék célja 2. A csapatok kialakítása 3. Kérdéskártyák 3.1 Tudnivalók a kérdéskártyákról 3.2 Feleletválasztós kérdéskártyák 3.3 Tippelős kérdéskártyák 4. A játék menete - Hosszú

Részletesebben

Feladatlap. a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006)

Feladatlap. a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006) Feladatlap a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006) 1) Karcsi januárban betegség miatt háromszor hiányzott az iskolából:12-én,14-én és 24-én. Milyen napra esett

Részletesebben

VÁROSI KISPÁLYÁS MŰFÜVES LABDARÚGÓ BAJNOKSÁG VERSENYKIÍRÁSA

VÁROSI KISPÁLYÁS MŰFÜVES LABDARÚGÓ BAJNOKSÁG VERSENYKIÍRÁSA VÁROSI KISPÁLYÁS MŰFÜVES LABDARÚGÓ BAJNOKSÁG VERSENYKIÍRÁSA 2016 A versenykiírás mellett minden további aktuális információ naprakészen elérhető a www.jbfoci.hu internetes honlapunkon. 1. Célja: Jászberény

Részletesebben

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához

Részletesebben

Valószínűségszámítás feladatgyűjtemény

Valószínűségszámítás feladatgyűjtemény Valószínűségszámítás feladatgyűjtemény Összeállította: Kucsinka Katalin Tartalomjegyzék Előszó 4 1. Kombinatorika 5 2. Eseményalgebra 14 3. Valószínűségszámítás 21 3.1. Klasszikus valószínűség.....................

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika

Részletesebben

1. A bajnokság célja: A sportág népszerűsítése, az országos döntőbe jutás eldöntése.

1. A bajnokság célja: A sportág népszerűsítése, az országos döntőbe jutás eldöntése. TELEKOM LABDARÚGÓ DIÁKOLIMPIA CSONGRÁD MEGYE I. KCS. 2012/2013 1. A bajnokság célja: A sportág népszerűsítése, az országos döntőbe jutás eldöntése. 2. A bajnokság rendezője:a Csongrád Megyei Diáksport

Részletesebben

Valószínűségszámítás

Valószínűségszámítás 1. Kombinatorika Valószínűségszámítás 2004.03.01. Készítette: Dr. Toledo Rodolfo 1.1. Tétel. Ha n darab különböző elemet az összes lehetséges módon sorba rendezünk, akkor ezt n! := n (n 1) (n 2) 2 1-féle

Részletesebben

Kombinatorika jegyzet és feladatgyűjtemény

Kombinatorika jegyzet és feladatgyűjtemény Kombinatorika jegyzet és feladatgyűjtemény Király Balázs, Tóth László Pécsi Tudományegyetem 2011 2 Lektor: Kátai Imre egyetemi tanár, az MTA rendes tagja Tartalomjegyzék Előszó 5 I. Jegyzet 7 I.1. Permutációk,

Részletesebben

Cartagena 2. - Kalózfészek

Cartagena 2. - Kalózfészek Cartagena 2. - Kalózfészek (A menekülés folytatódik) Tervezte: Leo Colovini Kiadja: Winning Moves Deutschland GmbH Luegallee 99 40545 Düsseldorf www.winning-moves.de 2-5 játékos részére, 8 éves kortól,

Részletesebben

1. EGYMÁS ELLEN JÁTSZOTT MÉRKŐZÉS EREDMÉNYE 2. GÓLKÜLÖMBSÉG 3. TÖBB RÚGOTT GÓL 4. TÖBB GYŐZELEM 5. SORSOLÁS

1. EGYMÁS ELLEN JÁTSZOTT MÉRKŐZÉS EREDMÉNYE 2. GÓLKÜLÖMBSÉG 3. TÖBB RÚGOTT GÓL 4. TÖBB GYŐZELEM 5. SORSOLÁS . SZABOLCS TAKARÉK KARÁCSONY KUPA TEREMLABDARÚGÓ TORNA LEBONYOLÍTÁSI REND 03.december 3-4 - 5 NYÍREGYHÁZA BEM JÓZSEF ÁLTALÁNOS ISKOLA SPORTCSARNOKA 3.-án péntek 4.00 3.-án péntek 7.00 Ssz "A" CSOPORT Ssz

Részletesebben

HEXAÉDEREK. 5. Hányféleképpen lehet kiolvasni Erdős Pál nevét, ha csak jobbra és lefelé haladhatunk?

HEXAÉDEREK. 5. Hányféleképpen lehet kiolvasni Erdős Pál nevét, ha csak jobbra és lefelé haladhatunk? HEXAÉDEREK 0. Két prímszám szorzata 85. Mennyi a két prímszám összege? 1. Nyolc epszilon találkozik egy születésnapi bulin, majd mindenki kézfogással üdvözli egymást. Ha eddig 11 kézfogás történt, hány

Részletesebben

Kombinatorika Gyakorlat. Király Balázs

Kombinatorika Gyakorlat. Király Balázs Kombinatorika Gyakorlat Király Balázs 2 Tartalomjegyzék 1. Permutációk 5 2. Variációk 23 3. Kombinációk 37 4. Binomiális tétel, szitaformula 51 5. Összeszámlálási feladatok 67 6. Zárthelyi Dolgozat 73

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Közgazdaságtani, módszertani és üzleti alapozó modul Gazdasági matematika 2. Valószínűségszámítás

Közgazdaságtani, módszertani és üzleti alapozó modul Gazdasági matematika 2. Valószínűségszámítás Gazdasági matematika 2: Valószínűségszámítás Tantárgyi útmutató 1. A tantárgy helye a szaki hálóban Gazdálkodási és menedzsment szakirány áttekintő tanterv Nagyításhoz kattintson a képre! Turizmus - vendéglátás

Részletesebben

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4 . Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :

Részletesebben

1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24

1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24 . Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 4 B ) 20 C ) 2 D ) 24 2. Mennyi az alábbi művelet eredménye? 2 + 2 =? 5 6 A ) B ) C ) D ) 0. Egy könyvszekrénynek három polca

Részletesebben

VI. Rábaköz MKSZ Kupa Lány Kézilabda Torna

VI. Rábaköz MKSZ Kupa Lány Kézilabda Torna 2017. évi versenykiírás 1. A Kupa célja A kézilabdázás megismertetése, megszerettetése és széles körben történő elterjesztése. Rábaköz és környéke lány kézilabda utánpótlás sportélet felpezsdítése. A Kupa

Részletesebben

2015/2016. TANÉVI JÁTÉKOS SPORTVERSENY DIÁKOLIMPIA ORSZÁGOS ELŐDÖNTŐ I-II. KORCSOPORT Törökbálint, 2016. február 5.

2015/2016. TANÉVI JÁTÉKOS SPORTVERSENY DIÁKOLIMPIA ORSZÁGOS ELŐDÖNTŐ I-II. KORCSOPORT Törökbálint, 2016. február 5. 2015/2016. TANÉVI JÁTÉKOS SPORTVERSENY DIÁKOLIMPIA ORSZÁGOS ELŐDÖNTŐ I-II. KORCSOPORT Törökbálint, 2016. február 5. 1. A verseny célja: A nevelési-oktatási intézmények tanulói részére az életkori sajátosságoknak

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

Számlálási feladatok

Számlálási feladatok Számlálási feladatok Ezek olyan feladatok, amelyekben a kérdés az, hogy hány, vagy mennyi, de a választ nem tudjuk spontán módon megadni, csak számolással? ) Ha ma szombat van, milyen nap lesz 200 nap

Részletesebben

A kooperatív tanulás előnyei

A kooperatív tanulás előnyei A kooperatív tanulás előnyei diákmelléklet ÉN ÉS A VILÁG 5. évfolyam 41 Együttműködési feladatok D1 Matematikai érdeklődésű gyerekek számára Oldjátok meg a következő feladatot! Egy asztalitenisz-versenyen

Részletesebben

DIÁKOLIMPIAI 2013/2014

DIÁKOLIMPIAI 2013/2014 DIÁKOLIMPIAI 2013/2014 www.fodisz.hu KAPKODD a LÁBAD! JÁTÉKOS SOR- és VÁLTÓVERSENY ZALAEGERSZEG, 2014. ÁPRILIS 11-12. Általános Tudnivalók Csapatok érkezése: 2014. április.11. /péntek/ 14.00-ig Cím: Zalaegerszeg

Részletesebben

Megoldások IV. osztály

Megoldások IV. osztály Bolyai Farkas Elméleti Líceum Marosvásárhely, 2015. március 20-22. Megoldások IV. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől, hogy

Részletesebben

Minden feladat teljes megoldása 7 pont

Minden feladat teljes megoldása 7 pont Postacím: 11 Budapest, Pf. 17. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. Hat futó: András, Bence, Csaba,

Részletesebben

Tanulmányi verseny. Matematika. 4. osztály

Tanulmányi verseny. Matematika. 4. osztály Klebelsberg Intézményfenntartó Központ Tanulmányi verseny Matematika 4. osztály A verseny időpontja: 2016. november 17. Kedves Versenyző! Szeretettel köszöntünk versenyünkön! Kérlek, figyelmesen olvasd

Részletesebben

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget!

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget! Matematika vizsga 014. 9. osztály Név: Az 1-1. feladatok megoldását a feladatlapra írd! A 1-19. feladatokat a négyzetrácsos lapon oldd meg! 1. Számítsd ki az alábbi kifejezések pontos értékét! 0, = = p

Részletesebben

Gyakorló feladatok kombinatorikából. 1. Nóri, Robi, Sári, Klári egyszerre érnek a lifthez. Hányféle sorrendben szállhatnak be?

Gyakorló feladatok kombinatorikából. 1. Nóri, Robi, Sári, Klári egyszerre érnek a lifthez. Hányféle sorrendben szállhatnak be? A megoldásokat a lista végén találod meg. Gyakorló feladatok kombinatorikából 1. Nóri, Robi, Sári, Klári egyszerre érnek a lifthez. Hányféle sorrendben szállhatnak be? 2. Réka 3 szelet süteményt szeretne

Részletesebben

Reinhard Staupe remek üzletelős játéka B A S A R I. 10 éves kortól 3-4 játékos részére 20-30 perc játékidő

Reinhard Staupe remek üzletelős játéka B A S A R I. 10 éves kortól 3-4 játékos részére 20-30 perc játékidő Reinhard Staupe remek üzletelős játéka B A S A R I 10 éves kortól 3-4 játékos részére 20-30 perc játékidő Mi van a dobozban? Játéktábla 100 db drágakő 4 színben (tartalék drágakövek is vannak a dobozban,

Részletesebben

Futsal. A versenyt a Magyar Diáksport Szövetség a Magyar Labdarúgó Szövetséggel (MLSZ) együttműködésben hirdeti meg.

Futsal. A versenyt a Magyar Diáksport Szövetség a Magyar Labdarúgó Szövetséggel (MLSZ) együttműködésben hirdeti meg. IV. KORCSOPORT IV. KORCSOPORT Futsal A versenyt a Magyar Diáksport Szövetség a Magyar Labdarúgó Szövetséggel (MLSZ) együttműködésben hirdeti meg. Résztvevők: Megyei/budapesti döntőkig bezárólag: A megyei/budapesti

Részletesebben